

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 1 of 118

Sirius Breadboard User Manual

 Rev. L

© ÅAC Microtec 2016

ÅAC Microtec AB owns the copyright of this document which is supplied in confidence and which shall
not be used for any purpose other than for which it is supplied and shall not in whole or in part be
reproduced, copied, or communicated to any person without written permission from the owner.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 2 of 118

REVISION LOG

Rev Date Change description

A 2015-11-10 First Release
B 2016-03-07 Updates for new release with lots of minor corrections and

clarifications.
C 2016-03-18 Version C released with the following updates:

 TCM-S chapter 6 updated

 UART chapter update

 Spacewire router chapter 6 added.

 Added GPIO chapter

 Updated SCET ioctl

 Corrected BSP section to be board-agnostic
D 2016-03-23 Added driver API for CCSDS
E 2016-05-01 Version E released with the following updates:

 GPIO chapter updated

 UART32 chapter added

 TCM-S chapter updated
Lots of minor corrections and fixes.

F 2016-05-03 Added missing section on TCM-S.
G 2016-06-10 Added NVRAM and PUS 1 commands.

Editorial changes.
H 2016-06-30 Version H released with the following updates:

 PUS 2 commands CDPU

 SoC specs

 TCM-S core app updates

 SPW byte alignment
I 2016-09-05 Version I released with the following updates:

 GPIO example

 HK equations

 ADC section

 nandflash program bad blocks handling

 Boot image information and boot order

 Added section on pulse command inputs

 Adjusted TCM-S section and synched with TCM-S DDD

 Removed TCM-S download command as this isn’t supported
in this release.

J 2016-09-07 Corrected TCM-S RMAP address and command errors that snuck into
release version I.

K 2016-10-11 Version K released with the following updates:

 TCM-S RMAP updates
- grouped MMData with the rest of the MM commands
- renamed TMBRControl to TMBRSet
- corrected and clarified TCStatus
- changed order in TMConfig to match implementation
- re-added download information
- trimmed section to match new requirements

 SBAND/XBAND pin updates

 Added information on reset button to section 9.1

 Updated UART section to match UART DDD rev B

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 3 of 118

L 2016-11-03

Version L released with the following updates:

 Graphics added to “Updating the Sirius FPGA” instructions

 Analog, NVRAM, PPS and Pulse command added to
“equipment information”. System overview updated
accordingly

 GPIO, ADC, Watchdog and Error Manager chapters updated

 TCM core app chapter updated
- Added information about handling of Rd/Wr pointers

 Added Power connector interface

 Added reference to ICD:s for further HW information

 SpaceWire node chapter updated and limitations removed

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 4 of 118

TABLE OF CONTENT

1. INTRODUCTION ... 7
1.1. Applicable releases .. 7
1.2. Intended users .. 7
1.3. Getting support ... 7
1.4. Reference documents .. 7

2. EQUIPMENT INFORMATION ... 8
2.1. System Overview with peripherals ... 9

3. SETUP AND OPERATION ...10
3.1. User prerequisites .. 10
3.2. Connecting cables to the Sirius Breadboard ... 11
3.3. Installation of toolchain ... 12

3.3.1. Supported Operating Systems ... 12
3.3.2. Installation Steps .. 12

3.4. Installing the Board Support Package (BSP) ... 13
3.5. Deploying a Sirius application .. 13

3.5.1. Establish a debugger connection to the Breadboard.. 13
3.5.2. Setup a serial terminal to the device debug UART... 14
3.5.3. Loading the application .. 14

3.6. Programming an application (boot image) to system flash .. 15

4. SOFTWARE DEVELOPMENT ...16
4.1. RTEMS step-by-step compilation .. 16
4.2. Software disclaimer of warranty ... 16

5. RTEMS ...17
5.1. Introduction ... 17
5.2. Watchdog .. 18

5.2.1. Description ... 18
5.2.2. RTEMS API .. 18
5.2.3. Usage ... 19

5.3. Error Manager ... 21
5.3.1. Description ... 21
5.3.2. RTEMS API .. 21
5.3.3. Usage ... 26
5.3.4. Limitations .. 27

5.4. SCET .. 28
5.4.1. Description ... 28
5.4.2. RTEMS API .. 28
5.4.3. Usage ... 30

5.5. UART .. 34
5.5.1. Description ... 34
5.5.2. RTEMS API .. 34
5.5.3. Usage description .. 37
5.5.4. Limitations .. 38

5.6. UART32 .. 38
5.6.1. Description ... 38
5.6.2. RTEMS API .. 38

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 5 of 118

5.6.3. Usage description .. 42
5.6.4. Limitations .. 42

5.7. Mass memory .. 43
5.7.1. Description ... 43
5.7.2. RTEMS API .. 43
5.7.3. Usage ... 48
5.7.4. Limitations .. 49

5.8. Spacewire .. 50
5.8.1. Description ... 50
5.8.2. RTEMS API .. 50
5.8.3. Usage description .. 53

5.9. GPIO ... 56
5.9.1. Description ... 56
5.9.2. RTEMS API .. 56
5.9.3. Usage description .. 59
5.9.4. Limitations .. 60

5.10. CCSDS ... 61
5.10.1. Description ... 61
5.10.2. RTEMS API .. 61
5.10.3. Usage description .. 67

5.11. ADC .. 68
5.11.1. Description ... 68
5.11.2. RTEMS API .. 69
5.11.3. Usage description .. 72
5.11.4. Limitations .. 72

5.12. NVRAM .. 73
5.12.1. Description ... 73
5.12.2. RTEMS API .. 73
5.12.3. Usage description .. 76

6. SPACEWIRE ROUTER ..77

7. TCM-S ..78
7.1. Description .. 78
7.2. Block diagram ... 78
7.3. Spacewire RMAP .. 78

7.3.1. Input ... 79
7.3.2. Output .. 80
7.3.3. Status code in reply messages .. 80

7.4. RMAP address details .. 81
7.4.1. Input ... 81
7.4.2. Output .. 93

7.5. Telemetry ... 93
7.6. Telecommands ... 93
7.7. ECSS standard service .. 93

7.7.1. PUS-1 Telecommand verification service .. 94
7.7.2. PUS-2 Device Command Distribution Service ... 94

7.8. Handling of Rd/Wr-pointers and wrap-flags for partitions .. 94
7.9. Limitations .. 95

8. SYSTEM-ON-CHIP DEFINITIONS ...96
8.1. Memory mapping .. 96

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 6 of 118

8.2. Interrupt sources .. 97
8.3. SCET timestamp trigger sources .. 97
8.4. Boot images and boot procedure.. 98

8.4.1. Description ... 98
8.4.2. Block diagram .. 98
8.4.3. Usage description .. 98
8.4.4. Limitations .. 99

8.5. Reset behaviour .. 99
8.6. General synchronize method .. 99
8.7. Pulse command inputs .. 99
8.8. SoC information map ... 100

9. CONNECTOR INTERFACES ... 101
9.1. RESET, Reset pushbutton ... 101
9.2. JTAG-RTL, FPGA-JTAG connector ... 102
9.3. DEBUG-SW .. 102
9.4. SPW1 - Spacewire... 103
9.5. SPW2 - Spacewire... 103
9.6. ANALOGS, Analog input and 4xGPIO (OBC-S) .. 104
9.7. DIGITALS, 3x I2C, PPS and 12xGPIO .. 105
9.8. COM02_RS4XX, 3xRS422/485 .. 106
9.9. COM35_RS4XX, RS422/485 (OBC-S) ... 107
9.10. CCSDS RS422, S-BAND TRX (TCM-S) .. 108
9.11. CCSDS LVDS, RS422, X-BAND TRX (TCM-S) ... 109
9.13. UMBI – Baseband Umbilical (TCM-S) .. 110
9.14. Pulse Command Outputs ... 111
9.15. PWR connector ... 112

10. UPDATING THE SIRIUS FPGA ... 113
10.1. Prerequisite hardware .. 113
10.2. Prerequisite software ... 113
10.3. Step by step guide .. 113

11. MECHANICAL DATA .. 116

12. ENVIRONMENTAL INFORMATION .. 116

13. GLOSSARY ... 117

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 7 of 118

1. Introduction

This manual describes the functionality and usage of the ÅAC Sirius Breadboard. The

Breadboard is a prototype board for products under development, which means that not all

functions are implemented yet. The OBC-S and TCM-S functionality is described and can

both run on the breadboard. The breadboard has fitted or non-fitted components and unique

SoCs that give the desired functionality to match either the OBC-S or TCM-S.

1.1. Applicable releases

This version of the manual is applicable to the following software and RTL releases:

OBC-S 0.7

TCM-S 0.7

1.2. Intended users

This manual is written for software engineers using the ÅAC Sirius product suite.

1.3. Getting support

If you encounter any problem using the breadboard or another ÅAC product please use the

following address to get help:

Email: support@aacmicrotec.com

1.4. Reference documents

RD# Document ref Document name

RD1 http://opencores.org/openrisc,architecture OpenRISC 1000 Architecture
Manual

RD2 ECSS-E-ST-50-12C SpaceWire – Links, nodes,
routers and networks

RD3 ECSS-E-ST-50-52C SpaceWire – Remote memory
access protocol

RD4 ECSS-E-70-41A Ground systems and
operations – Telemetry and
telecommand packet utilization

RD5 SNLS378B PC16550D Universal
Asynchronous
Receiver/Transmitter with
FIFOs

RD6 AD7173-8, Rev. A Low Power, 8-/16-Channel,
31.25 kSPS, 24-Bit, Highly
Integrated Sigma-Delta ADC

RD7 Edition 4.10.99.0 RTEMS BSP and Device
Driver Development Guide

RD8 CCSDS 132.0-B-2 TM Space Data Link Protocol
RD9 CCSDS 232.0-B-2 TC Space Data Link Prototcol

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 8 of 118

2. Equipment information

The Sirius Breadboard is a prototyping platform designed to support the TCM-S, and the

OBC-S products. The Breadboard layout is depicted in Figure 3-1.

The development board supports both a debugger interface for developing software

applications and a JTAG interface for upgrading the FPGA firmware.

The FPGA firmware implements SoC based on a 32 bit OpenRISC Fault Tolerant processor

[RD1] running at a system frequency of 50 MHz and with the following set of peripherals:

 Error manager, error handling, tracking and log of e.g. power loss and/or memory

error detection.

 SDRAM 64 MB data + 64 MB EDAC running @100MHz

 Spacecraft Elapsed Timer (SCET), including a PPS (Pulse Per Second) time

synchronization interface, for accurate time measurement with a resolution of 15 µs

 SpaceWire, including a three-port SpaceWire router, for communication with

external peripheral units

 UARTs (Number of interfaces differ between the products) uses the RS422 and

RS485 line drivers on the board with line driver mode set by software.

 GPIOs

 Watchdog, fail-safe mechanism to prevent a system lockup

 System flash of 2 GB with EDAC-protection for storing boot images in multiple

copies

 Pulse command inputs for reset to a specific software image

 MRAM for storage of metadata and other data that requires a large number of

writes that shall survive loss of power

For the TCM-S the following additional peripherals are included in the SoC:

 CCSDS, communications IP.

 Mass memory of 16GB with EDAC-protection, NAND flash based, for storage of

mission critical data.

For the OBC-S an Analog interface is included.

The input power supply provided to the breadboard shall use a range of +4.5V to absolute

max. of +16V. The power consumption is highly dependent on peripheral loads and it ranges

from 0.8 W to 2 W.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 9 of 118

2.1. System Overview with peripherals

Figure 2-1 depicts a System-on-Chip (SoC) overview including the related peripherals of the

OBC-S and TCM-S

products. The figure shows what parts are for which products and what

parts are not yet implemented since the products are still under development.

FPGA

FPU

OpenRISC

1200FT

I/D Cache

I2C

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

2 GB System
Flash

R
a

d
io

 I
n

te
rf

a
ce

s
R

S4
2

2
/L

V
D

S
R

S4
2

2
/R

S4
8

5
JT

A
G

/D
E

B
U

G
Pulse CMDUMBI/EGSEETHERNET GPIO

ADC
(Housekeeping)

Ethernet
10/100

ADC
controller

OBC-S/TCM-S

NVRAM

Analog inputs

NVRAM

TCM-S TCM-S/OBC-S Not implementedOBC-S

Figure 2-1 - The OBC-S / TCM-S SoC Overview.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 10 of 118

3. Setup and operation

3.1. User prerequisites

The following hardware and software is needed for the setup and operation of the

Breadboard.

PC computer

 1 Gb free space for installation (minimum)

 Debian 7 or 8 64-bit with super user rights

 USB 2.0

Recommended applications and software

 Installed terminal e.g. gtkterm or minicom

 Driver for USB/COM port converter, FTDI, www.ftdichip.com

 Host build system, e.g. debian package build-essential

 The following software is installed by the ÅAC toolchain package

o GCC, C compiler for OpenRISC

o GCC, C++ compiler for OpenRISC

o GNU binutils and linker for OpenRISC

For FPGA update capabilities

 Microsemi FlashPro Express v11.7, http://www.microsemi.com/products/fpga-

soc/design-resources/programming/flashpro#software

http://www.aacmicrotec.com/
http://www.ftdichip.com/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 11 of 118

3.2. Connecting cables to the Sirius Breadboard

Figure 3-1 – ÅAC Sirius Breadboard with connector numbering

The Sirius Breadboard runs on a range of 4.5 to 16V DC. The instructions below refer to the

connector numbering in Figure 3-1.

 Connect Ground to the black connector 1

 Connect 4.5 - 16 V DC to the yellow connector 2. The unit will nominally draw

about 260-300 mA @5V DC.

 Connect the 104451 ÅAC Debugger and Ethernet adapter with the 104471

Ethernet debug unit cable to connector 3. Connect the adapter USB-connector to

the host PC. The ÅAC debugger is mainly used for development of custom

software for the OBC-S with monitoring/debug capabilities, but is also used for

programming an image to the system flash memory. For further information refer to

chapter 3.6.

 For FPGA updating only: Connect a FlashPro programmer to connector 4 using the

104470 FPGA programming cable assembly. For further information how to update

the SoC refer to Chapter 9.10.

 For connecting the SpaceWire:

o Option 1: Connect the nano-D connector to connector 5 or 6. Be careful

when plugging and unplugging this connector.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 12 of 118

o Option 2: Connect the Display port cable to connector 7 or 8 and to the

104510 Converter board. Connect your SpaceWire system to the

converter board with the SpaceWire cable.

 Connecting UARTs:

o Option 1: Connect to the nano-D number 12 (UART0-2) or 13 (UART3-5).

Be careful when plugging and unplugging this connector.

o Option 2: Connect to the debug connector 10 using a flat cable to DSUB

connector harness. This can then be connected to a PC using something

similar to the FTDI USB-COM485/COM422-PLUS4.

For more detailed information about the connectors, see section 8.4.

3.3. Installation of toolchain

This chapter describes instructions for installing the aac-or1k-toolchain.

3.3.1. Supported Operating Systems

Debian 7 64-bit

Debian 8 64-bit

3.3.2. Installation Steps

1. Add the ÅAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

deb http://repo.aacmicrotec.com/archive/ aac/

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

Terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the toolchain by issuing the following commands:

sudo apt-get update

sudo apt-get install aac-or1k-toolchain

Note: The toolchain package is roughly 1GB uncompressed, downloading/installing it

will take some time.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 13 of 118

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them, this can be done either temporarily for the current shell via

source /opt/aac/aac-path.sh

or permanently by editing the ~/.profile file

gedit ~/.profile

and adding the following snippet at the end of the file, and then save and close it:

AAC OR1k toolchain PATH setup

if [-f /opt/aac/aac-path.sh]; then

 . /opt/aac/aac-path.sh >/dev/null

fi

3.4. Installing the Board Support Package (BSP)

The BSP can either be downloaded from http://repo.aacmicrotec.com/bsp or copied from the

accompanying DVD. Simply extract the tarball aac-or1k-xxx-x-bsp-y.tar.bz2 to a directory of

your choice (xxx-x depends on your intended hardware target - OBC-S or TCM-s and y

matches the current version number of that BSP).

The newly created directory aac-or1k-xxx-x-bsp now contains the drivers for both bare-metal

applications and RTEMS. See the included README and chapter 4.1 for build instructions.

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Breadboard

The Sirius Breadboard is shipped with a debugger which connects to the PC via USB. To

interface the Breadboard, the Open On-Chip Debugger (OpenOCD) software is used. A

script called run_aac_debugger.sh is shipped with the toolchain package which starts an

OpenOCD server for gdb to connect to.

1. Connect the Breadboard according to section 3.

2. Start the run_aac_debugger.sh script from a terminal.

3. If the printed message is according to Figure 3-2, the connection is working.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 14 of 118

Figure 3-2 - Successful OpenOCD connection to the Breadboard

3.5.2. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A terminal emulator such as minicom or gtkterm is necessary to communicate with the

Breadboard, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected and you have to make sure you're using the correct device number to

communicate to the board's debug UART.

3.5.3. Loading the application

Application loading during the development stages (before programming to flash) are done

using gdb.

1.a) Start gdb with the following command from a shell for a bare-metal environment

or1k-aac-elf-gdb

 or

1.b) Start gdb with the following command from a shell for an RTEMS environment

or1k-aac-rtems4.11-gdb

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 15 of 118

2. When gdb has opened successfully, connect to the hardware through the

OpenOCD server using the gdb command

target remote localhost:50001

3. To start an executable program in hardware, first specify it's name using the gdb

command file. Make sure the application is in ELF format.

file path/to/binary_to_execute

4. Now it needs to be uploaded onto the target RAM

load

5. In the gdb prompt, type c to start to run the application

3.6. Programming an application (boot image) to system flash

This chapter describes how to program the NAND flash memory with a selected boot image.

To achieve this, the boot image binary is bundled together with the NAND flash

programming application during the latter's compilation and then uploaded to target just as

an ordinary application is started through gdb. The maximum allowed size for the boot

image for this release is 16 Mbyte. The nandflash_program application can be found in the

BSP, see also instructions below.

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Then make sure that this is in a binary-only format and not ELF. This can otherwise

be accomplished with the help of the gcc tools included in the toolchain. Note that

X is to be replaced according to what your application has been compiled against.

Either elf for a bare-metal application or rtems4.11 for the RTEMS variant.

or1k-aac-X-objcopy -O binary boot_image.elf boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/nandflash_program/src

4. Now, compile the nandflash-program application, bundling it together with the boot image

binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of gdb and

execute it. Follow the instructions on screen and when it's ready, reboot the board

by resetting or power cycling.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 16 of 118

4. Software development

Applications to be deployed on the Sirius Breadboard can either use a bare-metal approach

or use the RTEMS OS. This corresponds to the two toolchain prefixes available: or1k-aac-

elf-* or or1k-aac-rtems4.11-*

Drivers for both are available in the BSP, see chapter 3.4 and the BSP README for more

information.

4.1. RTEMS step-by-step compilation

The BSP is supplied with an application example of how to write an application for RTEMS

and engage all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to have been installed and the

BSP unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory:

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/

2. Type make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory

export RTEMS_MAKEFILE_PATH=path/to/librtems/or1k-aac-

rtems4.11/or1k-aac

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter

3.5.

4.2. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

This source code is provided without any express or implied warranties whatsoever.

Because of the diversity of conditions and hardware under which this source code may be

used, no warranty of fitness for a particular purpose is offered. The user is advised to

test the source code thoroughly before relying on it. The user must assume the entire risk of

using the source code.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 17 of 118

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The Block diagram representing driver

functionality access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 18 of 118

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device.

5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

5.2.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in

The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in

A bitwise”or” separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write).

Return value Description

> 0
A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 19 of 118

5.2.2.3. size_t write(…)

Any data is accepted as a watchdog kick.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

*
nNumber of bytes that were
written.

- 1 see errno values

errno values

EPERM Device was not opened

EBUSY Device is busy

5.2.2.4. int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL
1 = Enables the watchdog
0 = Disables the watchdog

WATCHDOG_SET_TIMEOUT_IOCTL 1 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EINVAL Invalid data sent

RTEMS_NOT_DEFINED Invalid I/O command

5.2.3. Usage

The watchdog is enabled and disabled using ioctl() calls.

The watchdog must be kicked using a write() call before the timeout occurs or else the

watchdog will bark. Notice that the value shall be set between 1 and 255 seconds. Set to

zero is a false value.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 20 of 118

Default value of the watch dog is enabled. When debugged it must be set disabled

otherwise the system restart occasionally.

5.2.3.1. RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-2 - RTEMS driver usage description

Note: All calls to the RTEMS driver are blocking calls.

5.2.3.2. RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code structure

is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 21 of 118

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER must be defined for using the

watchdog driver. By defining this as part of the RTEMS configuration, the driver will

automatically be initialized at boot up.

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device

5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt driven events such as power

loss, non-fatal multiple errors generated by the RAM EDAC mechanism.

5.3.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

fd A file descriptor for the device on
success

-1 see errno values

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 22 of 118

errno values

EALREADY Device already opened

5.3.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.3. int ioctl(…)

Ioctl allows for disabling/enabling functionality of the error manager, setting of the timeout

and reading out counter values.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Buffer to either read to or write from

Command table Description

ERRMAN_GET_SR_IOCTL Get the status register.
This register is defined in 5.3.2.4

ERRMAN_GET_CF_IOCTL Gets the Carry flag register.
This register is defined in 5.3.2.5

ERRMAN_GET_SELFW_IOCTL Points to which boot firmware that will be loaded and
executed upon system reboot.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_RUNFW_IOCTL Gets the currently running firmware
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_SCRUBBER_IOCTL Gets the state of the memory scrubber.
0 = Scrubber is disabled
1 = Scrubber is enabled.

ERRMAN_GET_RESET_ENABLE_IOCTL Gets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 23 of 118

ERRMAN_GET_WDT_ERRCNT_IOCTL Gets the watchdog error count register.
This register can store a value up to 15 and then
wraps. After a wrap the WDT carry flag bit is set in the
carry flag register. See 5.3.2.5

ERRMAN_GET_EDAC_SINGLE_ERRCNT_IOCTL Gets the EDAC single error count.
See 5.3.2.6 for interpretation of the register.
After a wrap the EDAC single error count carry flag bit
is set in the carry flag register. See 5.3.2.5

ERRMAN_GET_EDAC_MULTI_ERRCNT_IOCTL Gets the EDAC multiple error count.
See 5.3.2.7 for interpretation of the register.
After a wrap the EDAC multiple error count carry flag
bit is set in the carry flag register. See 5.3.2.5

ERRMAN_GET_CPU_PARITY_ERRCNT_IOCTL Gets the CPU Parity error count register.
This register can store a value up to 15 and then
wraps. After a wrap the CPU parity error count carry
flag bit is set in the carry flag register. See 5.3.2.5

ERRMAN_GET_POWER_LOSS_ENABLE_IOCTL Gets the power loss detection enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

ERRMAN_SET_SR_IOCTL Sets the status register.
See 5.3.2.4 for register definition.

ERRMAN_SET_CF_IOCTL Sets the carry flag register.
See 5.3.2.5 for register definition.

ERRMAN_SET_SELFW_IOCTL Sets the next boot firmware.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_RESET_SYSTEM_IOCTL Performs a software reset.
The reset enable state is required to be 1 (On).

ERRMAN_SET_SCRUBBER_IOCTL Sets the state of the memory scrubber.
1 = On,
0 = Off.
The scrubber is a vital part of keeping the SDRAM free
from errors.

ERRMAN_SET_RESET_ENABLE_IOCTL Sets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

ERRMAN_SET_WDT_ERRCNT_IOCTL Sets the watchdog error count register.
The counter width is 4 bits i. e. 15 is the maximum
value that can be written.

ERRMAN_SET_EDAC_SINGLE_ERRCNT_IOCTL Sets the EDAC single error count.
See 5.3.2.6 for register definition.

ERRMAN_SET_EDAC_MULTI_ERRCNT_IOCTL Sets the EDAC multiple error count register.
See 5.3.2.7 for register definitionS.

ERRMAN_SET_CPU_PARITY_ERRCNT_IOCTL Sets the CPU Parity error count register.
The counter width is 4 bits i. e. 15 is the maximum
value that can be written.

ERRMAN_SET_POWER_LOSS_ENABLE_IOCTL Sets the power loss enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 24 of 118

5.3.2.4. Status register

Bit position Name Direction Description

31:12 RESERVED

11 ERRMAN_PULSEFLG R/W Pulse command flag bit is set.
Clear flag by writing a ‘1’

10 ERRMAN_POWFLG R/W The power loss signal has been set.
Clear flag by writing a ‘1’

9 ERRMAN_MEMCLR R The memory cleared signal is set from the
scrubber unit function from the memory
controller. Set when the memory has been
cleared during system boot.

8 RESERVED

7 ERRMAN_PARFLG R/W A previous CPU register file parity error reset
has been detected. This has caused an
automatic reset if the reset enable state is 1
(On).
Clear flag by writing a ‘1’

6 ERRMAN_MEOTHFLG R/W A previous RAM EDAC uncorrectable multiple
error has been detected for non-critical data.
Clear flag by writing a ‘1’

5 ERRMAN_SEOTHFLG R/W A previous RAM EDAC single error has been
detected and corrected for non-critical data.
Clear flag by writing a ‘1’

4 ERRMAN_MECRIFLG R/W A previous RAM EDAC uncorrectable multiple
error has been detected for critical data.
Clear flag by writing a ‘1’.
This has caused an automatic reset if the reset
enable state is 1 (On).

3 ERRMAN_SECRIFLG R/W A previous RAM EDAC single error has been
detected and corrected for critical data.
Clear flag by writing a ‘1’

2 ERRMAN_WDTFLG R/W A previous watch dog timer reset has been
detected.
Clear flag by writing a ‘1’

1 ERRMAN_RFLG R/W A previous manual reset has been detected.
Clear flag by writing a ‘1’

0 ERRMAN_IFLAG R/W Error Manager Interrupt Flag
0 = No interrupt pending
1 = Interrupt pending
Clear flag by writing a ‘1’

5.3.2.5. Carry flag register

Bit position Name Direction Description

31:6 RESERVED

7 ERRMAN_PARCFLG R/W Carry flag set when CPU register file parity
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

6 ERRMAN_MEOFLG R/W Carry flag set when RAM EDAC multiple other
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing ‘1’)

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 25 of 118

5 ERRMAN_SEOFLG R/W Carry flag set when RAM EDAC single other
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

4 ERRMAN_MECFLG R/W Carry flag set when RAM EDAC multiple critical
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing ‘1’)

3 ERRMAN_SECFLG R/W Carry flag set when RAM EDAC single critical
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

2 ERRMAN_WDTCFLG R/W Carry flag set when watch dog reset counter
overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

1 ERRMAN_RFCFLG R/W Carry flag set when manual reset counter
overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

0 RESERVED -

5.3.2.6. Single EDAC error register

Bit position Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_SENOCNT_SDRAM R/W SDRAM EDAC single error counter for non-
critical errors

15:4 RESERVED -

3:0 ERRMAN_SECRICNT_SDRAM R/W SDRAM EDAC single error counter for
critical errors

5.3.2.7. Multiple EDAC error register

Bit position Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_MENOCNT R/W SDRAM EDAC multiple error counter for non-
critical errors

15:4 RESERVED -

3:0 ERRMAN_MECRICNT R/W SDRAM EDAC multiple error counter for
critical errors

Return value Description

0 Command executed successfully

-1 See errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 26 of 118

5.3.3. Usage

5.3.3.1. RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-3 - RTEMS driver usage description

Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be

subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

This queue emits messages upon power loss and single correctable errors.

A subscriber must inspect the message according to the following table to determine

whether to take action or not. Multiple subscribers are allowed and all subscribers will be

notified upon a message.

Message Description

ERRMAN_IRQ_POWER_LOSS A power loss has been detected

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER Multiple EDAC errors that are not critical have been
detected

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 27 of 118

5.3.3.2. RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager_rtems.h> is required for accessing error manager

device name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialised at boot up.

5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing due to

the lack of mechanisms of injecting errors in this release.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/error_manager_rtems.h>

#define

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 28 of 118

5.4. SCET

5.4.1. Description

This section describes the driver as a utility for accessing the SCET device.

5.4.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause.

SCET accesses can either be done by reading and writing to the device file. In this way the

second and subsecond values can be read and/or modified.

The SCET RTEMS driver also supports a number of different IOCTLs.

Finally there is a message queue interface allowing the application to act upon different

events.

5.4.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. SCET device is defined as
RTEMS_SCET_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc).

Return value Description

* A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened

5.4.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 29 of 118

5.4.2.3. int ioctl(…)

Ioctl allows for disabling/enabling of the SCET and setting of the timeout.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

SCET_GET_SECONDS_IOCTL uint32_t out Returns the current number of
seconds

SCET_GET_SUBSECONDS_IOCTL uint32_t out Returns the current fraction of a
second

SCET_GET_PPS_SOURCE_IOCTL uint32_t out Returns the current set PPS source

SCET_GET_GP_TRIGGER_LEVEL_IOCTL uint32_t in/out val input argument is the GP Trigger.
Returns the currently configured level
of the selected GP trigger

SCET_GET_INTERRUPT_ENABLE_IOCTL uint32_t out Returns the current interrupt level
register

SCET_GET_INTERRUPT_STATUS_IOCTL uint32_t out Returns the current interrupt status
register

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL uint32_t out Returns the PPS arrived counter.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_GP_TRIGGER_COUNTER_IOCTL uint32_t
*

in/out Pointer input argument is the GP
trigger.
Returns the counter of the selected
GP trigger.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_SECONDS_ADJUST_IOCTL int32_t out Returns the value of the second
adjust register

SCET_GET_SUBSECONDS_ADJUST_IOCTL int32_t out Returns the value of the subsecond
adjust register

SCET_GET_PPS_O_EN_IOCTL uint32_t out Returns whether the external PPS
out driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

SCET_SET_SECONDS_IOCTL int32_t in Input argument is the new second
value to set

SCET_SET_SUBSECONDS_IOCTL int32_t in Input argument is the new subsecond
value to set

SCET_SET_INTERRUPT_ENABLE_IOCTL uint32_t in Sets the interrupt enable mask
register

SCET_SET_INTERRUPT_STATUS_IOCTL uint32_t in Sets the interrupt status register

SCET_SET_PPS_SOURCE_IOCTL uint32_t in Sets the PPS source.
0 = External PPS source
1 = Internal PPS source

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 30 of 118

SCET_SET_GP_TRIGGER_LEVEL_IOCTL uint32_t
*

in/out Pointer input argument selects which
GP trigger. Return value is the
current value of that trigger.
0 = trigger activates on a rising edge
transition
1 = trigger activates on falling edge
transition

SCET_SET_PPS_O_EN_IOCTL uint32_t In Controls if the external PPS out
driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.4.3. Usage

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of timestamps.

By utilizing the GP triggers one can trap the timestamp of different events. An interrupt

trigger can optionally be set up to notify the CPU of that the GP trigger has fired.

If an external PPS source is used, an interrupt trigger can be used to synchronize the SCET

by reading out the SCET second and subsecond value at the time of the external PPS

trigger. This value can then be subtracted from the current second and subsecond value to

calculate a time difference.

This time difference can then be written to the adjustment registers to align the local time to

the external pulse.

5.4.3.1. RTEMS

The RTEMS driver must be opened before it can access the SCET device. Once opened, all

provided operations can be used as described in the RTEMS API defined in subchapter

5.2.2. And, if desired, the device can be closed when not needed.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 31 of 118

Figure 5-4 - RTEMS driver usage description

5.4.3.1.1. Time handling
Getting the current SCET time in RTEMS can be done in two ways:

1. Using read call, reading 6 bytes.

The first four bytes contains the second count.

The two last bytes contain the subsecond count.

2. Using the SCET_GET_SECONDS_IOCTL and SCET_GET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Adjusting the SCET time is done the same way as getting the SCET time but reversed.

You can either:

1. Write 6 bytes to the device. The first 4 bytes contains the second count difference to

adjust with.

The last 2 bytes contains the subsecond count difference to adjust with.

2. Using the SCET_SET_SECONDS_IOCTL and SCET_SET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Negative adjustment is done by writing data in two complement notations.

5.4.3.1.2. Event callback via message queue
The SCET driver exposes three message queues.

This queue is used to emit messages from the driver to the application.

A single subscriber is allowed for each queue.

‘S’, ‘P’, ‘P’, ‘S’ handles PPS related messages with a prefix of:

SCET_INTERRUPT_STATUS_*

Event name Description

PPS_ARRIVED An external PPS signal has arrived. Use the
SCET_GET_PPS_ARRIVE_COUNTER_IOCTL to get the timestamp of the external
PPS signal in relation to the local SCET counter

PPS_LOST The external PPS signal is lost

PPS_FOUND The external PPS signal was found

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 32 of 118

‘S’, ‘G’, ‘T’, ‘0’ handles messages sent from the general purpose trigger 0.

Event name Description

TRIGGER0 Trigger 0 was triggered

‘S’, ‘G’, T’, ‘1’ handles messages sent from the general purpose trigger 1.

Event name Description

TRIGGER1 Trigger 1 was triggered

‘S’, ‘G’, T’, ‘2’ handles messages sent from the general purpose trigger 2.

Event name Description

TRIGGER2 Trigger 2 was triggered

‘S’, ‘G’, T’, ‘3’ handles messages sent from the general purpose trigger 3.

Event name Description

TRIGGER3 Trigger 3 was triggered

5.4.3.2. Typical SCET use case

A typical SCET use case scenario is to connect a GPS PPS pulse to the PPS input of the

board. On every PPS_ARRIVED message the time difference is calculated and the internal

SCET counter is adjusted.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 33 of 118

5.4.3.3. RTEMS application example

In order to use the scet driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing scet device name

RTEMS_SCET_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the scet

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 34 of 118

5.5. UART

5.5.1. Description

This driver is using the de facto standard interface for a 16550D UART given in [RD5] and

as such has an 8-bit interface, but has been expanded to provide a faster and more delay-

tolerant implementation.

5.5.1.1. RX/TX buffer depth

The RX and TX FIFOs have been expanded to 128 characters compared to the original

specification of 16 characters. To be backwards compatible as well as being able to utilize

the larger depth of the FIFOs, a new parameter has been brought in called buffer depth. The

set buffer depth decides how much of the FIFOs real depth it should base its calculations

on. Buffer depth affects both RX and TX FIFOs handling in the RTEMS driver.

5.5.1.2. Trigger levels

To be able to utilize the larger FIFOs, the meaning of the trigger levels have been changed.

In the specification in [RD5], it defines the trigger levels as 1 character, 4 characters, 8

characters and 14 characters. This has now been changed to instead mean 1 character, 1/4

of the FIFO is full, 1/2 of the FIFO is full and the FIFO is 2 characters from the given buffer

depth top. This results in the IP being fully backwards compatible, since a buffer depth of 16

characters would yield the same trigger levels as those given in [RD5].

5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.5.2.1. Function int open(...)

Opens access to the requested UART. Only blocking mode is supported.

Upon each open call the device interface is reset to 115200 bps and its default mode

according to the table below.

Argument name Type Direction Description

pathname const char * in The absolute path to the file that is to be
opened.
See table below for uart naming.

flags Int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write etc). See below.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 35 of 118

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

Device name Description

/dev/uart0 Ordinary UART, default mode RS422

/dev/uart1 Ordinary UART, default mode RS422

/dev/uart2 Ordinary UART, default mode RS422

/dev/uart3 Ordinary UART, default mode RS422

/dev/uart4 Ordinary UART, default mode RS422

/dev/uart_psu_control PSU Control, RS485 only

/dev/uart_safe_bus Safe bus, RS485 only

5.5.2.2. Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function ssize_t read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO.

Please note that it is not uncommon for the read call to return less data than requested.

Argument name Type Direction Description

fd int in File descriptor received at open

buf void * in Pointer to character buffer to write data to

count size_t in Number of characters to read

Return value Description

> 0 Number of characters that were
read.

0 A parity / framing / overflow
error occurred. The RX data
path has been flushed. Data
was lost.

- 1 see errno values

errno values

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 36 of 118

EPERM Device not open

EINVAL Invalid number of characters to
be read

5.5.2.4. Function ssize_t write(…)

Write data to the UART. The write call is blocking until all data have been transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open

buf const void * in Pointer to character buffer to read data from

count size_t in Number of characters to write

Return value Description

>= 0 Number of characters that were
written.

- 1 see errno values

errno values

EINVAL Invalid number of characters to
be written.

5.5.2.5. Function int ioctl(…)

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 mode selection is not applicable for safe bus and power ctrl UARTs.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

UART_IOCTL_SET_BITRATE uint32_t in Set the bitrate of the line interface.
Possible values:
UART_B375000
UART_B153600
UART_B115200 (default)
UART_B76800
UART_B57600
UART_B38400
UART_B19200
UART_B9600
UART_B4800
UART_B2400
UART_B1200

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 37 of 118

UART_IOCTL_MODE_SELECT uint32_t in Set the mode of the interface. Possible
values:
UART_RTEMS_MODE_RS422 (default)
UART_RTEMS_MODE_RS485
UART_RTEMS_MODE_LOOPBACK
(TX connected to RX internally)

UART_IOCTL_RX_FLUSH uint32_t in Flushes the RX software FIFO

UART_IOCTL_SET_PARITY uint32_t in Set parity. Possible values:
UART_PARITY_NONE (default)

UART_PARITY_ODD

UART_PARITY_EVEN

UART_IOCTL_SET_BUFFER_DEPTH uint32_t in Set the FIFO buffer depth. Possible
values:
UART_BUFFER_DEPTH_16 (default)

UART_BUFFER_DEPTH_32

UART_BUFFER_DEPTH_64

UART_BUFFER_DEPTH_128

UART_IOCTL_GET_BUFFER_DEPTH uint32_t* out Get the current buffer depth.

UART_IOCTL_SET_TRIGGER_LEVEL uint32_t in Set the RX FIFO trigger level. Possible
values:
UART_TRIGGER_LEVEL_1 = 1

character

UART_TRIGGER_LEVEL_4 = 1/4 full

UART_TRIGGER_LEVEL_8 = 1/2 full

UART_TRIGGER_LEVEL_14 =

buffer_depth - 2 (default)

UART_IOCTL_GET_TRIGGER_LEVEL uint32_t* out Get the current trigger level

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 38 of 118

5.5.3.1. RTEMS application example

In order to use the uart driver in the RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the internal

RX queue is flushed.

5.5.4. Limitations

8 data bits only.

1 stop bit only.

No hardware flow control support.

5.6. UART32

5.6.1. Description

This driver software for the UART32 IP 104 513 [RD1], handles the setup and transfer of

serial data to memory. This is a high-speed receive-only UART.

5.6.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored){}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 39 of 118

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.6.2.1. Enum rtems_uart32_ioctl_baudrate_e

Enumerator for the baudrate of the serial link.

Enumerator Description

UART32_IOCTL_BAUDRATE_10M 10 MBaud

UART32_IOCTL_BAUDRATE_5M 5 MBaud

UART32_IOCTL_BAUDRATE_2M 2 MBaud

UART32_IOCTL_BAUDRATE_1M 1 MBaud

UART32_IOCTL_BAUDRATE_115200 115200 Baud

5.6.2.2. Enum rtem_uart32_ioctl_endian_e

Enumerator for the endianness of the DMA transfer.

Enumerator Description

UART32_IOCTL_ENDIAN_BIG Big endian

UART32_IOCTL_ENDIAN_LITTLE Little endian

5.6.2.3. Function int open(...)

Opens access to the requested UART32. Upon each open call the device interface is reset

to 10MBaud and big endian mode.

Argument name Type Direction Description

pathname const char * in The absolute path to the UART32 to be
opened. UART32 device is defined as
UART32_DEVICE_NAME.

flags int in Access mode flag, only O_RDONLY is
supported.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 40 of 118

Return value Description

Fildes A file descriptor for the device on
success

-1 See errno values

errno values

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.6.2.4. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.6.2.5. Function ssize_t read(...)

Read data from the UART32. The call block until all data has been received from the

UART32 or an error has occurred.

If any error condition occurs, the read will return zero bytes.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT and the size must be

a multiple of CPU_STRUCTURE_ALIGNMENT. It is recommended to assign the buffer in the

following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buffer[BUFFER_SIZE];

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Maximum number of
bytes is 16777216.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 41 of 118

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EINVAL Invalid options

5.6.2.6. Function int ioctl(...)

Input/output control for UART32.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val uint32_t / uint32t* in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

UART32_SET_BAUDRATE_IOCTL uint32_t in Sets the baudrate for the UART32,
see [5.6.2.1].

UART32_SET_ENDIAN_IOCTL uint32_t in Sets the endian for the transfer, see
[5.6.2.2].

UART32_GET_BURST_SIZE_IOCTL uint32_t out Get the number of bytes in the burst
for the UART32.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 42 of 118

5.6.3. Usage description

The following #define needs to be set by the user application to be able to use the UART32:

CONFIGURE_APPLICATION_NEEDS_UART32_DRIVER

5.6.3.1. RTEMS application example

In order to use the UART32 driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart32_rtems.h> is required for accessing the UART32.

5.6.4. Limitations

The driver has limited UART functionality and can only receive data.

Data length is always 8 bits, no parity check and only 1 stop bit is used.

The receive buffer must be aligned to CPU_STRUCTURE_ALIGNMENT and the size must be a

multiple of CPU_STRUCTURE_ALIGNMENT

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart32_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART32_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 int read_fd;

 uint32_t buffer[4];

 ssize_t size;

 read_fd = open(UART32_DEVICE_NAME, O_RDONLY);

 size = read(read_fd, &buffer, 4);

 status = close(read_fd);

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 43 of 118

5.7. Mass memory

5.7.1. Description

This section describes the mass memory driver’s design and usability.

5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause.

5.7.2.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in
The absolute path to the file that is to be
opened. Mass memory device is defined as
MASSMEM_DEVICE_NAME.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-1.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-1 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.7.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 44 of 118

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF
The file descriptor fd is not an

open file descriptor

5.7.2.3. size_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an
open file descriptor

EINVAL

The whence argument is not a
proper value, or the resulting file
offset would be negative for a
regular file, block special file, or
directory.

EOVERFLOW

The resulting file offset would be a
value which cannot be
represented correctly in an object
of type off_t.

5.7.2.4. size_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 45 of 118

Return value Description

>0 Number of bytes that were read.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file

descriptor

EINVAL

Page offset set in lseek is out of range

or nbytes is too large and reaches a page
that is out of range.

EBUSY
Device is busy with previous read/write
operation.

5.7.2.5. size_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write from buf.

Return value Description

>0 Number of bytes that were written.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL

Page offset set in lseek is out of range or
nbytes is too large and reaches a page
that is out of range.

EAGAIN Driver failed to write data. Try again.

5.7.2.6. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in
Command defined in subchapters 5.7.2.6.1 to
5.7.2.6.9.

value void * in
The value relating to command operation as
defined in subchapters 5.7.2.6.1 to 5.7.2.6.9.

5.7.2.6.1. Bad block check
Checks if the given block is a bad block.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 46 of 118

Command Type Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

Return value Description

0 Block is OK.

-1 Bad block

5.7.2.6.2. Reset mass memory device

Return value Description

0 Always

5.7.2.6.3. Read status data

Return value Description

≥0 Status register value

5.7.2.6.4. Read control status data

Return value Description

0 Always

5.7.2.6.5. Read EDAC register data

Return value Description

0 Always

5.7.2.6.6. Read ID

Command Type Direction Description

MASSMEM_IO_RESET

Command Type Direction Description

MASSMEM_IO_READ_STATUS_DATA uint32_t* out

Command Type Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out

Command Type Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out

Command Type Direction Description

MASSMEM_IO_READ_ID uint8_t* out Of type massmem_cid_t.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 47 of 118

Return value Description

0 Always

5.7.2.6.7. Erase block

Return value Description

0 Always

5.7.2.6.8. Read spare area
Reads the spare area with given data.

Return value Description

0 Read operation was successful.

-1 Read operation failed.

5.7.2.6.9. Program spare area
Programs the spare area from the given data

Return value Description

0
Program operation was
successful.

-1 Program operation failed.

Command Type Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

Command Type Direction Description

MASSMEM_IO_READ_SPARE_AREA uint8_t* in/out
Of type
massmem_ioctl_spare_area_args_t.

Command Type Direction Description

MASSMEM_IO_PROGRAM_SPARE_AREA uint8_t* in/out
Of type
massmem_ioctl_spare_area_args_t

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 48 of 118

5.7.3. Usage

5.7.3.1. RTEMS

5.7.3.1.1. Overview
The RTEMS driver accesses the mass memory by the reference a page number. There are

MASSMEM_BLOCKS blocks starting from block number 0 and

MASSMEM_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page is of size MASSMEM_PAGE_SIZE bytes.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

5.7.3.1.2. Usage
The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapter 5.7.2.

And, if desired, the access can be closed when not needed.

Figure 5-5 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

5.7.3.2. RTEMS application example

In order to use the mass memory flash driver in RTEMS environment, the following code

structure is suggested to be used:

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 49 of 118

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

5.7.4. Limitations

The TCM mass memory interface can currently only handle multiple consecutive RMAP

write commands of size 1200 bytes or below.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASS_MEMORY_FLASH_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 50 of 118

5.8. Spacewire

5.8.1. Description

This section describes the SpaceWire driver’s design and usability.

5.8.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.8.2.5.

5.8.2.1. int open(…)

Registers the application to the device name for data transactions. Although multiple

accesses for data transaction is allowed, only one access per unique device name is valid.

Device name must be set with a logical number as described in usage description in

subchapter Error! Reference source not found..

Argument name Type Direction Description

filename char * in Device name to register to for data transaction.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-2.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid device name

EEXIST Device already opened.

EEGAIN
Opening of device failed due to internal
error. Try again.

Table 5-2 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.8.2.2. int close(…)

Deregisters the device name from data transactions.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 51 of 118

Return value Description

0 Device name deregistered successfully

-1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

5.8.2.3. size_t read(…)

Reads a packet when available.

Note! This call is blocked until a package for the logic address is received. In addition, only

one task must access one file descriptor at a time. Multiple task accessing the same file

descriptor is not allowed.

Note! buf reference must be aligned to a 32 bit aligned address.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in
Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0
Received size of the actual packet. Can
be less than nbytes.

0 Buffer size was lower than received

packet size. Errno value is set to

EOVERFLOW.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL

Packet size is 0 or larger than

SPWN_MAX_PACKET_SIZE

ETIMEDOUT Timeout received. Received packet is
incomplete.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 52 of 118

5.8.2.4. size_t write(…)

Transmits a packet.

Note! This call is blocked till the package is transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in
Packet size in bytes. Must be between 0 and

SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0 Number of bytes that were transmitted.

≤0 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL
Packet size is 0 or larger than
SPWN_MAX_PACKET_SIZE.

ETIMEDOUT Failed to transmit the complete packet.

EIO Internal error

5.8.2.5. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.8.2.5.1

value void * in
The value relating to command operation as
defined in subchapter 5.8.2.5.1.

5.8.2.5.1. Mode setting
Sets the device into the given mode.

Note! The mode setting affects the SpaceWire device and therefore all file descriptors

registered to it.

Command Type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in

Modes available:

 SPWN_IOCTL_MODE_OFF: Turns off the
node.

 SPWN_IOCTL_MODE_LOOPBACK:
Internal loopback mode

 SPWN_IOCTL_MODE_NORMAL: Normal
mode.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 53 of 118

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EINVAL Invalid mode.

5.8.3. Usage description

5.8.3.1. Overview

The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register with a

logical address.

The logical address is tied to a device number. To register to the device, the application

must use the predefined string SPWN_DEVICE_0_NAME_PREFIX with a chosen logical

address to register itself to the driver. See code example in subchapter 5.8.3.3. The

registration is done by function open and deregistered by the function close.

Only one logical address can be registered at a time yet multiple logical addresses can be

used at the same time within an application.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard [RD2] and cannot be registered to.

Note! A reception packet buffer must be aligned to 4 bytes in order to handle the packet’s

reception correctly. It is therefore recommended to assign the reception buffer in the

following way:

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES))

buf_rx[PACKET_SIZE];

5.8.3.2. Usage

The application must first register to a device name before it can be accessed for data

transaction. Once registered via function open, all provided operations can be used as

described in the subchapter 5.8.2. If desired, the access can be closed when not needed.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 54 of 118

Figure 5-6 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

Note! Data rate is dependent on the maximum packet size and packet transmission rate that

is limited by SpaceWire IP core. This simply results in effect to that the packet size is

proportionate to data rate i.e. the larger the packet size, the higher the data rate.

5.8.3.3. RTEMS application example

In order to use the driver in RTEMS environment, the following code structure is suggested

to be used:

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 55 of 118

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

Two buffers, buf_tx and buf_rx, are aligned with CPU_STRUCTURE_ALIGNMENT for

correctly handling DMA access regarding transmission and reception of a SpaceWire

packet.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

.

.

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

#define RESOURCES_MEM_SIZE (512*1024) /* 1 Mb */

#define CONFIGURE_EXECUTIVE_RAM_SIZE RESOURCES_MEM_SIZE

#define CONFIGURE_MAXIMUM_TIMERS 1 /* Needed by driver */

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES)))

 buf_rx[SPWN_MAX_PACKET_SIZE];

uint8_t buf_tx[SPWN_MAX_PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 56 of 118

CONFIGURE_EXECUTIVE_RAM_SIZE must also be defined for objects needed by the

driver.

5.9. GPIO

5.9.1. Description

This driver software for the GPIO IP handles the setting and reading of general purpose

input/output pins. It implements the standard set of device file operations according to [RD7].

The GPIO IP has, apart from logical pin and input/output operations, also a number of other

features.

5.9.1.1. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the driver

software by the means of an interrupt.

5.9.1.2. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample the

current timer when a rising or falling edge is detected on a pin. Reading the time of the

timestamp requires interaction with the SCET and exact register address depends on the

current board configuration. One SCET sample register is shared by all GPIOs.

5.9.1.3. RTEMS differential mode

In RTEMS finally, a GPIO pin can also be set to operate in differential mode on output only.

This requires two pins working in tandem and if this functionality is enabled, the driver will

automatically adjust the setting of the paired pin to output mode as well. The pins are paired

in logical sequence, which means that pin 0 and 1 are paired as are pin 2 and 3 etc. Thus, in

differential mode it is recommended to operate on the lower numbered pin only to avoid

confusion. Pins can be set in differential mode on specific pair only, i.e. both normal single

ended and differential mode pins can operate simultaneously (though not on the same pins

obviously).

5.9.1.4. Operating on pins with pull-up or pull-down

For scenarios when one or multiple pins are connected to a pull-up or pull-down (for e.g.

open-drain operation), it's recommended that the output value of such a pin should always

be set to 1 for pull-down or 0 for pull-up mode. The actual pin value should then be selected

by switching between input or output mode on the pin to comply with the external pull

feature.

5.9.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 57 of 118

5.9.2.1. Function int open(...)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead

retains the settings from any previous access.

Argument name Type Direction Description

pathname const char * in The absolute path to the GPIO pin to be
opened. All possible paths are given by
"/dev/gpioX" where X matches 0-31. The actual
number of devices available depends on the
current hardware configuration.

flags int in Access mode flag, O_RDONLY, O_WRONLY
or O_RDWR.

Return value Description

Fildes A file descriptor for the device on
success

-1 See errno values

errno values

EALREADY Device is already open

EINVAL Invalid options

5.9.2.2. Function int close(...)

Closes access to the GPIO pin.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.9.2.3. Function ssize_t read(...)

Reads the current value of the specified GPIO pin. If no edge detection have been enabled,

this call will return immediately. With edge detection enabled, this call will block with a

timeout until the pin changes status such that it triggers the edge detection. The timeout can

be adjusted using an ioctl command, but defaults to zero - blocking indefinitely, see also

5.9.2.5.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to put the read data
in.

count size_t in Number of bytes to read, must be set to 1.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 58 of 118

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for the edge
detection to trigger

5.9.2.4. Function ssize_t write(...)

Sets the output value of the specified GPIO pin. If the pin is in input mode, the write is

allowed, but its value will not be reflected on the pin until it is set in output mode.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to character buffer to get the write data
from.

count size_t in Number of bytes to write, must be set to 1.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

5.9.2.5. Function int ioctl(...)

The input/output control function can be used to configure the GPIO pin as a complement to

the simple data settings using the read/write file operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val void * in/out Data according to the specific command.

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECTION uint32_t out Get input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_SET_DIRECTION uint32_t in Set input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_GET_FALL_EDGE_DETECTION uint32_t out Get falling edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 59 of 118

GPIO_IOCTL_SET_FALL_EDGE_DETECTION uint32_t in Set falling edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_RISE_EDGE_DETECTION uint32_t out Get rising edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_RISE_EDGE_DETECTION uint32_t in Set rising edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_TIMESTAMP_ENABLE uint32_t out Get timestamp enable status of the
pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_SET_TIMESTAMP_ENABLE uint32_t in Set timestamp enable configuration
of the pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_GET_DIFF_MODE uint32_t out Get differential mode status of the
pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_SET_DIFF_MODE uint32_t in Set differential mode configuration of
the pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_GET_EDGE_TIMEOUT uint32_t out Get the edge trigger timeout value in
ticks. Defaults to zero which means
wait indefinitely.

GPIO_IOCTL_SET_EDGE_TIMEOUT uint32_t in Set the edge trigger timeout value in
ticks. Zero means wait indefinitely.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.9.3. Usage description

5.9.3.1. RTEMS application example

The following #define needs to be set by the user application to be able to use the GPIO:

CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 60 of 118

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, read, write and ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

5.9.4. Limitations

Differential mode works on output only.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM

#define CONFIGURE_MAXIMUM_DRIVERS 15

#define CONFIGURE_MAXIMUM_SEMAPHORES 20

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int gpio_fd;

 uint32_t buffer;

 uint32_t config;

 ssize_t size;

 gpio_fd = open("/dev/gpio0", O_RDWR);

 config = GPIO_DIRECTION_IN;

 status = ioctl(gpio_fd, GPIO_IOCTL_SET_DIRECTION,

 &config);

 size = read(gpio_fd, &buffer, 1);

 status = close(gpio_fd);

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 61 of 118

5.10. CCSDS

5.10.1. Description

This section describes the driver as a utility for accessing the CCSDS IP.

On the telemetry, the frames are encoded with Reed Solomon encoding that conforms to the

CCSDS standard with a (255-223) RS encoder implementation and an interleaving depth of

5. That makes a total frame length of 1115 bytes. The standard RS polynomial is used.

On the telecommands the BCH decoder (63-56) supports the error correcting mode.

The driver can be configured to handle all available interrupts from the CCSDS IP:

 Pulse commands (CPDU)

 Timestamping of telemetry sent on virtual channel 0

 DMA transfer finished.

 Telemetry transfer frame error.

 Telecommand rejection due to error in the incoming telecommand.

 Telecommand frame buffer errors.

 Telecommand frame buffer overflow.

 Telecommand successfully received.

5.10.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, errno value is set for determining the cause.

Access to the CCSDS-driver from an application is provided by three different device-files:

 “/dev/ccsds” that is used for configuration and status for common TM and TC

functionality in the IP. Is defined as CCSDS_NAME

 “/dev/ccsds-tm” that is used for functions related to handling of Telemetry. Is

defined as CCSDS_NAME_TM

 “/dev/ccsds-tc” that is used for functions related to handling of Telecommands. Is

defined as CCSDS_NAME_TC

5.10.2.1. Datatype struct tm_frame_t

This datatype is a struct representing a telemetry transfer frame. The elements are

described in the table below:

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 62 of 118

Element Size (in bits) Description

transfer_frame_version_no 2 The transfer frame version number

Scid 10 The SCID

Vcid 3 The virtual channel id of the TM frame

vcf_flag 1 The OCF-flag

Mcfc 8 The master channel frame counter

Vcfc 8 The virtual channel frame counter

tr_frame_sec_head_flag 1 The transfer frame secondary header
flag

tr_frame_sync_flag 1 The transfer frame sync flag

tr_frame_packet_ord_flag 1 The transfer frame packet order flag

segment_length_id 2 The segment length id

first_header_pointer 11 The first header pointer

data_field 1103*8 The data field of the TM frame

Clcw 32 The CLCW

Crc 16 The CRC

5.10.2.2. Datatype struct tc_frame_t

This datatype is a struct representing a telecommand transfer frame. The elements are

described in the table below:

Element Size (in bits) Description

transfer_frame_version_no 2 The transfer frame version number

bypass_flag 1 The bypass flag

control_command_flag 1 The control command flag

Spare 2 Reserved for future use

Scid 10 The SCID

Vcid 6 The virtual channel id

frame_length 10 The TC frame length

data_field 1017*8 The data field of the TC frame

Crc 16 The CRC

5.10.2.3. Data type dma_descriptor_t

This datatype is a struct for DMA descriptors. The elements of the struct are described

below:

Element Type Description

desc_no uint32_t The descriptor number (0-31)

desc_config uint32_t The configuration of the DMA
descriptor

desc_adress uint32_t The configuration of the DMA address
descriptor

5.10.2.4. Data type tm_config_t

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 63 of 118

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Type Description

clk_divisor uint8_t The divisor of the clock

tm_enabled uint8_t Enable/disable of telemetry
0 - Disable
1 - Enable

fecf_enabled uint8_t Enable/disable of FECF
0 - Disable
1 - Enable

mc_cnt_enabled uint8_t Enable/Disable of master channel
frame counter
0 - Disable
1 - Enable

idle_frame_enabled uint8_t Enable/disable of generation of Idle
frames
0 - Disable
1 - Enable

ocf_clcw_enabled uint8_t Enable/disable of OCF/CLCW in TM
Transfer frames
0 – Disable
1 – Enable

tm_conv_bypassed uint8_t Bypassing of the TM convolutional
encoder
0 - No bypass
1 - Bypass

tm_pseudo_rand_bypassed uint8_t Bypassing of the TM pseudo
randomizer encoder
0 - No bypass
1 - Bypass

tm_rs_bypassed uint8_t Bypassing of the TM Reed Solomon
encoder
0 - No bypass
1 - Bypass

5.10.2.5. Data type tc_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Type Description

tc_derandomizer_bypassed uint8_t Bypassing of TC derandomizer.
0 - No bypass
1 - Bypass

5.10.2.6. Data type tc_status_t

This datatype is a struct to store status parameters of the TC path. The elements of the

struct are described below:

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 64 of 118

Element Type Description

tc_frame_cnt uint8_t Number of received TC frames. The
counter will wrap around after 2^8-1.

tc_buffer_cnt uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

cpdu_line_status uint16_t Bits 0-11 show if the corresponding
pulse command line was activated by
the last command.

cpdu_bypass_cnt uint8_t Indicates the number of accepted
commands. Wraps at 15.

5.10.2.7. int open(…)

Opens the devices provided by the CCSDS RTEMS driver. The device can only be opened

once at a time.

Argument name Type Direction Description

Filename char * in The absolute path to the file that is to be
opened. Shall be CCSDS_NAME,
CCSDS_NAME_TM or CCSDS_NAME_TC

Oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

≥0 A file descriptor for the device
on success

- 1 see errno values

errno values

EBUSY If device already opened

EPERM If wrong permissions

ENOENT Bad file descriptor

5.10.2.8. int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

ENOENT Bad file descriptor

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 65 of 118

5.10.2.9. size_t write(…)

To send a Telemetry Transfer frame a write-operation on device “/dev/ccsds-tm” shall be

used. The TM frame to send is passed as a pointer to a variable of type tm_frame_t.

Argument name Type Direction Description

Fd int in File descriptor received at open

Buf void * in Character buffer to read data from

Nbytes size_t in Number of bytes to write to the device.

Return value Description

≥0 number of bytes that were
written.

- 1 see errno values

errno values

EINVAL Wrong arguments

EIO A physical access on the
device failed

5.10.2.10. size_t read(…)

To read a Telecommand Transfer frame a read-operation on device “/dev/ccsds-tc” shall be

used. The read Telecommand Transfer frame is passed as a pointer to a variable of type

tc_frame_t.. This call is blocking until a Telecommand Transfer Frame is received.

Argument name Type Direction Description

Fd int in File descriptor received at open

Buf void * in Character buffer where read data is returned

Nbytes size_t in Number of bytes to write from the

Return value Description

≥0 Number of bytes that were
read.

- 1 see errno values

errno values

EINVAL Wrong arguments

EIO A physical access on the
device failed

5.10.2.11. int ioctl(…)

The devices provided by the CCSDS driver support different IOCTL’s.

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val void * in The parameter to pass is depended on which
IOCTL is called. Is described in table below.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 66 of 118

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

ENOENT Bad file descriptor

EINVAL Invalid I/O command

Command table Device Parameter type Description

CCSDS_SET_TM_CONFIG /dev/ccsds-tm tm_config_t Sets a configuration of the
TM path. See 5.10.2.3

CCSDS_GET_TM_CONFIG /dev/ccsds-tm tm_config_t * Returns the configuration of
the TM path. See 5.10.2.3

CCSDS_SET_TC_CONFIG /dev/ccsds-tc tc_config_t Sets a configuration of the
TC path. See 5.10.2.5

CCSDS_GET_TC_CONFIG /dev/ccsds-tc tc_config_t * Returns the configuration of
the TC path. See 5.10.2.5

CCSDS_SET_DMA_CONFIG /dev/ccsds-tm uint32_t Set a configuration of the
DMA register.

CCSDS_GET_DMA_CONFIG /dev/ccsds-tm uint32_t* Returns a configuration of
the DMA register.

CCSDS_SET_IE_CONFIG /dev/ccsds uint32_t Enables/Disables interrupts
in the CCSDS IP.

CCSDS_GET_IE_CONFIG /dev/ccsds uint32_t* Gets the configuration of the
enabled/disabled interrupts.

CCSDS_SET_DMA_DESC /dev/ccsds-tm dma_descriptor_t Configures a DMA-descriptor
in the range (0-31). See
5.10.2.3

CCSDS_GET_DMA_DESC /dev/ccsds-tm dma_descriptor_t* Returns the configuration of
a DMA-descriptor in the
range (0-31). See 5.10.2.3

CCSDS_GET_TM_STATUS /dev/ccsds-tm uint32_t* Gets status of TM path.

CCSDS_GET_TM_ERR_CNT /dev/ccsds-tm uint32_t* Gets the TM error counter.

CCSDS_GET_TC_ERR_CNT /dev/ccsds-tc uint32_t* Gets the TC error counter.

CCSDS_GET_TC_STATUS /dev/ccsds-tc tc_status_t* Gets status of TC path.

CCSDS_SET_TC_BUF_CTRL /dev/ccsds-tc uint32_t Set the TC buffer control
register.

CCSDS_ENABLE_TM /dev/ccsds-tm N.A Enables TM.

CCSDS_DISABLE_TM /dev/ccsds-tm N.A Disable TM.

CCSDS_ENABLE_DMA /dev/ccsds-tm N.A. Enables DMA transfers.

CCSDS_DISABLE_DMA /dev/ccsds-tm N.A Disables DMA transfers.

CCSDS_INIT /dev/ccsds N.A. Sets a default configuration
of the CCSDS IP.

CCSDS_SET_CLCW /dev/ccsds-tm uint32_t Sets the CLCW of TM
frames

CCSDS_GET_CLCW /dev/ccsds-tm uint32_t* Gets the CLCW of the TM
Frames

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 67 of 118

5.10.3. Usage description

5.10.3.1. Send Telemetry

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc” and “/dev/ccsds”. Set up the TM path

by ioctl-call CCSDS_SET_TM_CONFIG on device “/dev/ccsds-tm” or ioctl CCSDS_INIT

on device “/dev/ccsds”

2. Enable the different interrupts to be generated by ioctl CCSDS_SET_IE_CONFIG on

device “/dev/ccsds”.

3. Prepare DMA-descriptors by ioctl CCSDS_SET_DMA_DESC on device “/dev/ccsds-

tm”.

4. Enable DMA by ioctl CCSDS_ENABLE_DMA

5. Enable TM by ioctl CCSDS_ENABLE_TM on device “/dev/ccsds-tm”.

6. Prepare the content in SDRAM that will be fetched by DMA-transfer by writing to

“/dev/ccsds-tm”

5.10.3.2. Receive Telecommands

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc” and “/dev/ccsds”. Set up the TC path

by ioctl-call CCSDS_SET_TC_CONFIG on device “/dev/ccsds-tc” or or ioctl

CCSDS_INIT on device “/dev/ccsds”

2. Enable the different interrupts to be generated by ioctl CCSDS_SET_IE_CONFIG

3. Do a read from “/dev/ccsds-tc”. This call will block until a new TC has been received.

5.10.3.3. Application configuration

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions open(),

close(), read(), write() and ioctl() to access the CCSDS device.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/ccsds_rtems.h> is required for data-types, definitions of IOCTL of device

CCSDS.

CONFIGURE_APPLICATION_NEEDS_CCSDS_DRIVER must be defined to use the

CCSDS driver from the application.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 68 of 118

5.11. ADC

5.11.1. Description

This section describes the driver for accessing the ADC device. The following ADC channels

are available:

Parameter Abbreviation ADC channel

N/A N/A 0

Analog input ADC in 9 1

Analog input ADC in 8 2

Analog input ADC in 7 3

Regulated 1.2V 1V2 4

Regulated 2.5V 2V5 5

Regulated 3.3V 3V3 6

Input voltage Vin 7

Input current Iin 8

Temperature Temp 9

Analog input ADC in 6 10

Analog input ADC in 5 11

Analog input ADC in 4 12

Analog input ADC in 3 13

Analog input ADC in 2 14

Analog input ADC in 1 15

Analog input ADC in 0 16

When data is read from a channel, the lower 8 bits contains the channel status information,

and the upper 24 bits contains the raw ADC data.

To convert the ADC value into mV, mA or m°C, the formulas specified in the table below

shall be used. Note that this assumes a 24 bit ADC value which is what the ADC IP returns

on read. Should the raw bit value be truncated or scaled down, the scale factor (2^24) in the

equations need to be adjusted as well. Note also that the temperature equation require the

3V3 [mV] value.

HK channel Formula

Temp [m°C] Temp_mV = (ADC_value*2500)/2^24

Temp_mC = (1000*(3V3_mV - Temp_mV) - Temp_mV*1210) / 0.00385*(Temp_mV - 3300)

Iin [mA] Iin_mA = (ADC_value*5000)/(2^24)

Vin [mV] Vin_mV = (ADC_value*20575)/(2^24)

3V3 [mV] 3V3_mV = (ADC_value*5000)/(2^24)

2V5 [mV] 2V5_mV = (ADC_value*5000)/(2^24)

1V2 [mV] 1V2_mV =(ADC_value*2525)/(2^24)

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 69 of 118

5.11.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.11.2.1. Enum adc_ioctl_sample_rate_e

Enumerator for the ADC sample rate.

Enumerator Description

ADC_IOCTL_SPS_31250 31250 SPS

ADC_IOCTL_SPS_15625 15625 SPS

ADC_IOCTL_SPS_10417 10417 SPS

ADC_IOCTL_SPS_5208 5208 SPS

ADC_IOCTL_SPS_2597 2597 SPS

ADC_IOCTL_SPS_1007 1007 SPS

ADC_IOCTL_SPS_503_8 503.8 SPS

ADC_IOCTL_SPS_381 381 SPS

ADC_IOCTL_SPS_200_3 200.8 SPS

ADC_IOCTL_SPS_100_5 100.5 SPS

ADC_IOCTL_SPS_59_52 59.52 SPS

ADC_IOCTL_SPS_49_68 49.68 SPS

ADC_IOCTL_SPS_20_01 20.01 SPS

ADC_IOCTL_SPS_16_63 16.63 SPS

ADC_IOCTL_SPS_10 10 SPS

ADC_IOCTL_SPS_5 5 SPS

ADC_IOCTL_SPS_2_5 2.5 SPS

ADC_IOCTL_SPS_1_25 1.25 SPS

5.11.2.2. Function int open(…)

Opens access to the ADC. Only read access is allowed and only blocking mode is

supported.

Argument name Type Direction Description

Pathname const char * in The absolute path to the ADC to be opened. ADC
device is defined as ADC_DEVICE_NAME.

Flags int in Access mode flag, only O_RDONLY is supported.

Return value Description

Fd A file descriptor for the device
on success

-1 See errno values

errno values

EEXISTS Device not opened

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 70 of 118

5.11.2.3. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.11.2.4. Function ssize_t read(…)

This is a blocking call to read data from the ADC.

Note! The size of the given buffer must be a multiple of 32 bit.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to buffer to write data into.

count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

ADC data buffer bit definition Description
31:8 ADC value

7:4 ADC status

3:0 Channel number

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 71 of 118

5.11.2.5. Function int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode, clock

divisor etc.

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val uint32_t / uint32_t* in/out Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC chip, see
[RD6].

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC chip, see
[RD6].

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock used for
communication with the ADC chip. Minimum 0
and maximum 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Get the clock divisor of the clock used for
communication with the ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel number to be
included when sampling. Minimum 0 and
maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel number to be
included when sampling. Minimum 0 and
maximum 15.

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to
IOCTL

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 72 of 118

5.11.3. Usage description

The following #define needs to be set by the user application to be able to use the ADC:

CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.11.3.1. RTEMS application example

In order to use the ADC driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

5.11.4. Limitations

In the current implementation, sample rates up to and including 5208 SPS are supported for

all clock divisors with multiple enabled ADC channels.

Sample rates above 5208 SPS are supported for a single enabled ADC channel only.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 ssize_t size;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);

 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);

 size = read(read_fd, &buffer, 4);

 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);

 status = close(read_fd);

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 73 of 118

5.12. NVRAM

The NVRAM on the OBC and TCM is a 262,144-bit magnetoresistive random access

memory (MRAM) device organized as 32,768 bytes of 8 bits. EDAC is implemented on a

byte basis meaning that half the address space is filled with checksums for correction. It’s a

strong correction which corrects 1 or 2 bit errors on a byte and detects multiple. The table

below presents the address space defined as words (16,384 bytes can be used). The

address space is divided into two sub groups as product- and user address space.

5.12.1. Description

This driver software for the SPI RAM IP, handles the initialization, configuration and access

of the NVRAM.

The NVRAM is divided into a system memory area and a user memory area. The system

memory start at SPI RAM address 0x100 and the user memory start at SPI RAM address

0x200.

5.12.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.12.2.1. Enum rtems_spi_ram_edac_e

Enumerator for the error correction and detection of the SPI RAM.

Enumerator Description

SPI_RAM_IOCTL_EDAC_ENABLE Error Correction and Detection
enabled.

SPI_RAM_IOCTL_EDAC_DISABLE Error Correction and Detection
disabled.

5.12.2.2. Function int open(...)

Opens access to the requested SPI RAM.

Argument name Type Direction Description

pathname const char * in The absolute path to the SPI RAM to be
opened. SPI RAM device is defined as
SPI_RAM_DEVICE_NAME.

flags int in Access mode flag.

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

EINVAL Invalid options

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 74 of 118

5.12.2.3. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.12.2.4. Function ssize_t read(...)

Read data from the SPI RAM. The call block until all data has been received from the SPI

RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
read.

-1 See errno values

errno values

EINVAL Invalid options

5.12.2.5. Function ssize_t write(...)

Write data into the SPI RAM. The call block until all data has been written into the SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to read data from.

count size_t in Number of bytes to write. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
written.

-1 See errno values

errno values

EINVAL Invalid options

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 75 of 118

5.12.2.6. Function int lseek(...)

Set the address for the read/write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset void* in SPI RAM read/write byte offset. Must be a
multiple of 4.

whence int in SEEK_SET and SEEK_CUR are supported.

Return value Description

>=0 Byte offset

-1 See errno values

errno values

EINVAL Invalid options

5.12.2.7. Function int ioctl(...)

Input/output control for SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val int in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

SPI_RAM_SET_EDAC_IOCTL uint32_t in Configures the error correction and
detection for the SPI RAM, see
[5.12.2.1].

SPI_RAM_SET_DIVISOR_IOCTL uint32_t in Configures the serial clock divisor.

SPI_RAM_GET_EDAC_STATUS_IOCTL uint32_t out Get EDAC status for previous read
operations.

SPI_RAM_UNLOCK_MEMORY_IOCTL uint32_t in Unlocks system memory for writing.
The input value is ignored. Must be
called before every write operation (4
bytes) of the system memory.

EDAC Status Description

SPI_RAM_EDAC_STATUS_MULT_ERROR Multiple errors
detected.

SPI_RAM_EDAC_STATUS_DOUBLE_ERROR Double error
corrected.

SPI_RAM_EDAC_STATUS_SINGLE_ERROR Single error corrected.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 76 of 118

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.12.3. Usage description

The following #define needs to be set by the user application to be able to use the SPI RAM:

CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

5.12.3.1. RTEMS application example

In order to use the SPI RAM driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spi_ram_rtems.h> is required for accessing the SPI_RAM.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spi_ram_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument){

 rtems_status_code status;

 int dsc;

 uint8_t buf[8];

 ssize_t cnt;

 off_t offset;

 dsc = open(SPI_RAM_DEVICE_NAME, O_RDWR);

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = write(dsc, &buf[0], sizeof(buf));

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = read(dsc, &buf[0], sizeof(buf));

 status = close(dsc);

}

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 77 of 118

6. Spacewire router

In both OBC-S and TCM-S products, a smaller router is integrated onto their relative SoCs.

The routers all use path addressing (see [RD2]) and given the topology illustrated in Figure

6-1, the routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In reference to the topology above, sending a package from the OBC-S to the TCM-S or

vice versa, the routing address will be 1-3.

In addition to this, each end node, OBC-S or TCM-S, has one or more logical address(es) to

help distinguish between different applications or services running on the same node. The

logical address complements the path address and must be included in a SpaceWire

packet.

Example: If a packet is to be sent from OBC-S to the TCM-S it needs to be prepended with

0x01 0x03 XX.

0x01 routes the packet to port 1 of the OBC-S

router.

0x03 routes the packet to port 3 of the TCM-S

router.

XX is the logical address of the recipient application/service on the TCM-S.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 78 of 118

7. TCM-S

7.1. Description

The TCM-S handles receiving of Telecommands (TCs) and Telemetry (TM) as well as

Spacewire communication using the RMAP protocol.

TC, received from ground, can be of two command types; a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin according to the pulse command parameters. All other commands are

handled by the TCM-S

software. Any command not addressing the TCM-S will be routed to

other nodes on the SpaceWire network according to the current TCM-S configuration.

TM is received from other nodes on the SpaceWire network. The TCM-S supports both live

TM transmissions directly to ground as well as storage of TM to the Mass Memory for later

retrieval or download to ground during ground passes.

The TCM-S is highly configurable to be adaptable to different customer needs and missions

and currently supports SpaceWire (SpW) using the Read Memory Access Protocol (RMAP),

UART interfaces, pulse commands as well as Telecommand and Telemetry using CCSDS

frame encodings and ECSS PUS packets.

7.2. Block diagram

TCM-S
S
P
A
C
E
W
I
R
E

SpaceWire

Router

0303

0101

0202

UART

RS422

/

RS485

RS422

/

RS485

UmbilicalUmbilical

RS422 / RS485RS422 / RS485

LVDSLVDS

T

R

X

RS422 / RS485RS422 / RS485

C
C
S
D
S

Figure 7-1 – TCM-S functionality layout

7.3. Spacewire RMAP

According to [RD3], a 40-bits address consisting of an 8-bit Extended Address field and a

32-bit Address field is used in RMAP. This has been utilized in the TCM-S according to

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 79 of 118

Table 7-1 to separate between configuration commands and mass memory storage of data

(partition handling).

Table 7-1: RMAP predefined fields

Field Value

Initiator Logical Address 0x42

Key 0x30

In addition, target address and reply address must be added to the RMAP header in

commands targeting the TCM-S to compensate for topology external to the TCM-S and the

embedded SpaceWire router. As can be seen Figure 7-1, if the TCM-S were to be

addressed from SpaceWire port 1, the example addresses below must be added to the

routing addresses in the RMAP header.

Table 7-2: RMAP predefined fields for routing

Field Value

Target Spw Address 0x01, 0x03

Reply Address 0x01, 0x03

7.3.1. Input

The RMAP commands supported by the TCM-S are specified in table below. See chapter

7.4 for details on each specific command.

Note! The TCM-S uses the RMAP Transaction ID to separate between outstanding replies

to different units. When several nodes are addressing the TCM-S, they need to be assigned

a unique transaction id range to ensure a correct system behaviour. To allow for a similar

transaction identification throughout the system, the TCM-S uses the Transaction ID range

0x0000-0x0FFF in all outgoing communication.

Table 7-3: RMAP commands to TCM

Name Ext. Addr Address Cmd Description

TMStatus 0xFF 0x00000000 R Reads latest telemetry status.

TMConfig 0xFF 0x00000200 R Reads telemetry configuration.

TMControl 0xFF 0x00000300 W Enable/Disable telemetry.

TMFEControl 0xFF 0x00000400 W
Enable/Disable Frame Error Control Field for
TM Transfer Frames.

TMMCFCControl 0xFF 0x00000500 W
Enable/Disable Master Channel Frame
Counter Control for TM Transfer Frames.

TMIFControl 0xFF 0x00000600 W Enable/Disable Idle Frames.

TMPRControl 0xFF 0x00000700 W
Enable/Disable Pseudo Randomization for
telemetry.

TMCEControl 0xFF 0x00000800 W
Enable/Disable Convolutional Encoding for
telemetry.

TMBRControl 0xFF 0x00000900 W Sets telemetry clock frequency divisor.

TMOCFControl 0xFF 0x00000A00 W
Enable/Disable inclusion of Operational
Control field in TM Frames.

TMTSControl 0xFF 0x00000B00 W Configures Timestamp of telemetry.

TMSend 0xFF 0x00001000 W Sends telemetry on virtual channel 0.

TCStatus 0xFF 0x01000000 R Reads latest telecommand status.

TCDRControl 0xFF 0x01000100 W
Enables/Disables Derandomizer of
telecommands.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 80 of 118

HKData 0xFF 0x02000000 R Reads Houskeeping data.

SCETTime 0xFF 0x02000100 R/W Reads/Configures SCET time.

SCETConfig 0xFF 0x02000200 R/W Reads/Configures SCET configuration.

UARTCommand 0xFF 0x0400010x W

Sends a command to a specific UART
device.
0 - UART0
1 - UART1
2 - UART2
3 - S-Band / RS422 interface
4 - X-Band / LVDS interface
5 - PSU Ctrl
6 - Safe Bus.

MMData 0x00-0x0F 0x00000000 R/W Reads and writes data of a partition.

MMStatus 0xFF 0x05000000 R Reads mass memory device status.

MMWritePointer 0xFF 0x0500010x R/W Position of the writepointer for partition x

MMReadPointer 0xFF 0x0500020x R/W Position of the readpointer for partition x

MMPartitionConfig 0xFF 0x0500030x R Configuration of partition x

MMPartitionSpace 0xFF 0x0500040x R Reads available space in partition x.

MMDownloadPartitionData 0xFF 0x0500050x W Downloads partition x data via telemetry.

7.3.2. Output

The TCM-S publishes data to other nodes according to the address map below:

Note! All outgoing communication will use the Transaction ID range of 0x0000-0x0FFF.

Table 7-4: Published data from TCM

Name Ext. Addr. Address Cmd Description

TCCommand 0xFF 0x00000000 W Routed Telecommands

UARTData 0xFF 0x0400000x W

Data received on specified UART
0 - UART0
1 - UART1
2 - UART2
3 - S-Band / RS422 interface
4 - X-Band / LVDS interface
5 - PSU Ctrl
6 - Safe Bus

7.3.3. Status code in reply messages

In the status field of write/read, the values in table below can be returned.

 Table 7-5: Status code

Code Numeric value Comment

 0 Operation success

EIO 5 Internal error occurred.

EINVAL 22 A provided parameter in command is invalid

ENOSPC 28
No space left on a partition or no data available on a
partition.

EALREADY 37 Operation already in progress

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 81 of 118

7.4. RMAP address details

The chapters below contain the detailed information on the data accesses to the given

RMAP addresses.

7.4.1. Input

7.4.1.1. TMStatus

Reads the latest telemetry status.

Table 7-6: TMStatus data

Byte Type Description

0 UINT8
0x00 – No Error
0x01 – FIFO error.

1 UINT8
0x00 – No transfer in progress.
0x01 – Transfer in progress.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-7: TMStatus status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.4.1.2. TMConfig

Reads the telemetry configuration.

Table 7-8: TMConfig data

Byte Type Description

0 UINT8 Bitrate divisor value

1 UINT8
Telemetry Control
0x00 – Disabled
0x01 – Enabled

2 UINT8
Frame Error Counter Field Control
0x00 – Disabled
0x01 – Enabled

3 UINT8
Master Frame Control
0x00 – Disabled
0x01 – Enabled

4 UINT8
Idle Frame Control
0x00 – Disabled
0x01 – Enabled

5 UINT8
CLCW Control
0x00 – Disabled
0x01 - Enabled

6 UINT8
Convolutional Encoding Control
0x00 – Disabled
0x01 – Enabled

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 82 of 118

7 UINT8
Pseudo Randomization Control
0x00 – Disabled
0x01 – Enabled

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-9: TMConfig status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.4.1.3. TMControl

Enables/disables generation of telemetry.

Table 7-10: TMControl data

Byte Type Description

0 UINT8
0x00 – Disable
0x01 – Enable (Default)

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-11: TMControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.4. TMFEControl

Controls Frame Error Control Field inclusion for transfer frames.

Table 7-12: TMFEControl data

Byte Type Description

0 UINT8
0x00 – Disable
0x01 – Enable (Default)

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 83 of 118

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-13: TMFEControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.5. TMMCFCControl

Controls the Master Channel Frame Counter generation for transfer frames.

Table 7-14: TMMFControl data

Byte Type Description

0 UINT8
0x00 – Disable
0x01 – Enable (Default)

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-15: TMMCFCControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.6. TMIFControl

Controls the Idle Frame generation for transfer frames.

Table 7-16: TMIFControl data

Byte Type Description

0 UINT8
0x00 – Disable
0x01 – Enable (Default)

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-17: TMIFControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 84 of 118

7.4.1.7. TMPRControl

Controls the Pseudo Randomization for transfer frames.

Table 7-18: TMPRControl data

Byte Type Description

0 UINT8
0x00 – Disable (Default)
0x01 – Enable

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-19: TMPRControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.8. TMOCFControl

Controls Operational Control Field inclusion in TM Transfer frames. If enabled, the CLCW

will be included in the TM Transfer Frame Trailer.

Table 7-20: TMOCFControl data

Byte Type Description

0 UINT8
0x00 – Disable
0x01 – Enable (Default)

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-21: TMOCFControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.9. TMCEControl

Controls the Convolutional Encoding for transfer frames.

Note! Convolutional encoding doubles both the amount of telemetry data sent and also the

telemetry clock frequency, keeping the same net datarate as without.

Table 7-22: TMCEControl data

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 85 of 118

Byte Type Description

0 UINT8
0x00 – Disable (Default)
0x01 – Enable

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-23: TMCEControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized or the argument is out
of range

EIO I/O error. The TM device cannot be accessed

7.4.1.10. TMBRControl

Sets the telemetry clock frequency divisor.

The telemetry clock is fed to the radio. The frequency of the telemetry clock is the system

clock (50 MHz) divided by the divisor. E.g. if the divisor value is set to 25, the telemetry clock

frequency is 2 MHz

Note! If the convolutional encoding is disabled, as defined in subchapter 7.4.1.9, the

telemetry clock is divided by two, i.e. 1 MHz from example above, to keep the net data rate

the same.

Table 7-24: TMBRControl data

Byte Type Description

0 UINT8 Bitrate divisor value (default 25). Minimum divisor is 4.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-25: TMBRControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.4.1.11. TMTSControl

Configures the timestamping for transfer frames.

Table 7-26: TMTSControl data

Byte Type Description

0 UINT8

0x00 – No timestamping (Default)
0x01 – Take a timestamp every time frame sent
0x02 – Take a timestamp every 2

nd
 time frame sent

…

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 86 of 118

0xFF – Take a timestamp every 255
th

 time frame sent

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-27: TMTSControl status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.4.1.12. TMSend

Sends telemetry to the TM path on virtual channel 0. The data must contain at least one

telemetry PUS Packet.

Table 7-28: TMSend data

Byte Type Description

0 - nn Array of UINT8 Data containing PUS packet(s).

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-29: TMSend status codes

Status code Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.4.1.13. TCStatus

Reads current telecommand status.

Table 7-30: TCStatus data

Byte Type Description

0 UINT32 CLCW word of the last received telecommand.

4 UINT8
Number of missed TC frames due to overflow. Wraps after
0xFF.

5 UINT8 Number of rejected CPDU commands. Wraps after 0xFF.

6 UINT8 Number of rejected telecommands. Wraps after 0xFF.

7 UINT8
Number of parity errors generated by checksums in the
telecommand path. Wraps after 0xFF.

8 UINT8
Number of received telecommands. Both TC and CPDU are
counted. Wraps after 0xFF.

9 UINT16

Last CPDU pulse command. Logic 1 indicates the last activated
line.
Bit 15:12 – Unused
Bit 11:0 – Line 11:0

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 87 of 118

11 UINT8 Number of accepted CPDU commands. Wraps after 0x0F.

12 UINT8
Derandomizer setting
0x00 – Disabled.
0x01 – Enabled.

13 UINT16 Length of the last received TC frame

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-31: TCStatus status codes

Status code Description

0 Success.

EINVAL The driver for the TC device has not been initialized.

EIO I/O error. The TC device cannot be accessed

7.4.1.14. TCDRControl

Configures derandomization for telecommand frames.

Table 7-32: TCDRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-33: TCDRControl status codes

Status code Description

0 Success.

EINVAL The driver for the TC device has not been initialized.

EIO I/O error. The TC device cannot be accessed

7.4.1.15. HKData

Reads the housekeeping data.

Table 7-34: HKData data

Byte Type Description

0 UINT16 Input voltage

2 UINT16 Regulated 3V3 voltage

4 UINT16 Regulated 2V5 voltage

6 UINT16 Regulated 1V2 voltage

8 UINT16 Input current

10 UINT16 Temperature

12 UINT32 SCET Seconds

16 UINT8 S/W version 0-padding

17 UINT8 S/W major version

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 88 of 118

18 UINT8 S/W minor version

19 UINT8 S/W patch version

20 UINT8 CPU Parity Errors

21 UINT8 Watchdog trips

22 UINT8 SDRAM EDAC Single Errors on instructions

23 UINT8 SDRAM EDAC Single Errors on data

24 UINT8 SDRAM EDAC Multiple Errors on instructions

25 UINT8 SDRAM EDAC Multiple Errors on data

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-35: HKData status codes

Status code Description

0 Success.

EINVAL The driver for the HK device has not been initialized.

EIO I/O error. The HK device cannot be accessed

7.4.1.16. SCETTime

Reads/sets the SCET time. Any adjustment to SCET time will have different effects

depending on the SCET mode (see subchapter 7.4.1.17).

Free-running and Master mode: The SCET seconds and subseconds adjustment will

happen immediately.

Slave mode: The SCET seconds will be adjusted at the next PPS edge and the subseconds

adjustment will thus be ignored.

Table 7.36: SCETTime data

Byte Type Description

0 UINT32
SCETSeconds when reading. When writing a value to
SCETSeconds, this must be a 2’s complementary value that
shall be added to the seconds counter.

4 UINT16
SCETSubSeconds when reading. When writing a value to
SCETSubSeconds, this must be a 2’s complementary value
that shall be added to the subseconds counter.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-37: SCETTime status codes

Status code Description

0 Success.

EINVAL The driver for the SCET device has not been initialized.

EIO I/O error. The SCET device cannot be accessed

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 89 of 118

7.4.1.17. SCETConfig

The SCET can be configured in three modes: Free-running (default), Master or Slave.

Free-running mode: No external synchronization, the SCET is free-running using the internal

oscillator as reference and outputs no PPS.

Master mode: No external synchronization, the SCET is free-running using the internal

oscillator as reference and outputs a PPS at integer seconds.

Slave mode: The SCET is synchronized to an external PPS and outputs no PPS.

Table 7.38: SCETConfig data

Byte Type Description

0 UINT32

Configuration of SCET mode, see above
0 - Free-running mode (default)
1 - Master mode
2 - Slave mode

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-39: SCETConfig status codes

Status code Description

0 Success.

EINVAL The driver for the SCET device has not been initialized.

EIO I/O error. The SCET device cannot be accessed

7.4.1.18. UARTCommand

Send a command on the specified UART interface.

Table 7-40: UARTCommand data

Byte Type Description

0 - nn Array of UINT8 UART command data

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-41: UARTCommand status codes

Status code Description

0 Success.

EINVAL The driver for the UART device has not been initialized.

EIO I/O error. The UARTdevice cannot be accessed

7.4.1.19. MMData

Read or write data from/to a partition.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 90 of 118

Table 7-42: MMData data

Byte Type Description

0 - nn Array of UINT8 Data

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-43: MMData data status codes

Status code Description

0 Success.

ENOSPC Write: Not enough space on partition. Read: Not enough data on partition.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.4.1.20. MMStatus

Reads mass memory status.

Table 7-44: MMStatus data

Byte Type Description

0 UINT8

Chip 3 status
Bit 7 - WP# (write protect)
Bit 6 - RDY (Ready/Busy)
Bit 5 - ARDY (Ready/Busy Array)
Bit 1 - FAILC (Pass/Fail – set if the previous operation
(program) failed)
Bit 0 - FAIL (Pass/Fail – set if the most recently finished
operation (program, erase) on the selected die failed).
Bits 2, 3, and 4 are reserved.

1 UINT8 Chip 2 status, see above

2 UINT8 Chip 1 status, see above

3 UINT8 Chip 0 status, see above

4 UINT8 EDAC-chip status, see above

5 UINT8

Controller status
Bit 7 - Busy (command in progress when high)
Bit 6 - Reserved
Bit 5 - Reset done
Bit 4 - Read ID done
Bit 3 - Erase block done
Bit 2 - Read page setup done
Bit 1 - Read status done
Bit 0 - Program page done

6 UINT8 Chip ID: Chip 3

7 UINT8 Chip ID: Chip 2

8 UINT8 Chip ID: Chip 1

9 UINT8 Chip ID: Chip 0

10 UINT8 Chip ID: EDAC

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 91 of 118

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-45: MMStatus status codes

Status code Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage.

7.4.1.21. MMWritePointer

The writepointer of the specified partition is set/read by this command.

 Table 7-46: MMWritePointer data

Byte Type Description

0-7 UINT64 Pointer’s byte position in the partition.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-47: MMWritePointer status codes

Status code Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.4.1.22. MMReadPointer

The readpointer of the specified partition is set/read by this command.

Table 7-48: MMReadPointer data

Byte Type Description

0-7 UINT64 Pointer’s byte position in the partition.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-49: MMReadPointer status codes

Status code Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 92 of 118

7.4.1.23. MMPartitionConfig

The partition configuration of the specified partition is read by this command.

Table 7-50: MMPartitionConfig data

Byte Type Description

0 UINT64
Size in bytes. Must be in multiples of mass memory block size
(2097152 bytes)

8 UINT32 The offset in blocks from the first block of the Mass Memory.

12 UINT8
Partition mode
0 – FIFO. Newest data is discarded when full.
1 – Circular. Oldest data is overwritten when full.

13 UINT8
Specifies type of data stored on the partition
0 – PUS Packets
1 – Raw Data

14 UINT8
Specifies which Virtual Channel to be used for downloading of
the data in the partition.

15 UINT8 Priority during download. (0 – Highest priority)

16 UINT16
The data source identifier for the partition. Can be used to set a
custom identifier of a data producer to a partition. Setting of this
value is not required to successfully configure a partition.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-51: MMPartitionConfig data status codes

Status code Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.4.1.24. MMPartitionSpace

Reads the space available in the specified partition. Please note that due to the nature of the

flash memory, as the read pointer advances, the space will become free only in leaps as the

read pointer crosses a flash block edge. This means that a partition can have a discrepancy

between reported free space and expected free space of maximum 1 block (2 MiB).

Table 7-52 MMPartitionSpace data

Byte Type Description

0-7 UINT64 Available size in bytes.

The following status codes are returned in the RMAP reply status field, if a reply is

requested:

Table 7-53: MMPartitionSpace status codes

Status code Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 93 of 118

7.4.1.25. MMDownloadPartitionData

Downloads the data from the specified partition. The Virtual Channel used for the download

is set by the partition configuration. The command is finished when as much data as

possible of the requested length has been downloaded. If an error occurred during

download, the command is aborted.

Table 7-54 MMDownloadPartitionData data.

Byte Type Description

0-3 UINT32 Length in bytes to download

The following status codes are returned, if a reply is requested:

Table 7-55 MMDownloadPartitionData data status codes

Status code Description

0 Success.

ENOSPC Not enough data on partition.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.4.2. Output

7.4.2.1. TCCommand

A fully formed PUS packet according to [RD4] containing a TC packet to be routed.

7.4.2.2. UARTData

Routed data from UART.

Table 7-56: UARTData data

Byte Type Description

0 - nn Array of UINT8 Data received on UART

7.5. Telemetry

The TCM-S supports a format of TM Transfer Frames described in [RD8].

7.6. Telecommands

The TCM-S supports a format of TC Transfer Frames described in [RD9].

7.7. ECSS standard service

The TCM-S supports a subset of the services described in [RD4]

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 94 of 118

7.7.1. PUS-1 Telecommand verification service

The TCM-S performs a verification of APID of the incoming TC. If the verification fails, the

telecommand is rejected and a Telecommand Acceptance Failure - report (1,2) is

generated as described in Table 7-57. On successful verification, the command is routed to

the receiving APID. The receiving APID performs further verification of packet length,

checksum of packet, packet type, packet subtype and application data and generates

reports accordingly (1,1) or (1,2). If specified by the mission, the APID shall implement

services for Telecommand Execution Started, Telecommand Execution Progress and

Telecommand Execution Complete.

Table 7-57: Telecommand Acceptance Report – Failure (1,2)

Packet ID Packet Sequence Control Code

UINT16 UINT16
UINT8.
0 – Illegal APID

7.7.2. PUS-2 Device Command Distribution Service

The TCM-S supports the Command Pulse Distribution Unit (CPDU) pulse commands in

hardware as defined in 7.2.2 in [RD3]. The CPDU listens on virtual channel 2, APID 2. It has

12 controllable (0-11) output lines and can be toggled to supply different pulse lengths

according to the following scheme:

Table 7-58 CPDU Command (2, 3)

Output Line ID Duration

0-11
(1 octet)

0 – 7
(1 octet)

The duration is a multiple of the CPDU_DURATION_UNIT (D), defined to 12.5 ms, as

detailed below.

Table 7-59 CPDU Duration

Duration in bits Duration in time (ms)

000 1 x D = 12.5

001 2 x D = 25

010 4 x D = 50

011 8 x D = 100

100 16 x D = 200

101 32 x D = 400

110 64 x D = 800

111 128 x D = 1600

Note: The APIDs reserved for the CPDU are 1 – 9 for future use.

7.8. Handling of Rd/Wr-pointers and wrap-flags for partitions

When a power-loss occurs or the TCM-S is reset, the state of the Rd/Wr-pointers and wrap-

flags of the partitions must be restored to a state so access of the partitions data can

continue after the power-loss or reset.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 95 of 118

During initialization of the TCM-S partition configuration, Rd/Wr-pointers and wrap-flags are

read from NVRAM and populate an area in RAM storing partition information.

Access to a partition of the Mass Memory is handled in two steps. In the first step data is

written or read to/from the partition. If the access is successful the Rd/Wr-pointers and wrap-

flags are updated in RAM.

For read-accesses, the read-pointers and wrap-flags in RAM are also always stored to

NVRAM.

Write accesses to a partition utilize a write-cache in RAM. When the write cache is full, the

content of the write-cache is written to a page on the Mass Memory. During write-accesses

to a partition the write-pointers and wrap-flags in RAM are also stored to NVRAM when a

page is written to the Mass Memory. Note that the pointer and wrap information in RAM

contains values for a previous access at this moment. By this strategy, the write-pointers

stored in NVRAM will always contain a value of a successful and complete write-operation

where all data has been stored on Mass Memory.

During initialization of the TCM-S, the write pointer and wrap flags of a partition are read

from NVRAM to point to the last successful write access prior the restart of the TCM-S. The

read-pointer of the partition is read from NVRAM. The read pointer is rewound to the same

position as the write pointer if the read pointer read from NVRAM points to data that has not

been written yet. The rewind might occur if a read-access occurred from the write cache

prior the restart of the TCM-S. The purpose of the rewinding is to restore every partition in a

pristine state, where pointers point to the last position data was written or read from the

Mass Memory.

When the values of the write- and read-pointers and wrap-flags have been restored, a read-

modify-write operation in the block of the last write operation for every partition is done to

prepare the write-cache for every partition.

7.9. Limitations

For the current release, the TCM-S only support PUS packets for download with a 32-bit

aligned size.

For performance reasons, the current TCM-S release calculates checksums on neither the

incoming nor the outgoing RMAP/SpaceWire packets.

In the current TCM-S release, due to initialization of partition state, the boot-up time for the

TCM-S sometimes exceeds 30 secs.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 96 of 118

8. System-on-Chip definitions

The ÅAC Sirius products include two boards built around the OR1200 fault tolerant

processor, the OBC-S and the TCM-S. Below are the peripherals, memory sections and

interrupts defined for the SoC for these two boards. Some of these might not be equipped in

this development release.

8.1. Memory mapping

Table 8-1 - Sirius memory structure definition

Memory Base Address Function
0xF0000000 Boot ROM

0xE0000000 CCSDS (TCM-S only)

0xCB000000 Watchdog

0xCA000000 SpaceCraft Elapsed Time

0xC1000000 SoC info

0xC0000000 Error Manager

0xBD000000 - 0xBF000000 Reserved

0xBC000000 Reserved for SPI interface 1

0xBB000000 Reserved for SPI interface 0

0xBA000000 GPIO

0xB6000000 Reserved for ADC controller 1

0xB5000000 ADC controller 0

0xB4000000 Reserved

0xB3000000 Mass memory flash controller (TCM-S only)

0xB2000000 System flash controller

0xB1000000 Reserved

0xB0000000 NVRAM controller

0xAC000000 Reserved for PCIe

0xAB000000 Reserved for CAN

0xAA000000 Reserved for USB

0xA9000000 -0xA3000000 Reserved

0xA2000000 Reserved for redundant SpaceWire

0xA1000000 SpaceWire

0xA0000000 Reserved for Ethernet MAC

0x9C000000 -0x9F000000 Reserved

0x9B000000 Reserved for I2C interface 1

0x9A000000 Reserved for I2C interface 0

0x99000000 Reserved

0x98000000 UART 7 (Safe bus functionality, RS485)

0x97000000 UART 6 (PSU control functionality, RS485)

0x96000000 UART 5 (OBC-S only, High speed UART w. DMA)

0x95000000 UART 4 (Routed to LVDS HK on TCM-S)

0x94000000 UART 3 (Routed to RS422 HK on TCM-S)

0x93000000 UART 2

0x92000000 UART 1

0x91000000 UART 0

0x90000000 UART Debug (LVTTL)

0x80000000 - 0x8F000000 Customer IP

0x00000000 SDRAM memory including EDAC (64 MB)

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 97 of 118

8.2. Interrupt sources

The following interrupts are available to the processor:

Table 8-2 - Sirius interrupt assignment

Interrupt no. Function Description
0-1 Reserved Internal use

2 UART Debug UART interrupt signal

3 UART 0 UART interrupt signal

4 UART 1 UART interrupt signal

5 UART 2 UART interrupt signal

6 UART 3 UART interrupt signal

7 UART 4 UART interrupt signal

8 UART 5 UART interrupt signal

9 UART 6 UART interrupt signal

10 UART 7 UART interrupt signal

11 ADC Controller ADC measurement completed

12 - Avaliable (reserved for ADC)

13 - Master/slave transaction complete/req (reserved for I2C)

14 - Avaliable (reserved for i2c)

15 - Avaliable

16 - Avaliable

17 SCET SCET interrupt signal

18 Error manager Error manager interrupt

19 - Reserved for redundant spacewire

20 System flash System flash controller interrupt

21 Mass memory Mass memory flash controller interrupt

22 Spacewire Spacewire interrupt

23 CCSDS CCSDS interrupt

24 - Ethernet MAC interrupt signal (reserved for Ethernet)

25 GPIO GPIO interrupt

26 - Serial Peripheral interface (reserved for SPI 0)

27 - Avaliable (reserved for SPI 1)

28 - Avaliable (reserved for custom adaptation)

29 - Avaliable (reserved for custom adaptation)

30 - Avaliable (reserved for custom adaptation)

8.3. SCET timestamp trigger sources

Some of the peripherals in the SoC have the capability of sending a timestamp trigger signal

on specific events. These signals are routed to the SCET which has a number of general

purpose trigger registers where a snapshot of the SCET counter is stored for later retrieval

by application software, see chapter 5.4. The tables below detail the mapping between the

trigger signals and the general purpose trigger registers in the two products.

Table 8-3 General purpose trigger map

GP number Trigger source Description

0 power_loss
Triggered when the voltage drops below a certain level, i.e. power is
lost to the board

1 ccsds
Triggered when telemetry sending on virtual channel 0 starts
(TCM-S only)

2 gpio
Triggered when one of the pins input changes states and edge
detection and timestamping are enabled

3 adc Triggered when an ADC conversion is started

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 98 of 118

8.4. Boot images and boot procedure

8.4.1. Description

The bootrom is a small piece of software built into a read-only memory inside the System-

on-Chip. Its main function is to load a software image from the system flash to RAM and

start it by jumping to the reset vector (0x100). To make the system fault tolerant, there are

two logical images of the main software, designated Updated and Safe. Each logical image

is stored in three physical copies distributed over the system flash. By default the bootrom

will first try to load the Updated image and if that fails fall back to the Safe image. The image

to load can also be selected by setting the Next FW register in the Error Manager and doing

a soft reset. Boot order of the logical images and their physical copies is shown in Figure

8-1.

8.4.2. Block diagram

Figure 8-1 Software images in flash

8.4.3. Usage description

The locations in the system flash where the bootrom looks for software images is given in

Table 8.4. The first two 32-bit words of the image are expected to be a header with image

size and an XOR checksum, see Table 8.5. If the size falls within the accepted range, the

bootrom loads the image to RAM while verifying the checksum.

The bootrom loads a table of bad blocks from the NVRAM. If a flash block within the range

to load from is marked as bad in the table, that block is assumed to have been skipped

when the image was programmed, so the bootrom continues reading from the next block. If

the image could be loaded from flash without error and the computed checksum evaluated

to zero, the bootrom jumps to the reset vector in RAM. If there is a flash error when loading,

the checksum is incorrect or the image has an invalid size, the bootrom steps to the next

image by changing the Next FW field in the Error Manager and doing a soft reset. If the

image being loaded is the last available, the bootrom will ignore errors and attempt to start it

anyway to always have a chance of a working system. To indicate to the software which

image and copy is loaded, the Running FW field in the Error Manager is updated.

Table 8.4 Software image locations

Image Flash page number

Safe copy #1 0x00000

Safe copy #2 0x20000

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 99 of 118

Safe copy #3 0x40000

Updated copy #1 0x80000

Updated copy #2 0xA0000

Updated copy #3 0xC0000

Table 8.5 Software image header

Field Size Description

Image size 32 bits

The size in bytes of the software image, not
including the header, stored as a 32-bit
unsigned integer. A software image can be
264 Bytes – 63 MB.

Checksum 32 bits

A cumulative XOR of all 32-bit words in the
image including the size, so that a cumulative
XOR of the whole image and header (including
checksum) shall evaluate to 0.

8.4.4. Limitations

If the image size is out of range for Safe image copy #1, the bootrom will not be able to load

it and the fallback option of handing execution to a damaged software image if no other is

available cannot be used.

8.5. Reset behaviour

The SoC has a clock and reset block that synchronizes the asynchronous reset and release

it synchronized to its dedicatied clock domain. The internal soft reset, which can be

commanded by software, follows the same design philosophy i.e. is also synchronized into

the clock domain where it’s used.

8.6. General synchronize method

All signals passing clock domain crossings are either handled via FIFOs or synchronized

into the other clock domain. Two flip-flops in series are used to reduce possible metastability

effects. All external signals are synchronized into its clock domain following the above

method.

8.7. Pulse command inputs

The pulse command inputs on the breadboard can be used to force the board to reboot from

a specific image. Paired with the ability of the TCM-S to decode PUS-2 CPDU

telecommands without software interaction and issue pulse commands, this provides a

means to reset malfunctioning boards by direct telecommand from ground as a last resort.

Each board has two pulse command inputs. Input 0 resets the board and loads the safe

image while input 1 resets the board and loads the updated image. Both require a pulse

length between 20 - 40 ms to be valid. If, for some reason, both pulse command inputs

would be active at the same time, the pulse on input 0 takes precedence.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 100 of 118

8.8. SoC information map

The information included in the SoC info block for the Sirius products have the following

contents in Table 8-6. This information must be used from gdb prompt and can be used as a

control of which SoC version that is flashed on the board. In the terminal window that you

have opened or1k-aac-elf-gdb type:

x/3xw 0xC1000000

and you will get the below information presented.

Table 8-6 Sirius SoC info

Base address
number

Function Description

0x0 TIME_STAMP
When building the SoC, a Unix timestamp is taken and put into the
system. A 32 bit vector indicating seconds since 1970-01-01 (UTC).

0x4 PRODUCT_ID

 0x00

 0x01

 0x02

 …

 0x07

OBC S BB
OBC SR – With SPW router 3 ports

 0x08

 0x09

 …

 0x0F

OBC S FM
OBC SR FM – With SPW router 3 ports

 0x10

 0x11

 0x12

 …

 0x17

TCM S BB
TCM S R – With SPW router 3 ports

 0x18

 0x19

 …

 0x1F

TCM S FM
TCM SR FM – With SPW router 3 ports

 0x20-
0xFF

 Reserved

0x8 SOC_VERSION

Follows the methodology release 0.1.0 = Release-X.Y.Z,
, where X represent a major number. 8bits
, where Y represent a minor number. 8bits
, where Z is patch number. 8bits
Representated in 32 bits. Example: 0x000101FF = 1.1.255
 First eght are reserved

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 101 of 118

9. Connector interfaces

For more detailed information on the characteristics of the interfaces, please see the ICD for

the Sirius OBC-S and TCM-S flight models. Although the pinning has been somewhat

altered and functions have been added, the specification of the interfaces has not changed.

Figure 9-1 - Sirius ports

9.1. RESET, Reset pushbutton

The reset pushbutton resets the SoC using the dedicated devrst pin of the FPGA. In normal

development this can be used as an alternative to the soft reset described in 5.3. Note: This

button must not be used during an update of the SoC (FPGA).

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 102 of 118

9.2. JTAG-RTL, FPGA-JTAG connector

The following pins are available on the ST60-10P connector, see Table 9-1.

Table 9-1 - JTAG pin-outs

Pin # Signal name Description

Pin 1 GND Ground

Pin 2 RTL-JTAG-TDI Test Data In, data shifted into the device.

Pin 3 RTL-JTAG-TRSTB Test Reset

Pin 4 VCC_3V3 Power supply

Pin 5 VCC_3V3 Power supply

Pin 6 RTL-JTAG-TMS Test Mode Select

Pin 7 Not connected -

Pin 8 RTL-JTAG-TDO Test Data Out, data shifted out of the device

Pin 9 GND Ground

Pin 10 RTL-JTAG-TCK Test Clock

9.3. DEBUG-SW

The following pins are available on the ST60-18P, connector. See Table 9-2.

Table 9-2 - Debug SW pin-outs

Pin # Signal name Description

Pin 1 ETH-DEBUG-RESET Reset

Pin 2 GND Ground

Pin 3 ETH-DEBUG-SYNC Not available

Pin 4 ETH-DEBUG-TX Not available

Pin 5 ETH-DEBUG-RX Not available

Pin 6 ETH-DEBUG-MDC Not available

Pin 7 ETH-DEBUG-MDIO Not available

Pin 8 ETH-DEBUG-CLK Not available

Pin 9 GND Ground

Pin 10 DEBUG-JTAG-TDI Debug Test data in

Pin 11 DEBUG-JTAG-RX Debug UART RX

Pin 12 DEBUG-JTAG-TX Debug UART TX

Pin 13 VCC_3V3 Power supply

Pin 14 DEBUG-JTAG-TMS Debug Test mode select

Pin 15 VCC_3V3 Power supply

Pin 16 DEBUG-JTAG-TDO Debug Test data out

Pin 17 GND Ground

Pin 18 DEBUG-JTAG-TCK Debug Test clock

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 103 of 118

9.4. SPW1 - Spacewire

The following pins are available on the nano-D9 socket connector, see Table 9-3

Table 9-3 - SPW1 pin-outs

Pin # Signal name Description

Pin 1 SPW1_DIN_LVDS_P SpaceWire data in positive, pair with p6

Pin 2 SPW1_SIN_LVDS_P SpaceWire strobe in positive, pair with p7

Pin 3 Shield Cable shielded, connected to chassis

Pin 4 SPW1_SOUT_LVDS_N SpaceWire strobe out negative, pair with p8

Pin 5 SPW1_DOUT_LVDS_N SpaceWire data out negative, pair with p9

Pin 6 SPW1_DIN_LVDS_N SpaceWire data in negative, pair with p1

Pin 7 SPW1_SIN_LVDS_N SpaceWire strobe in negative, pair with p2

Pin 8 SPW1_SOUT_LVDS_P SpaceWire strobe out positive, pair with p4

Pin 9 SPW1_DOUT_LVDS_P SpaceWire data out positive, pair with p5

9.5. SPW2 - Spacewire

The following pins are available on the nano-D9 socket connector, see Table 9-4

Table 9-4 – SPW2 pin-outs

Pin # Signal name Description

Pin 1 SPW2_DIN_LVDS_P SpaceWire data in positive, pair with p6

Pin 2 SPW2_SIN_LVDS_P SpaceWire strobe in positive, pair with p7

Pin 3 Shield Cable shielded, connected to chassis

Pin 4 SPW2_SOUT_LVDS_N SpaceWire strobe out negative, pair with p8

Pin 5 SPW2_DOUT_LVDS_N SpaceWire data out negative, pair with p9

Pin 6 SPW2_DIN_LVDS_N SpaceWire data in negative, pair with p1

Pin 7 SPW2_SIN_LVDS_N SpaceWire strobe in negative, pair with p2

Pin 8 SPW2_SOUT_LVDS_P SpaceWire strobe out positive, pair with p4

Pin 9 SPW2_DOUT_LVDS_P SpaceWire data out positive, pair with p5

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 104 of 118

9.6. ANALOGS, Analog input and 4xGPIO (OBC-S)

The following pins are available on the nanoD25 socket connector, see Table 9-5.

Table 9-5 – ANALOGS, 4xGPIO pin-outs

Pin # Signal name Description

Pin 1 ADC_IN_0 Analog input to ADC with buffer

Pin 2 ADC_IN_1 Analog input to ADC with buffer

Pin 3 ADC_IN_2 Analog input to ADC with buffer

Pin 4 ADC_IN_3 Analog input to ADC with buffer

Pin 5 ADC_IN_4 Analog input to ADC with buffer

Pin 6 ADC_IN_5 Analog input to ADC with buffer

Pin 7 ADC_IN_6 Analog input to ADC with buffer

Pin 8 ADC_IN_7 Analog input to ADC with buffer

Pin 9 ADC_IN_8 Analog input to ADC with buffer

Pin 10 ADC_IN_9 Analog input to ADC with buffer

Pin 11 GPIO12 Digital input/output

Pin 12 GPIO13 Digital input/output

Pin 13 GPIO14 Digital input/output

Pin 14 GND Board ground

Pin 15 GND Board ground

Pin 16 GND Board ground

Pin 17 GND Board ground

Pin 18 GND Board ground

Pin 19 GND Board ground

Pin 20 GND Board ground

Pin 21 GND Board ground

Pin 22 GND Board ground

Pin 23 GND Board ground

Pin 24 GPIO15 Digital input/output

Pin 25 GND Board ground

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 105 of 118

9.7. DIGITALS, 3x I2C, PPS and 12xGPIO

The following pins are available on the nanoD25 socket connector, see Table 9-6

Table 9-6 DIGITALS pinouts

Pin # Signal name Description

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Board ground

Pin 14 SPI_MISO SPI Master-In-Slave-Out

Pin 15 SPI_MOSI SPI Master-out-Slave-In

Pin 16 SPI_CLK SPI clock

Pin 17 I2C_SCL0 I2C bus 0, clock

Pin 18 I2C_SDA0 I2C bus 0, data

Pin 19 I2C_SCL1 I2C bus 1, clock

Pin 20 I2C_SDA1 I2C bus 1, data

Pin 21 I2C_SCL2 I2C bus 2, clock

Pin 22 I2C_SDA2 I2C bus 2, data

Pin 23 PPS_INPUT_RS422_N Pulse per second, differential RS422 signal for time
synchronization Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Board ground

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 106 of 118

9.8. COM02_RS4XX, 3xRS422/485

The following pins are available on the nanoD15 socket connector, see Table 9-7

Table 9-7 COM02_RS4XX pinouts

Pin # Signal name Description

Pin 1 UART0_RX_RS4XX_P
Uart Port 0 RX

Pin 2 UART0_RX_RS4XX_N

Pin 3 UART0_TX_RS4XX_P
Uart Port 0 TX

Pin 4 UART0_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART1_RX_RS4XX_P
UART Port 1 RX

Pin 8 UART1_RX_RS4XX_N

Pin 9 UART1_TX_RS4XX_P
UART Port 1 TX

Pin 10 UART1_TX_RS4XX_N

Pin 11 UART2_RX_RS4XX_P
UART Port 2 RX

Pin 12 UART2_RX_RS4XX_N

Pin 13 UART2_TX_RS4XX_P
UART Port 2 TX

Pin 14 UART2_TX_RS4XX_N

Pin 15 GND Ground

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 107 of 118

9.9. COM35_RS4XX, RS422/485 (OBC-S)

The following pins are available on the nanoD15 socket connector, see Table 9-8

Table 9-8 COM35_RS4XX pin-outs

Pin # Signal name Description

Pin 1 UART3_RX_RS4XX_P
Uart Port 3 RX

Pin 2 UART3_RX_RS4XX_N

Pin 3 UART3_TX_RS4XX_P
Uart Port 3 TX

Pin 4 UART3_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART4_RX_RS4XX_P
UART Port 4 RX

Pin 8 UART4_RX_RS4XX_N

Pin 9 UART4_TX_RS4XX_P
UART Port 4 TX

Pin 10 UART4_TX_RS4XX_N

Pin 11 UART5_RX_RS4XX_P
UART Port 5 RX

Pin 12 UART5_RX_RS4XX_N

Pin 13 UART5_TX_RS4XX_P
UART Port 5 TX

Pin 14 UART5_TX_RS4XX_N

Pin 15 GND Ground

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 108 of 118

9.10. CCSDS RS422, S-BAND TRX (TCM-S)

The following pins are available on the nano-D25, socket connector, see Table 9-9

Table 9-9 S-BAND TRX pin-outs

Pin # Signal name Description

Pin 1 SBAND_DOUT_RS422_P
Baseband data out, RS422

Pin 2 SBAND_DOUT_RS422_N

Pin 3 SBAND_COUT_RS422_P
Baseband clock out, RS422

Pin 4 SBAND_COUT_RS422_N

Pin 5 SBAND_DIN_RS422_P
Baseband data in, RS422

Pin 6 SBAND_DIN_RS422_N

Pin 7 SBAND_CIN_RS422_P
Baseband clock in, RS422

Pin 8 SBAND_CIN_RS422_N

Pin 9 SBAND_SC_LOCK_IN_RS422_P
Sub-carrier lock in

Pin 10 SBAND_SC_LOCK_IN_RS422_N

Pin 11 SBAND_C_LOCK_IN_RS422_P
Carrier lock in

Pin 12 SBAND_C_LOCK_IN_RS422_N

Pin 13 GND

Pin 14 SBAND_HKCTRL1_TX_RS422_P TRX control & housekeeping signaling.
Connects to TCM-S UART3 Pin 15 SBAND_HKCTRL1_TX_RS422_N

Pin 16 SBAND_HKCTRL2_TX_RS422_P
Reserved

Pin 17 SBAND_HKCTRL2_TX_RS422_N

Pin 18 SBAND_HKCTRL3_TX_RS422_P
Reserved

Pin 19 SBAND_HKCTRL3_TX_RS422_N

Pin 20 SBAND_HKCTRL4_TX_RS422_P
Reserved

Pin 21 SBAND_HKCTRL4_TX_RS422_N

Pin 22 SBAND_HKCTRL1_RX_RS422_P TRX control & housekeeping signaling.
Connects to TCM-S UART3 Pin 23 SBAND_HKCTRL1_RX_RS422_N

Pin 24 EXTRA TX_RS422_P
Reserved

Pin 25 EXTRA TX_RS422_N

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 109 of 118

9.11. CCSDS LVDS, RS422, X-BAND TRX (TCM-S)

The following pins are available on the nano-D25, socket connector, see Table 9-9

Table 9-10 X-BAND TRX pin-outs

Pin # Signal name Description

Pin 1 XBAND_DOUT_LVDS_P
Baseband data out, LVDS

Pin 2 XBAND_DOUT_LVDS_N

Pin 3 XBAND_COUT_LVDS_P
Baseband clock out, LVDS

Pin 4 XBAND_COUT_LVDS_N

Pin 5 XBAND_DIN_LVDS_P
Baseband data in, LVDS

Pin 6 XBAND_DIN_LVDS_N

Pin 7 XBAND_CIN_LVDS_P
Baseband clock in, LVDS

Pin 8 XBAND_CIN_LVDS_N

Pin 9 XBAND_SC_LOCK_IN_RS422_P
Sub-carrier lock in, RS422

Pin 10 XBAND_SC_LOCK_IN_RS422_N

Pin 11 XBAND_C_LOCK_IN_RS422_P
Carrier lock in, RS422

Pin 12 XBAND_C_LOCK_IN_RS422_N

Pin 13 GND

Pin 14 XBAND_HKCTRL1_TX_RS422_P TRX control & housekeeping signaling.
Connects to TCM-S UART4 Pin 15 XBAND_HKCTRL1_TX_RS422_N

Pin 16 XBAND_HKCTRL2_TX_RS422_P
Reserved

Pin 17 XBAND_HKCTRL2_TX_RS422_N

Pin 18 XBAND_HKCTRL3_TX_RS422_P
Reserved

Pin 19 XBAND_HKCTRL3_TX_RS422_N

Pin 20 XBAND_HKCTRL4_TX_RS422_P
Reserved

Pin 21 XBAND_HKCTRL4_TX_RS422_N

Pin 22 XBAND_HKCTRL1_RX_RS422_P TRX control & housekeeping signaling.
Connects to TCM-S UART4 Pin 23 XBAND_HKCTRL1_RX_RS422_N

Pin 24 EXTRA RX_RS422_P
Reserved

Pin 25 EXTRA RX_RS422_N

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 110 of 118

9.13. UMBI – Baseband Umbilical (TCM-S)

The following pins are available on the nano-D15 socket connector, see Table 9-10

Table 9-11 UMBI pin-outs

Pin # Signal name Description

Pin 1 UMBI_DOUT_RS422_P
Baseband data out

Pin 2 UMBI_DOUT_RS422_N

Pin 3 UMBI_COUT_RS422_P
Baseband clock out

Pin 4 UMBI_COUT_RS422_N

Pin 5 UMBI_DIN_RS422_P
Baseband data in

Pin 6 UMBI_DIN_RS422_N

Pin 7 UMBI_CIN_RS422_P
Baseband clock in

Pin 8 UMBI_CIN_RS422_N

Pin 9 UMBI_SC_LOCK_IN_RS422_P
Sub-carrier lock in

Pin 10 UMBI_SC_LOCK_IN_RS422_N

Pin 11 UMBI_C_LOCK_IN_RS422_P
Carrier lock in

Pin 12 UMBI_C_LOCK_IN_RS422_N

Pin 13 GND

Ground (reference) Pin 14 GND

Pin 15 GND

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 111 of 118

9.14. Pulse Command Outputs

The following pins are available on the nano-D25, socket connector, see Table 9-10

Table 9-12 Pulse command pin-outs

Pin # Signal name Description

Pin 1 PULSE0_O_RS422_P

Pin 2 PULSE0_O_RS422_N

Pin 3 PULSE1_O_RS422_P

Pin 4 PULSE1_O_RS422_N

Pin 5 PULSE2_O_RS422_P

Pin 6 PULSE2_O_RS422_N

Pin 7 PULSE3_O_RS422_P

Pin 8 PULSE3_O_RS422_N

Pin 9 PULSE4_O_RS422_P

Pin 10 PULSE4_O_RS422_N

Pin 11 PULSE5_O_RS422_P

Pin 12 PULSE5_O_RS422_N

Pin 13 GND

Pin 14 PULSE6_O_RS422_P

Pin 15 PULSE6_O_RS422_N

Pin 16 PULSE7_O_RS422_P

Pin 17 PULSE7_O_RS422_N

Pin 18 PULSE8_O_RS422_P

Pin 19 PULSE8_O_RS422_N

Pin 20 PULSE9_O_RS422_P

Pin 21 PULSE9_O_RS422_N

Pin 22 PULSE10_O_RS422_P

Pin 23 PULSE10_O_RS422_N

Pin 24 PULSE11_O_RS422_P

Pin 25 PULSE11_O_RS422_N

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 112 of 118

9.15. PWR connector

This connector provides the input power for the unit, as well as PPS interfaces, pulse

commands and safe mode communication interfaces.

Pin # Signal name Description

Pin 1 VBUS+
Power input

Pin 2 VBUS+

Pin 3 SAFEBUS_RXTX_RS485_P
Safebus (RS485)

Pin 4 SAFEBUS_RXTX_RS485_P

Pin 5 PPS_RS422_P
PPS Input

Pin 6 PPS_RS422_N

Pin 7 UART6_RXTX_RS485_P
RS485 UART

Pin 8 UART6_RXTX_RS485_N

Pin 9 GND

Ground Pin 10 GND

Pin 11 GND

Pin 12 PULSE1_I_RS422_P

Pulse Command 1 (A high pulse, P positive
and N negative, both edges required, with a
duration of 20 to 30 ms gives a reset to the
safe SW image)

Pin 13 PULSE1_I_RS422_N

Pin 14 PULSE2_I_RS422_P

Pulse Command 2 (A high pulse, P positive
and N negative, both edges required, with a
duration of 20 to 30 ms gives a reset to the
updateable SW image)

Pin 15 PULSE2_I_RS422_N

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 113 of 118

10. Updating the Sirius FPGA

To be able to update the SoC on the OBC-S

and TCM-S you need the following items.

10.1. Prerequisite hardware

 Microsemi FlashPro5 unit

 104470 FPGA programming cable assembly

10.2. Prerequisite software

 Microsemi FlashPro Express v11.7 or later

 The updated FPGA firmware

10.3. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable

assembly to connector 4 in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from ÅAC should contain at least two files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

4. Start the FlashPro Express application, click “Open…” in the “Job Projects” box

(see Figure 10-1) and select the supplied .pro file.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 114 of 118

Figure 10-1 - Startup view of FlashPro Express

5. Once the file has loaded (warnings might appear), click RUN (see Figure 10-2).

Please note that the connected FlashPro5 programmed ID should be shown.

Figure 10-2 - View of FlashPro Express with project loaded.

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 115 of 118

6. The FPGA should now be loaded with the new firmware, which might take a few

minutes. Once it is finalized the second last message should be “Chain

programming PASSED”, see Figure 10-3.

Figure 10-3 - View of FlashPro Express after program passed.

7. The Sirius FPGA image is now updated

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 116 of 118

11. Mechanical data

The total size of the Sirius board is 183x136 mm.

Mounting holes are ø3.4 mm with 4.5 mm pad size.

The outline in the left upper corner of the drawing below corresponds to the FM version of

the TCM-S and OBC-S boards.

Figure 11-1 - The Sirius board mechanical dimensions

12. Environmental information

The Sirius Breadboard is an engineering model and as such it is only intended for office

usage.

Table 12-1 - Environmental temperature ranges

Environment Range
Operating temperature EM 0-40 ºC

Storage temperature EM 0-40 ºC

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 117 of 118

13. Glossary

ADC Analog Digital Converter

APID Application Process ID
BSP Board Support Package
CCSDS The Consultative Committee for Space Data Systems
EDAC Error Detection and Correction
EM Engineering model
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
FPGA Field Programmable Gate Array
GCC GNU Compiler Collection program (type of standard in Unix)
GPIO General Purpose Input/Output
Gtkterm Is a terminal emulator that drives serial ports
I
2
C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
Minicom Is a text based modem control and terminal emulation program
NA Not Applicable
NVRAM Non Volatile Random Access Memory
OBC On Board Computer
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface

PUS Packet Utilization Standard

RAM Random Access Memory, however modern DRAM has not random access. It is often associated
with volatile types of memory

ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SoC System-on-Chip
SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-

wire serial bus.
TC Telecommand
TCL Tool Command Language, a script language
TCM Mass memory
TM Telemetry
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data

http://www.aacmicrotec.com/

 Document number 204911
 Version Rev. L

 Issue date 2016-11-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 118 of 118

http://www.aacmicrotec.com/

