

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 1 of 98

Sirius Breadboard User Manual

F

© ÅAC Microtec 2016

ÅAC Microtec AB owns the copyright of this document which is supplied in confidence and which shall
not be used for any purpose other than for which it is supplied and shall not in whole or in part be
reproduced, copied, or communicated to any person without written permission from the owner.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 2 of 98

REVISION LOG

Rev Date Change description

A 2015-11-10 First Release

B 2016-03-07
Updates for new release with lots of minor corrections and
clarifications.

C 2016-03-18

Version C released with the following updates:

 TCM-S chapter 6 updated

 UART chapter update

 Spacewire router chapter 6 added.

 Added GPIO chapter

 Updated SCET ioctl

 Corrected BSP section to be board-agnostic
D 2016-03-23 Added driver API for CCSDS

E 2016-05-01

Version E released with the following updates:

 GPIO chapter updated

 UART32 chapter added

 TCM-S chapter updated
Lots of minor corrections and fixes.

F 2016-05-03 Added missing section on TCM-S.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 3 of 98

TABLE OF CONTENT

1. INTRODUCTION ... 6
1.1. Intended users .. 6
1.2. Getting support ... 6
1.3. Reference documents .. 6

2. EQUIPMENT INFORMATION ... 7
2.1. System Overview with peripherals ... 8

3. SETUP AND OPERATION .. 9
3.1. User prerequisites .. 9
3.2. Connecting cables to the Sirius Breadboard ... 10
3.3. Installation of toolchain ... 11

3.3.1. Supported Operating Systems ... 11
3.3.2. Installation Steps .. 11

3.4. Installing the Board Support Package (BSP) ... 12
3.5. Deploying a Sirius application .. 12

3.5.1. Establish a debugger connection to the Breadboard.. 12
3.5.2. Setup a serial terminal to the device debug UART... 13
3.5.3. Loading the application .. 13

3.6. Programming an application (boot image) to system flash .. 14

4. SOFTWARE DEVELOPMENT ...15
4.1. RTEMS step-by-step compilation .. 15
4.2. Software disclaimer of warranty ... 15

5. RTEMS ...16
5.1. Introduction ... 16
5.2. Watchdog .. 17

5.2.1. Description ... 17
5.2.2. RTEMS API .. 17
5.2.3. Usage ... 18

5.3. Error Manager ... 21
5.3.1. Description ... 21
5.3.2. RTEMS API .. 21
5.3.3. Usage ... 23
5.3.4. Limitations .. 24

5.4. SCET .. 25
5.4.1. Description ... 25
5.4.2. RTEMS API .. 25
5.4.3. Usage ... 27

5.5. UART .. 31
5.5.1. Description ... 31
5.5.2. RTEMS API .. 31
5.5.3. Usage ... 34
5.5.4. Limitations .. 34

5.6. UART32 .. 35
5.6.1. Description ... 35
5.6.2. RTEMS API .. 35
5.6.3. Usage description .. 37

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 4 of 98

5.6.4. Limitations .. 38
5.7. Mass memory .. 39

5.7.1. Description ... 39
5.7.2. RTEMS API .. 39
5.7.3. Usage ... 44
5.7.4. Limitations .. 45

5.8. Spacewire .. 46
5.8.1. Description ... 46
5.8.2. RTEMS API .. 46
5.8.3. Usage ... 49
5.8.4. Limitations .. 52

5.9. GPIO ... 53
5.9.1. Description ... 53
5.9.2. RTEMS API .. 53
5.9.3. Usage description .. 56
5.9.4. Limitations .. 56

5.10. CCSDS ... 57
5.10.1. Description ... 57
5.10.2. RTEMS API .. 57
5.10.3. Usage description .. 62

5.11. ADC .. 64
5.11.1. Description ... 64
5.11.2. RTEMS API .. 64
5.11.3. Usage ... 66
5.11.4. Limitations .. 67

6. SPACEWIRE ROUTER ..68

7. TCM-STM...69
7.1. Description .. 69
7.2. TM/TC-related configurations .. 69
7.3. RMAP ... 69

7.3.1. Commands overview .. 70
7.3.2. Telemetry Status (Read) .. 71
7.3.3. PartitionVirtualChannel (Read/Write) ... 72
7.3.4. Downlink Baseband Configuration (Read) ... 72
7.3.5. Downlink Baseband Telemetry Control (Write) .. 73
7.3.6. Downlink Baseband Frame Error Control Field Control (Write) .. 73
7.3.7. Downlink Baseband Master Frame Control (Write) .. 74
7.3.8. Downlink Baseband Idle Frame Control (Write) ... 74
7.3.9. Downlink Baseband Pseudo Randomization Control (Write) ... 74
7.3.10. Downlink Baseband Convolution Encoding Control (Write) ... 75
7.3.11. Downlink Baseband Bitrate Control (Write) .. 75
7.3.12. Downlink Baseband Timestamp Control (Write) .. 75
7.3.13. SendTelemetry (Write) ... 76
7.3.14. GetTMBufferSpace (Read) .. 76
7.3.15. Telecommand Interface ... 77
7.3.16. Housekeeping Interface (Read) ... 78
7.3.17. Error Interface .. 78
7.3.18. Mass Memory Interface .. 79
7.3.19. SCET Interface... 83
7.3.20. Mass Memory Partition Data .. 84

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 5 of 98

8. SYSTEM-ON-CHIP DEFINITIONS ...86
8.1. Memory mapping .. 86
8.2. Interrupt sources .. 87
8.3. SCET timestamp trigger sources .. 87

9. CONNECTOR INTERFACES ...88
9.1. JTAG-RTL, FPGA-JTAG connector ... 88
9.2. DEBUG-SW .. 89
9.3. SPW1 - Spacewire... 89
9.4. SPW2 - Spacewire... 90
9.5. ANALOGS, Analog input and 4xGPIO (OBC-S) .. 90
9.6. DIGITALS, 3x I2C, PPS and 12xGPIO .. 91
9.7. COM02_RS4XX, 3xRS422/485 .. 92
9.8. COM35_RS4XX, RS422/485 .. 92
9.9. CCSDS RS422, S-BAND TRX (TCM-S) .. 93
9.10. UMBI – Baseband Umbilical (TCM-S

TM
) .. 94

10. UPDATING THE SIRIUS FPGA ...95
10.1. Prerequisite hardware .. 95
10.2. Prerequisite software ... 95
10.3. Step by step guide .. 95

11. MECHANICAL DATA ..96

12. ENVIRONMENTAL INFORMATION ..97

13. GLOSSARY ...97

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 6 of 98

1. Introduction

This manual describes the functionality and usage of the ÅAC Sirius Breadboard. The

Breadboard is a prototype board for products under development, which means that not all

functions are implemented yet. The OBC-S
TM

 and TCM-S
TM

 functionality is described and

can both run on the breadboard. The breadboard has fitted or non-fitted components and

unique SoCs that give the desired functionality to match either the OBC-S
TM

 or TCM-S
TM

.

1.1. Intended users

This manual is written for the software engineers using the ÅAC Sirius product suite.

1.2. Getting support

If you encounter any problem using the breadboard or another ÅAC product please use the

following address to get help:

Email: support@aacmicrotec.com

1.3. Reference documents

RD# Document ref Document name

RD1 http://opencores.org/openrisc,architecture OpenRISC 1000 Architecture
Manual

RD2 ECSS-E-ST-50-12C SpaceWire – Links, nodes,
routers and networks

RD3 ECSS-E-ST-50-52C SpaceWire – Remote memory
access protocol

RD4 ECSS-E-70-41A Ground systems and
operations – Telemetry and
telecommand packet utilization

RD5 SNLS378B PC16550D Universal
Asynchronous
Receiver/Transmitter with
FIFOs

RD6 AD7173-8, Rev. A Low Power, 8-/16-Channel,
31.25 kSPS, 24-Bit, Highly
Integrated Sigma-Delta ADC

RD7 Edition 4.10.99.0 RTEMS BSP and Device
Driver Development Guide

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 7 of 98

2. Equipment information

The Sirius Breadboard is a prototyping platform designed to support the TCM-S
TM

, and the

OBC-S
TM

 products. The Breadboard layout is depicted in Figure 3-1.

The development board supports both a debugger interface for developing software

applications and a JTAG interface for upgrading the FPGA firmware.

The FPGA firmware implements SoC based on a 32 bit OpenRISC Fault Tolerant processor

[RD1] running at a system frequency of 50 MHz and with the following set of peripherals:

 Error manager, error handling, tracking and log of e.g. power loss and/or memory

error detection.

 SDRAM 64 MB data + 64 MB EDAC running @100MHz

 Spacecraft Elapsed Timer (SCET), for accurate time measurement with a

resolution of 15 µs

 SpaceWire, including a three-port SpaceWire router, for communication with

external peripheral units

 UARTs (Number of interfaces differ between the products) uses the RS422 and

RS485 line drivers on the board with line driver mode set by software.

 GPIOs

 Watchdog, fail-safe mechanism to prevent a system lockup

 System flash of 2 GB with EDAC-protection for storing boot images in multiple

copies

For the TCM-S
TM

 the following additional peripherals are included in the SoC:

 CCSDS, communications IP.

 Mass memory of 16GB with EDAC-protection, NAND flash based, for storage of

mission critical data.

The input power supply provided to the breadboard shall use a range of +4.5V to absolute

max. of +16V. Nominal voltage supply level shall be set to +5V. The power consumption is

highly dependent on peripheral loads and it ranges from 0.8 W to 2 W.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 8 of 98

2.1. System Overview with peripherals

Figure 2-1 depicts a System-on-Chip (SoC) overview including the related peripherals of the

OBC-S
TM

 and TCM-S
TM

products. The figure shows what parts are for which products and

what parts are not yet implemented since the products are still under development.

FPGA

FPU

OpenRISC

1200FT

I/D Cache

I2C

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

2 GB System
Flash

R
ad

io
 In

te
rf

ac
es

R
S4

2
2

/L
V

D
S

R
S4

2
2

/R
S4

8
5

JT
A

G
/D

EB
U

G
Pulse CMDUMBI/EGSEETHERNET GPIO

ADC
(Housekeeping)

Ethernet
10/100

ADC
controller

OBC-S/TCM-S

NVRAM

Analog inputs

NVRAM

TCM-S TCM-S/OBC-S Not implemented

Figure 2-1 - The OBC-S
TM

 / TCM-S
TM

 SoC Overview

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 9 of 98

3. Setup and operation

3.1. User prerequisites

The following hardware and software is needed for the setup and operation of the

Breadboard.

PC computer

 1 Gb free space for installation (minimum)

 Debian 7 or 8 64-bit with super user rights

 USB 2.0

Recommended applications and software

 Installed terminal e.g. gtkterm or minicom

 Driver for USB/COM port converter, FTDI, www.ftdichip.com

 Host build system, e.g. debian package build-essential

 The following software is installed by the ÅAC toolchain package

o GCC, C compiler for OpenRISC

o GCC, C++ compiler for OpenRISC

o GNU binutils and linker for OpenRISC

For FPGA update capabilities

 Microsemi FlashPro Express v11.7, http://www.microsemi.com/products/fpga-

soc/design-resources/programming/flashpro#software

http://www.ftdichip.com/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 10 of 98

3.2. Connecting cables to the Sirius Breadboard

Figure 3-1 – ÅAC Sirius Breadboard with connector numbering

The Sirius Breadboard runs on a range of 4.5 to 16V DC. The instructions below refer to the

connector numbering in Figure 3-1.

 Connect Ground to the black connector 1

 Connect 4.5 - 16 V DC to the yellow connector 2. The unit will nominally draw

about 260-300 mA @5V DC.

 Connect the 104451 ÅAC Debugger and Ethernet adapter with the 104471

Ethernet debug unit cable to connector 3. Connect the adapter USB-connector to

the host PC. The ÅAC debugger is mainly used for development of custom

software for the OBC-S with monitoring/debug capabilities, but is also used for

programming an image to the system flash memory. For further information refer to

chapter 3.6.

 For FPGA updating only: Connect a FlashPro programmer to connector 4 using the

104470 FPGA programming cable assembly. For further information how to update

the SoC refer to Chapter 9.9.

 For connecting the SpaceWire:

o Option 1: Connect the nano-D connector to connector 5 or 6. Be careful

when plugging and unplugging this connector.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 11 of 98

o Option 2: Connect the Display port cable to connector 7 or 8 and to the

104510 Converter board. Connect your SpaceWire system to the

converter board with the SpaceWire cable.

 Connecting UARTs:

o Option 1: Connect to the nano-D number 12 (UART0-2) or 13 (UART3-5).

Be careful when plugging and unplugging this connector.

o Option 2: Connect to the debug connector 10 using a flat cable to DSUB

connector harness. This can then be connected to a PC using something

similar to the FTDI USB-COM485/COM422-PLUS4.

For more detailed information about the connectors, see section 9.

3.3. Installation of toolchain

This chapter describes instructions for installing the aac-or1k-toolchain.

3.3.1. Supported Operating Systems

Debian 7 64-bit

Debian 8 64-bit

3.3.2. Installation Steps

1. Add the ÅAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

deb http://repo.aacmicrotec.com/archive/ aac/

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

Terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the toolchain by issuing the following commands:

sudo apt-get update

sudo apt-get install aac-or1k-toolchain

Note: The toolchain package is roughly 1GB uncompressed, downloading/installing it

will take some time.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 12 of 98

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them, this can be done either temporarily for the current shell via

source /opt/aac/aac-path.sh

or permanently by editing the ~/.profile file

gedit ~/.profile

and adding the following snippet at the end of the file, and then save and close it:

AAC OR1k toolchain PATH setup

if [-f /opt/aac/aac-path.sh]; then

 . /opt/aac/aac-path.sh >/dev/null

fi

3.4. Installing the Board Support Package (BSP)

The BSP can either be downloaded from http://repo.aacmicrotec.com/bsp or copied from the

accompanying DVD. Simply extract the tarball aac-or1k-xxx-x-bsp-y.tar.bz2 to a directory of

your choice (xxx-x depends on your intended hardware target - OBC-S or TCM-s and y

matches the current version number of that BSP).

The newly created directory aac-or1k-xxx-x-bsp now contains the drivers for both bare-metal

applications and RTEMS. See the included README and chapter 4.1 for build instructions.

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Breadboard

The Sirius Breadboard is shipped with a debugger which connects to the PC via USB. To

interface the Breadboard, the Open On-Chip Debugger (OpenOCD) software is used. A

script called run_aac_debugger.sh is shipped with the toolchain package which starts an

OpenOCD server for gdb to connect to.

1. Connect the Breadboard according to section 3.

2. Start the run_aac_debugger.sh script from a terminal.

3. If the printed message is according to Figure 3-2, the connection is working.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 13 of 98

Figure 3-2 - Successful OpenOCD connection to the Breadboard

3.5.2. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A terminal emulator such as minicom or gtkterm is necessary to communicate with the

Breadboard, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected and you have to make sure you're using the correct device number to

communicate to the board's debug UART.

3.5.3. Loading the application

Application loading during the development stages (before programming to flash) are done

using gdb.

1.a) Start gdb with the following command from a shell for a bare-metal environment

or1k-aac-elf-gdb

 or

1.b) Start gdb with the following command from a shell for an RTEMS environment

or1k-aac-rtems4.11-gdb

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 14 of 98

2. When gdb has opened successfully, connect to the hardware through the

OpenOCD server using the gdb command

target remote localhost:50001

3. To start an executable program in hardware, first specify it's name using the gdb

command file. Make sure the application is in ELF format.

file path/to/binary_to_execute

4. Now it needs to be uploaded onto the target RAM

load

5. In the gdb prompt, type c to start to run the application

3.6. Programming an application (boot image) to system flash

This chapter describes how to program the NAND flash memory with a selected boot image.

To achieve this, the boot image binary is bundled together with the NAND flash

programming application during the latters compilation and then uploaded to target just as

an ordinary application is started through gdb. The maximum allowed size for the boot

image for this release is 16 Mbyte. The nandflash_program application can be found in

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Then make sure that this is in a binary-only format and not ELF. This can otherwise

be accomplished with the help of the gcc tools included in the toolchain. Note that

X is to be replaced according to what your application has been compiled against.

Either elf for a bare-metal application or rtems4.11 for the RTEMS variant.

or1k-aac-X-objcopy -O binary boot_image.elf boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/nandflash_programmer/src

4. Now, compile the nandflash-program application, bundling it together with the boot image

binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of gdb and

execute it. Follow the instructions on screen and when it's ready, reboot the board

by resetting or power cycling.

OBSERVE: The nandflash-program application might report bad blocks during

programming. This is taken care of in the application itself, but isn't supported by the

bootrom on the board in this release. Please contact support@aacmicrotec.com for further

assistance if this occurs.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 15 of 98

4. Software development

Applications to be deployed on the Sirius Breadboard can either use a bare-metal approach

or use the RTEMS OS. This corresponds to the two toolchain prefixes available: or1k-aac-

elf-* or or1k-aac-rtems4.11-*

Drivers for both are available in the BSP, see the chapter 3.4 and the BSP README for

more information.

4.1. RTEMS step-by-step compilation

The BSP is supplied with an application example of how to write an application for RTEMS

and engage all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to have been installed and the

BSP unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory:

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/

2. Type make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory

export RTEMS_MAKEFILE_PATH=path/to/librtems/or1k-aac-

rtems4.11/or1k-aac

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter

3.5.

4.2. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

This source code is provided without any express or implied warranties whatsoever.

Because of the diversity of conditions and hardware under which this source code may be

used, no warranty of fitness for a particular purpose is offered. The user is advised to

test the source code thoroughly before relying on it. The user must assume the entire risk of

using the source code.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 16 of 98

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The Block diagram representing driver

functionality access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 17 of 98

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device.

5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

5.2.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in

The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in

A bitwise”or” separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write).

Return value Description

> 0
A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 18 of 98

5.2.2.3. size_t write(…)

Any data is accepted as a watchdog kick.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

*
nNumber of bytes that were
written.

- 1 see errno values

errno values

EPERM Device was not opened

EBUSY Device is busy

5.2.2.4. int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL
1 = Enables the watchdog
0 = Disables the watchdog

WATCHDOG_SET_TIMEOUT_IOCTL 0 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EINVAL Invalid data sent

RTEMS_NOT_DEFINED Invalid I/O command

5.2.3. Usage

To enable the watchdog use the wdt_enable() function.

To disable the watchdog use the wdt_disable() function.

The watchdog must be kicked using wdt_kick() before the timeout occurs or else the

watchdog will bark.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 19 of 98

5.2.3.1. RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-2 - RTEMS driver usage description

Note: All calls to the RTEMS driver are blocking calls.

5.2.3.2. RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code structure

is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

Inclusion of <errno.h> is required for retrieving error values on failures.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 20 of 98

Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER must be defined for using the

watchdog driver. By defining this as part of the RTEMS configuration, the driver will

automatically be initialized at boot up.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 21 of 98

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device

5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt driven events such as power

loss, non-fatal multiple errors generated by the RAM EDAC mechanism.

5.3.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

fd A file descriptor for the device on
success

-1 see errno values

errno values

EALREADY Device already opened

5.3.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 22 of 98

Return value Description

0 Device closed successfully

5.3.2.3. int ioctl(…)

Ioctl allows for disabling/enabling functionality of the error manager, setting of the timeout

and reading out counter values.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Buffer to either read to or write from

Command table Description

ERRMAN_GET_SR_IOCTL Get the status register

ERRMAN_GET_CF_IOCTL Gets the Carry flag register

ERRMAN_GET_SELFW_IOCTL Gets the next boot firmware

ERRMAN_GET_RUNFW_IOCTL Gets the running firmware

ERRMAN_GET_SCRUBBER_IOCTL Gets the scrubber. 1 = On, 0 = Off

ERRMAN_GET_RESET_ENABLE_IOCTL Gets the reset enable register

ERRMAN_GET_WDT_ERRCNT_IOCTL Gets the watchdog error count register

ERRMAN_GET_EDAC_SINGLE_ERRCNT_IOCTL Gets the EDAC single error count register

ERRMAN_GET_EDAC_MULTI_ERRCNT_IOCTL Gets the EDAC multiple error count register

ERRMAN_GET_CPU_PARITY_ERRCNT_IOCTL Gets the CPU Parity error count register

ERRMAN_GET_POWER_LOSS_ENABLE_IOCTL Gets the power loss enable state

ERRMAN_SET_SR_IOCTL Sets the status register

ERRMAN_SET_CF_IOCTL Sets the carry flag register

ERRMAN_SET_SELFW_IOCTL Sets the next boot firmware

ERRMAN_SET_RUNFW_IOCTL Sets the running firmware

ERRMAN_RESET_SYSTEM_IOCTL Performs a software reset
1 = Reset system

ERRMAN_SET_SCRUBBER_IOCTL Sets the scrubber.
1 = Enable scrubber,
0 = Disable scrubber

ERRMAN_SET_RESET_ENABLE_IOCTL Sets the reset enable register

ERRMAN_SET_WDT_ERRCNT_IOCTL Sets the watchdog error count register

ERRMAN_SET_EDAC_SINGLE_ERRCNT_IOCTL Sets the EDAC single error count register

ERRMAN_SET_EDAC_MULTI_ERRCNT_IOCTL Sets the EDAC multiple error count register

ERRMAN_SET_CPU_PARITY_ERRCNT_IOCTL Sets the CPU Parity error count register

ERRMAN_SET_POWER_LOSS_ENABLE_IOCTL Sets the power loss enable state

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 23 of 98

EINVAL Invalid value supplied to IOCTL

5.3.3. Usage

5.3.3.1. RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-3 - RTEMS driver usage description

Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be

subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

This queue emits messages upon power loss and single correctable errors.

A subscriber must inspect the message according to the following table to determine

whether to take action or not. Multiple subscribers are allowed and all subscribers will be

notified upon a message.

Message Description

ERRMAN_IRQ_POWER_LOSS A power loss has been detected

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER Multiple EDAC errors that are not critical have been
detected

ERRMAN_IRQ_PULSE_COMMAND A pulse command has been detected

5.3.3.2. RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code

structure is suggested to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 24 of 98

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager_rtems.h> is required for accessing error manager

device name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialised at boot up.

5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing due to

the lack of mechanisms of injecting errors in this release.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/error_manager_rtems.h>

#define

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 25 of 98

5.4. SCET

5.4.1. Description

This section describes the driver as a utility for accessing the SCET device.

5.4.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause.

SCET accesses can either be done by reading and writing to the device file. In this way the

second and subsecond values can be read and/or modified.

The SCET RTEMS driver also supports a number of different IOCTLs.

Finally there is a message queue interface allowing the application to act upon different

events.

5.4.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. SCET device is defined as
RTEMS_SCET_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc).

Return value Description

* A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened

5.4.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd Int in File descriptor received at open

Return value Description

0 Device closed successfully

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 26 of 98

5.4.2.3. int ioctl(…)

Ioctl allows for disabling/enabling of the SCET and setting of the timeout.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

SCET_GET_SECONDS_IOCTL uint32_t out Returns the current number of
seconds

SCET_GET_SUBSECONDS_IOCTL uint32_t out Returns the current fraction of a
second

SCET_GET_PPS_SOURCE_IOCTL uint32_t out Returns the current set PPS source

SCET_GET_GP_TRIGGER_LEVEL_IOCTL uint32_t in/out val input argument is the GP Trigger.
Returns the currently configured level
of the selected GP trigger

SCET_GET_INTERRUPT_ENABLE_IOCTL uint32_t out Returns the current interrupt level
register

SCET_GET_INTERRUPT_STATUS_IOCTL uint32_t out Returns the current interrupt status
register

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL uint32_t out Returns the PPS arrived counter.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_GP_TRIGGER_COUNTER_IOCTL uint32_t
*

in/out Pointer input argument is the GP
trigger.
Returns the counter of the selected
GP trigger.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_SECONDS_ADJUST_IOCTL int32_t out Returns the value of the second
adjust register

SCET_GET_SUBSECONDS_ADJUST_IOCTL int32_t out Returns the value of the subsecond
adjust register

SCET_GET_PPS_O_EN_IOCTL uint32_t out Returns whether the external PPS
out driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

SCET_SET_SECONDS_IOCTL int32_t in Input argument is the new second
value to set

SCET_SET_SUBSECONDS_IOCTL int32_t in Input argument is the new subsecond
value to set

SCET_SET_INTERRUPT_ENABLE_IOCTL uint32_t in Sets the interrupt enable mask
register

SCET_SET_INTERRUPT_STATUS_IOCTL uint32_t in Sets the interrupt status register

SCET_SET_PPS_SOURCE_IOCTL uint32_t in Sets the PPS source.
0 = External PPS source
1 = Internal PPS source

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 27 of 98

SCET_SET_GP_TRIGGER_LEVEL_IOCTL uint32_t
*

in/out Pointer input argument selects which
GP trigger. Return value is the
current value of that trigger.
0 = trigger activates on a rising edge
transition
1 = trigger activates on falling edge
transition

SCET_SET_PPS_O_EN_IOCTL uint32_t In Controls if the external PPS out
driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.4.3. Usage

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of timestamps.

By utilizing the GP triggers one can trap the timestamp of different events. An interrupt

trigger can optionally be set up to notify the CPU of that the GP trigger has fired.

If an external PPS source is used, an interrupt trigger can be used to synchronize the SCET

by reading out the SCET second and subsecond value at the time of the external PPS

trigger. This value can then be subtracted from the current second and subsecond value to

calculate a time difference.

This time difference can then be written to the adjustment registers to align the local time to

the external pulse.

5.4.3.1. RTEMS

The RTEMS driver must be opened before it can access the SCET device. Once opened, all

provided operations can be used as described in the RTEMS API defined in subchapter

5.2.2. And, if desired, the device can be closed when not needed.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 28 of 98

Figure 5-4 - RTEMS driver usage description

5.4.3.1.1. Time handling
Getting the current SCET time in RTEMS can be done in two ways:

1. Using read call, reading 6 bytes.

The first four bytes contains the second count.

The two last bytes contain the subsecond count.

2. Using the SCET_GET_SECONDS_IOCTL and SCET_GET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Adjusting the SCET time is done the same way as getting the SCET time but reversed.

You can either:

1. Write 6 bytes to the device. The first 4 bytes contains the second count difference to

adjust with.

The last 2 bytes contains the subsecond count difference to adjust with.

2. Using the SCET_SET_SECONDS_IOCTL and SCET_SET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Negative adjustment is done by writing data in two complement notations.

5.4.3.1.2. Event callback via message queue
The SCET driver exposes three message queues.

This queue is used to emit messages from the driver to the application.

A single subscriber is allowed for each queue.

‘S’, ‘P’, ‘P’, ‘S’ handles PPS related messages with a prefix of:

SCET_INTERRUPT_STATUS_*

Event name Description

PPS_ARRIVED An external PPS signal has arrived. Use the
SCET_GET_PPS_ARRIVE_COUNTER_IOCTL to get the timestamp of the external
PPS signal in relation to the local SCET counter

PPS_LOST The external PPS signal is lost

PPS_FOUND The external PPS signal was found

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 29 of 98

‘S’, ‘G’, ‘T’, ‘0’ handles messages sent from the general purpose trigger 0.

Event name Description

TRIGGER0 Trigger 0 was triggered

‘S’, ‘G’, T’, ‘1’ handles messages sent from the general purpose trigger 1.

Event name Description

TRIGGER1 Trigger 1 was triggered

‘S’, ‘G’, T’, ‘2’ handles messages sent from the general purpose trigger 2.

Event name Description

TRIGGER2 Trigger 2 was triggered

‘S’, ‘G’, T’, ‘3’ handles messages sent from the general purpose trigger 3.

Event name Description

TRIGGER3 Trigger 3 was triggered

5.4.3.2. Typical SCET use case

A typical SCET use case scenario is to connect a GPS PPS pulse to the PPS input of the

board. On every PPS_ARRIVED message the time difference is calculated and the internal

SCET counter is adjusted.

5.4.3.3. RTEMS application example

In order to use the scet driver on RTEMS environment, the following code structure is

suggested to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 30 of 98

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing scet device name

RTEMS_SCET_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the scet

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 31 of 98

5.5. UART

5.5.1. Description

This driver is using the de facto standard interface for a 16550D UART given in [RD5]. As

such, it is an 8 bit interface with a maximum FIFO level of 16 bytes and as such does not

easily lend itself to high-speed communication exchanges for longer periods of time.

5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.5.2.1. Function int open(...)

Opens access to the requested UART. Only blocking mode is supported.

Upon each open call the device interface is reset to 115200 bps and its default mode

according to the table below.

Argument name Type Direction Description

Path const char * In The absolute path to the file that is to be
opened.
See table below for uart naming.

Oflag Int In A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write etc). See below.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

Fildes A file descriptor for the device
on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

Device name Description

/dev/uart0 Ordinary UART, default mode RS422

/dev/uart1 Ordinary UART, default mode RS422

/dev/uart2 Ordinary UART, default mode RS422

/dev/uart3 Ordinary UART, default mode RS422

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 32 of 98

/dev/uart4 Ordinary UART, default mode RS422

/dev/psu_control UART used for PSU communication, RS485 only

/dev/safe_bus Safe bus UART, RS485 only

5.5.2.2. Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

Fildes Int In File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function int read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO.

Please note that it is not uncommon for the read call to return less data than requested.

Argument name Type Direction Description

Fildes Int In File descriptor received at open

Buf void * In Pointer to character buffer to write data to

Nbytes unsigned int In Number of bytes to read

Return value Description

> 0 Number of bytes that were
read.

0 A parity / framing / overflow
error occurred. The RX data
path has been flushed. Data
was lost.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

5.5.2.4. Function int write(…)

Write data to the UART. The write call is blocking until all data have been transmitted.

Argument name Type Direction Description

Fildes Int In File descriptor received at open

Buf const void * In Pointer to character buffer to read data from

Nbytes unsigned int In Number of bytes to write

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 33 of 98

Return value Description

>= 0 Number of bytes that were
written.

- 1 see errno values

errno values

EINVAL Invalid number of bytes to be
written.

5.5.2.5. int ioctl(…)

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 Mode selection is not applicable for safe bus and power ctrl UART.

Argument name Type Direction Description

Fd Int In File descriptor received at open

Cmd Int In Command to send

Val Int In Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

UART_SET_BITRATE_IOCTL uint32_t in Sets the bitrate of the line interface:

10 = 375000 bps
9 = 153600 bps
8 = 115200 bps (default)
7 = 75600 bps
6 = 57600 bps
5 = 38400 bps
4 = 19200 bps
3 = 9600 bps
2 = 4800 bps
1 = 2400 bps
0 = 1200 bps

UART_MODE_SELECT_IOCTL uint32_t in Sets the mode of the interface.
0 = RS422 (default)
1 = RS485
2 = Loopback mode (TX connected to
RX internally)

UART_RX_FLUSH_IOCTL uint32_t in Flushes the RX software FIFO

UART_SET_PARITY_IOCTL uint32_t in Sets parity:
0 = No parity
1 = Odd parity
2 = Even parity

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 34 of 98

5.5.3. Usage

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

5.5.3.1. RTEMS application example

In order to use the uart driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the internal

rx queue is flushed.

5.5.4. Limitations

8 data bits only.

1 stop bit only.

No configuration of RX watermark level, fixed to 8.

No hardware flow control support.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored){}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 35 of 98

5.6. UART32

5.6.1. Description

This driver software for the UART32 IP 104 513 [RD1], handles the setup and transfer of

serial data to memory. This is a high-speed receive-only UART.

5.6.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.6.2.1. Enum rtems_uart32_ioctl_baudrate_e

Enumerator for the baudrate of the serial link.

Enumerator Description

UART32_IOCTL_BAUDRATE_10M 10 MBaud

UART32_IOCTL_BAUDRATE_5M 5 MBaud

UART32_IOCTL_BAUDRATE_2M 2 MBaud

UART32_IOCTL_BAUDRATE_1M 1 MBaud

UART32_IOCTL_BAUDRATE_115200 115200 Baud

5.6.2.2. Enum rtem_uart32_ioctl_endian_e

Enumerator for the endianness of the DMA transfer.

Enumerator Description

UART32_IOCTL_ENDIAN_BIG Big endian

UART32_IOCTL_ENDIAN_LITTLE Little endian

5.6.2.3. Function int open(...)

Opens access to the requested UART32. Upon each open call the device interface is reset

to 10MBaud and big endian mode.

Argument name Type Direction Description

pathname const char * in The absolute path to the UART32 to be
opened. UART32 device is defined as
UART32_DEVICE_NAME.

flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

Fildes A file descriptor for the device
on success

-1 See errno values

errno values

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 36 of 98

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.6.2.4. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.6.2.5. Function ssize_t read(...)

Read data from the UART32. The call block until all data has been received from the

UART32 or an error has occurred.

If any error condition occurs, the read will return zero bytes.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT and the size must be

a multiple of CPU_STRUCTURE_ALIGNMENT. It is recommended to assign the buffer in the

following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buffer[BUFFER_SIZE];

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Maximum number of
bytes is 16777216.

Return value Description

>=0 Number of bytes that were
read.

-1 See errno values

errno values

EINVAL Invalid options

5.6.2.6. Function int ioctl(...)

Input/output control for UART32.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 37 of 98

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val uint32_t / uint32t* in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

UART32_SET_BAUDRATE_IOCTL uint32_t in Sets the baudrate for the UART32,
see [5.6.2.1].

UART32_SET_ENDIAN_IOCTL uint32_t in Sets the endian for the transfer, see
[5.6.2.2].

UART32_GET_BURST_SIZE_IOCTL uint32_t out Get the number of bytes in the burst
for the UART32.

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

EINVAL Invalid options

5.6.3. Usage description

The following #define needs to be set by the user application to be able to use the UART32:

CONFIGURE_APPLICATION_NEEDS_UART32_DRIVER

5.6.3.1. RTEMS application example

In order to use the UART32 driver on RTEMS environment, the following code structure is

suggested to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 38 of 98

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart32_rtems.h> is required for accessing the UART32.

5.6.4. Limitations

The driver has limited UART functionality and can only receive data.

Data length is always 8 bits, no parity check and only 1 stop bit is used.

The receive buffer must be aligned to CPU_STRUCTURE_ALIGNMENT and the size must be a

multiple of CPU_STRUCTURE_ALIGNMENT

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart32_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART32_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 int read_fd;

 uint32_t buffer[4];

 ssize_t size;

 read_fd = open(UART32_DEVICE_NAME, O_RDONLY);

 size = read(read_fd, &buffer, 4);

 status = close(read_fd);

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 39 of 98

5.7. Mass memory

5.7.1. Description

This section describes the mass memory driver’s design and usability.

5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause.

5.7.2.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in
The absolute path to the file that is to be
opened. Mass memory device is defined as
MASSMEM_DEVICE_NAME.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-1.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-1 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.7.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 40 of 98

errno values

EBADF
The file descriptor fd is not an
open file descriptor

5.7.2.3. size_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an
open file descriptor

EINVAL

The whence argument is not a
proper value, or the resulting file
offset would be negative for a
regular file, block special file, or
directory.

EOVERFLOW

The resulting file offset would be a
value which cannot be
represented correctly in an object
of type off_t.

5.7.2.4. size_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

Return value Description

>0 Number of bytes that were read.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL

Page offset set in lseek is out of range

or nbytes is too large and reaches a page

that is out of range.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 41 of 98

EBUSY
Device is busy with previous read/write
operation.

5.7.2.5. size_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write from buf.

Return value Description

>0 Number of bytes that were written.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL

Page offset set in lseek is out of range or
nbytes is too large and reaches a page
that is out of range.

EAGAIN Driver failed to write data. Try again.

5.7.2.6. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in
Command defined in subchapters 5.7.2.6.1 to
5.7.2.6.9.

value void * in
The value relating to command operation as
defined in subchapters 5.7.2.6.1 to 5.7.2.6.9.

5.7.2.6.1. Bad block check
Checks if the given block is a bad block.

Return value Description

0 Block is OK.

-1 Bad block

Command Type Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 42 of 98

5.7.2.6.2. Reset mass memory device

Return value Description

0 Always

5.7.2.6.3. Read status data

Return value Description

≥0 Status register value

5.7.2.6.4. Read control status data

Return value Description

0 Always

5.7.2.6.5. Read EDAC register data

Return value Description

0 Always

5.7.2.6.6. Read ID

Return value Description

0 Always

5.7.2.6.7. Erase block

Command Type Direction Description

MASSMEM_IO_RESET

Command Type Direction Description

MASSMEM_IO_READ_STATUS_DATA uint32_t* out

Command Type Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out

Command Type Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out

Command Type Direction Description

MASSMEM_IO_READ_ID uint8_t* out Of type massmem_cid_t.

Command Type Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 43 of 98

Return value Description

0 Always

5.7.2.6.8. Read spare area
Reads the spare area with given data.

Return value Description

0
Read operation was
successful.

-1 Read operation failed.

5.7.2.6.9. Program spare area
Programs the spare area from the given data

Return value Description

0
Program operation was
successful.

-1 Program operation failed.

Command Type Direction Description

MASSMEM_IO_READ_SPARE_AREA uint8_t* in/out
Of type

massmem_ioctl_spare_area_args_t.

Command Type Direction Description

MASSMEM_IO_PROGRAM_SPARE_AREA uint8_t* in/out
Of type
massmem_ioctl_spare_area_args_t

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 44 of 98

5.7.3. Usage

5.7.3.1. RTEMS

5.7.3.1.1. Overview
The RTEMS driver accesses the mass memory by the reference a page number. There are

MASSMEM_BLOCKS blocks starting from block number 0 and

MASSMEM_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page is of size MASSMEM_PAGE_SIZE bytes.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

5.7.3.1.2. Usage
The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapter 5.7.2.

And, if desired, the access can be closed when not needed.

Figure 5-5 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

5.7.3.1.3. RTEMS application example
In order to use the mass memory flash driver in RTEMS environment, the following code

structure is suggested to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 45 of 98

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

5.7.4. Limitations

The TCM mass memory interface can currently only handle multiple consecutive RMAP

write commands of size 1200 bytes or below.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASS_MEMORY_FLASH_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 46 of 98

5.8. Spacewire

5.8.1. Description

This section describes the SpaceWire driver’s design and usability.

5.8.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.8.2.5.

5.8.2.1. int open(…)

Registers the application to the device name for data transactions. Although multiple

accesses for data transaction is allowed, only one access per unique device name is valid.

Device name must be set with a logical number as described in usage description in

subchapter 5.8.3.1.

Argument name Type Direction Description

filename char * in Device name to register to for data transaction.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-2.

Return value Description

>0
A file descriptor for the
device.

- 1 see errno values

errno values

ENOENT Invalid device name

EEXIST Device already opened.

EEGAIN
Opening of device
failed due to internal
error. Try again.

Table 5-2 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR
Open for reading and
writing

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 47 of 98

5.8.2.2. int close(…)

Deregisters the device name from data transactions.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0
Device name deregistered
successfully

-1 see errno values

errno values

EBADF
The file descriptor fd is not
an open file descriptor

5.8.2.3. size_t read(…)

Receives a packet.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT. It is recommended to

assign the buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

Note! This call is blocking until a package for the logic address is received

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in buf size in bytes.

Return value Description

>0
Received size of the actual
packet. Can be less than
nbytes.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not

an open file descriptor

EINVAL buf size is 0.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 48 of 98

5.8.2.4. size_t write(…)

Transmits a packet.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT. It is recommended to

assign the buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

Note! A packet must be of a size of at least 4 bytes.

Note! This call is blocking until the package is transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in Packet size in bytes.

Return value Description

>0
Number of bytes that were
transmitted.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an

open file descriptor

EINVAL Packet size is 0.

5.8.2.5. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.8.2.5.1

value void * in
The value relating to command operation as
defined in subchapter 5.8.2.5.1.

5.8.2.5.1. Mode setting
Sets the device into the given mode.

Note! The mode setting affects the SpaceWire device and therefore all file descriptors

registered to it.

Command Type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in
SPWN_IOCTL_MODE_NORMAL for normal
mode or SPWN_IOCTL_MODE_LOOPBACK
for loopback mode

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 49 of 98

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EINVAL Invalid mode.

5.8.3. Usage

5.8.3.1. RTEMS

5.8.3.1.1. Overview
The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register with a

logical address.

The logical address is tied to a device number. To register to the device, the application

must use the predefined string SPWN_DEVICE_0_NAME_PREFIX with a chosen logical

address to register itself to the driver. See code example in subchapter 5.8.3.1.3. The

registration is done by function open and deregistered by the function close.

Only one logical address can be registered at a time yet multiple logical addresses can be

used at the same time within an application.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard and cannot be registered to.

Note! A packet buffer must be aligned to CPU_STRUCTURE_ALIGNMENT in order to handle

packet’s transmission and reception correctly. It is therefore recommended to assign the

buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

5.8.3.1.2. Usage
The application must first register to a device name before it can be accessed for data

transaction. Once registered via function open, all provided operations can be used as

described in the subchapter 5.8.2. Additionally, if desired, the access can be closed when

not needed.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 50 of 98

Figure 5-6 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

5.8.3.1.3. RTEMS application example
In order to use the driver in RTEMS environment, the following code structure is suggested

to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 51 of 98

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

Two buffers, buf_tx and buf_rx, are aligned with CPU_STRUCTURE_ALIGNMENT for

correctly handling DMA access regarding transmission and reception of a SpaceWire

packet.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

CONFIGURE_EXECUTIVE_RAM_SIZE must also be defined for objects needed by the

driver.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

#define RESOURCES_MEM_SIZE (512*1024) /* 1 Mb */

#define CONFIGURE_EXECUTIVE_RAM_SIZE RESOURCES_MEM_SIZE

#define CONFIGURE_MAXIMUM_TIMERS 1 /* Needed by driver */

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

uint8_t CPU_STRUCTURE_ALIGNMENT buf_tx[PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 52 of 98

5.8.4. Limitations

Currently, default transmission/reception bit rate is set to 50 MBAUD and cannot be altered

during operation. This functionality is planned to be added in a future release.

A packet must be of a size of at least 4 bytes.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 53 of 98

5.9. GPIO

5.9.1. Description

This driver software for the GPIO IP handles the setting and reading of general purpose

input/output pins. It implements the standard set of device file operations according to [RD7].

The GPIO IP has, apart from logical pin and input/output operations, also a number of other

features.

5.9.1.1. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the driver

software by the means of an interrupt.

5.9.1.2. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample the

current timer when a rising or falling edge is detected on a pin. Reading the time of the

timestamp requires interaction with the SCET and exact register address depends on the

current board configuration.

5.9.1.3. RTEMS differential mode

In RTEMS finally, a GPIO pin can also be set to operate in differential mode on output only.

This requires two pins working in tandem and if this functionality is enabled, the driver will

automatically adjust the setting of the paired pin to output mode as well. The pins are paired

in logical sequence, which means that pin 0 and 1 are paired as are pin 2 and 3 etc. Thus, in

differential mode it is recommended to operate on the lower numbered pin only to avoid

confusion. Pins can be set in differential mode on specific pair only, i.e. both normal single

ended and differential mode pins can operate simultaneously (though not on the same pins

obviously).

5.9.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.9.2.1. Function int open(...)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead

retains the settings from any previous access.

Argument name Type Direction Description

pathname const char * in The absolute path to the GPIO pin to be
opened. All possible paths are given by
"/dev/gpioX" where X matches 0-31. The actual
number of devices available depends on the
current hardware configuration.

flags Int in Access mode flag, only O_RDONLY is
supported.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 54 of 98

Return value Description

Fildes A file descriptor for the device
on success

-1 See errno values

errno values

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.9.2.2. Function int close(...)

Closes access to the GPIO pin.

Argument name Type Direction Description

fd Int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.9.2.3. Function ssize_t read(...)

Reads the current value of the specified GPIO pin. If no edge detection have been enabled,

this call will return immediately. With edge detection enabled, this call will block with a

timeout until the pin changes status such that it triggers the edge detection. The timeout can

be adjusted using an ioctl command, but defaults to zero - blocking indefinitely, see also

5.9.2.4.

Argument name Type Direction Description

fd Int in File descriptor received at open.

buf void* In Pointer to character buffer to write data into.

count size_t In Number of bytes to read

Return value Description

>=0 Number of bytes that were
read.

-1 See errno values

errno values

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for
the edge detection to trigger

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 55 of 98

5.9.2.4. Function int ioctl(...)

The input/output control function can be used to configure the GPIO pin as a complement to

the simple data settings using the read/write file operations.

Argument name Type Direction Description

fd Int in File descriptor received at open.

cmd Int in Command to send.

val uin32_t in/out Data according to the specific command.

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECTION uint32_t out Get input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_SET_DIRECTION uint32_t in Set input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_GET_FALL_EDGE_DETECTION uint32_t out Get falling edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_FALL_EDGE_DETECTION uint32_t in Set falling edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_RISE_EDGE_DETECTION uint32_t out Get rising edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_RISE_EDGE_DETECTION uint32_t in Set rising edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_TIMESTAMP_ENABLE uint32_t out Get timestamp enable status of the
pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_SET_TIMESTAMP_ENABLE uint32_t in Set timestamp enable configuration
of the pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_GET_DIFF_MODE uint32_t out Get differential mode status of the
pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_SET_DIFF_MODE uint32_t in Set differential mode configuration of
the pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_GET_EDGE_TIMEOUT uint32_t out Get the edge trigger timeout value in
ticks. Defaults to zero which means
wait indefinitely.

GPIO_IOCTL_SET_EDGE_TIMEOUT uint32_t in Set the edge trigger timeout value in
ticks. Zero means wait indefinitely.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 56 of 98

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

EINVAL Invalid options

5.9.3. Usage description

5.9.3.1. RTEMS application example

The following #define needs to be set by the user application to be able to use the GPIO:

CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

5.9.4. Limitations

Differential mode works in output only.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 ssize_t size;

 read_fd = open("/dev/gpio0", O_RDWR);

 status = ioctl(read_fd, GPIO_IOCTL_SET_DIRECTION,

 GPIO_DIRECTION_IN);

 size = read(read_fd, &buffer, 1);

 status = close(read_fd);

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 57 of 98

5.10. CCSDS

5.10.1. Description

This document describes the driver as a utility for accessing the CCSDS IP.

On the telemetry, the frames are encoded with Reed Solomon encoding that conforms to the

CCSDS standard with a (255-223) RS encoder implementation and an interleaving depth of

5. That makes a total frame length of 1115 bytes. The standard RS polynomial is used.

On the telecommands the BCH decoder (63-56) supports the error correcting mode.

The driver can be configured to handle all available interrupts from the CCSDS IP:

 Pulse commands (CPDU)

 Timestamping of telemetry sent on virtual channel 0

 DMA transfer finished.

 Telemetry transfer frame error.

 Telecommand rejection due to error in the incoming telecommand.

 Telecommand frame buffer errors.

 Telecommand frame buffer overflow.

 Telecommand successfully received.

5.10.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, errno value is set for determining the cause.

Access to the CCSDS-driver from an application is provided by three different device-files:

 “/dev/ccsds” that is used for configuration and status for common TM and TC

functionality in the IP. Is defined as CCSDS_NAME

 “/dev/ccsds-tm” that is used for functions related to handling of Telemetry. Is

defined as CCSDS_NAME_TM

 “/dev/ccsds-tc” that is used for functions related to handling of Telecommands. Is

defined as CCSDS_NAME_TC

5.10.2.1. Datatype struct tm_frame_t

This datatype is a struct representing a telemetry transfer frame. The elements are

described in the table below:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 58 of 98

Element Size (in bits) Description

transfer_frame_version_no 2 The transfer frame version number

Scid 10 The SCID

Vcid 3 The virtual channel id of the TM frame

vcf_flag 1 The OCF-flag

Mcfc 8 The master channel frame counter

Vcfc 8 The virtual channel frame counter

tr_frame_sec_head_flag 1 The transfer frame secondary header
flag

tr_frame_sync_flag 1 The transfer frame sync flag

tr_frame_packet_ord_flag 1 The transfer frame packet order flag

segment_length_id 2 The segment length id

first_header_pointer 11 The first header pointer

data_field 1103*8 The data field of the TM frame

Clcw 32 The CLCW

Crc 16 The CRC

5.10.2.2. Datatype struct tc_frame_t

This datatype is a struct representing a telecommand transfer frame. The elements are

described in the table below:

5.10.2.3. Data type dma_descriptor_t

This datatype is a struct for DMA descriptors. The elements of the struct are described

below:

Element Type Description

desc_no uint32_t The descriptor number (0-31)

desc_config uint32_t The configuration of the DMA
descriptor

desc_adress uint32_t The configuration of the DMA address
descriptor

5.10.2.4. Data type tm_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Size (in bits) Description

transfer_frame_version_no 2 The transfer frame version number

bypass_flag 1 The bypass flag

control_command_flag 1 The control command flag

Spare 2 Reserved for future use

Scid 10 The SCID

Vcid 6 The virtual channel id

frame_length 10 The TC frame length

data_field 1017*8 The data field of the TC frame

Crc 16 The CRC

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 59 of 98

Element Type Description

clk_divisor uint8_t The divisor of the clock

tm_enabled uint8_t Enable/disable of telemetry
0 - Disable
1 - Enable

fecf_enabled uint8_t Enable/disable of FECF
0 - Disable
1 - Enable

mc_cnt_enabled uint8_t Enable/Disable of master channel
frame counter
0 - Disable
1 - Enable

idle_frame_enabled uint8_t Enable/disable of generation of Idle
frames
0 - Disable
1 - Enable

tm_conv_bypassed uint8_t Bypassing of the TM convolutional
encoder
0 - No bypass
1 - Bypass

tm_pseudo_rand_bypassed uint8_t Bypassing of the TM pseudo
randomizer encoder
0 - No bypass
1 - Bypass

tm_rs_bypassed uint8_t Bypassing of the TM Reed Solomon
encoder
0 - No bypass
1 - Bypass

5.10.2.5. Data type tc_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Type Description

tc_derandomizer_bypassed uint8_t Bypassing of TC derandomizer.
0 - No bypass
1 - Bypass

5.10.2.6. Data type tc_status_t

This datatype is a struct to store status parameters of the TC path. The elements of the

struct are described below:

Element Type Description

tc_frame_cnt uint8_t Number of received TC frames. The
counter will wrap around after 2^8-1.

tc_buffer_cnt uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

cpdu_line_status uint16_t Bits 0-11 show if the corresponding
pulse command line was activated by
the last command.

cpdu_bypass_cnt uint8_t Indicates the number of accepted
commands. Wraps at 15.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 60 of 98

5.10.2.7. int open(…)

Opens the devices provided by the CCSDS RTEMS driver. The device can only be opened

once at a time.

Argument name Type Direction Description

Filename char * in The absolute path to the file that is to be
opened. Shall be CCSDS_NAME,
CCSDS_NAME_TM or CCSDS_NAME_TC

Oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

≥0 A file descriptor for the device
on success

- 1 see errno values

errno values

EBUSY If device already opened

EPERM If wrong permissions

ENOENT Bad file descriptor

5.10.2.8. int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

ENOENT Bad file descriptor

5.10.2.9. size_t write(…)

To send a Telemetry Transfer frame a write-operation on device “/dev/ccsds-tm” shall be

used. The TM frame to send is passed as a pointer to a variable of type tm_frame_t.

Argument name Type Direction Description

Fd Int in File descriptor received at open

Buf void * in Character buffer to read data from

Nbytes size_t in Number of bytes to write to the device.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 61 of 98

Return value Description

≥0 number of bytes that were
written.

- 1 see errno values

errno values

EINVAL Wrong arguments

EIO A physical access on the
device failed

5.10.2.10. size_t read(…)

To read a Telecommand Transfer frame a read-operation on device “/dev/ccsds-tc” shall be

used. The read Telecommand Transfer frame is passed as a pointer to a variable of type

tc_frame_t.. This call is blocking until a Telecommand Transfer Frame is received.

Argument name Type Direction Description

Fd int in File descriptor received at open

Buf void * in Character buffer where read data is returned

Nbytes size_t in Number of bytes to write from the

Return value Description

≥0 Number of bytes that were
read.

- 1 see errno values

errno values

EINVAL Wrong arguments

EIO A physical access on the
device failed

5.10.2.11. int ioctl(…)

The devices provided by the CCSDS driver support different IOCTL’s.

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val void * in The parameter to pass is depended on which
IOCTL is called. Is described in table below.

Command table Device Parameter type Description

CCSDS_SET_TM_CONFIG /dev/ccsds-tm tm_config_t Sets a configuration of the
TM path. See 5.10.2.4

CCSDS_GET_TM_CONFIG /dev/ccsds-tm tm_config_t * Returns the configuration of
the TM path. See 5.10.2.4

CCSDS_SET_TC_CONFIG /dev/ccsds-tc tc_config_t Sets a configuration of the
TC path. See 5.10.2.5

CCSDS_GET_TC_CONFIG /dev/ccsds-tc tc_config_t * Returns the configuration of
the TC path. See 5.10.2.5

CCSDS_SET_DMA_CONFIG /dev/ccsds-tm uint32_t Set a configuration of the
DMA register.

CCSDS_GET_DMA_CONFIG /dev/ccsds-tm uint32_t* Returns a configuration of
the DMA register.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 62 of 98

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

ENOENT Bad file descriptor

EINVAL Invalid I/O command

5.10.3. Usage description

5.10.3.1. Send Telemetry

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc” and “/dev/ccsds”. Set up the TM path

by ioctl-call CCSDS_SET_TM_CONFIG on device “/dev/ccsds-tm” or ioctl CCSDS_INIT

on device “/dev/ccsds”

2. Enable the different interrupts to be generated by ioctl CCSDS_SET_IE_CONFIG on

device “/dev/ccsds”.

3. Prepare DMA-descriptors by ioctl CCSDS_SET_DMA_DESC on device “/dev/ccsds-

tm”.

4. Enable DMA by ioctl CCSDS_ENABLE_DMA

5. Enable TM by ioctl CCSDS_ENABLE_TM on device “/dev/ccsds-tm”.

6. Prepare the content in SDRAM that will be fetched by DMA-transfer by writing to

“/dev/ccsds-tm”

CCSDS_SET_IE_CONFIG /dev/ccsds uint32_t Enables/Disables interrupts
in the CCSDS IP.

CCSDS_GET_IE_CONFIG /dev/ccsds uint32_t* Gets the configuration of the
enabled/disabled interrupts.

CCSDS_SET_DMA_DESC /dev/ccsds-tm dma_descriptor_t Configures a DMA-descriptor
in the range (0-31). See
5.10.2.3

CCSDS_GET_DMA_DESC /dev/ccsds-tm dma_descriptor_t* Returns the configuration of
a DMA-descriptor in the
range (0-31). See 5.10.2.3

CCSDS_GET_TM_STATUS /dev/ccsds-tm uint32_t* Gets status of TM path.

CCSDS_GET_TM_ERR_CNT /dev/ccsds-tm uint32_t* Gets the TM error counter.

CCSDS_GET_TC_ERR_CNT /dev/ccsds-tc uint32_t* Gets the TC error counter.

CCSDS_GET_TC_STATUS /dev/ccsds-tc tc_status_t* Gets status of TC path.

CCSDS_SET_TC_BUF_CTRL /dev/ccsds-tc uint32_t Set the TC buffer control
register.

CCSDS_ENABLE_TM /dev/ccsds-tm N.A Enables TM.

CCSDS_DISABLE_TM /dev/ccsds-tm N.A Disable TM.

CCSDS_ENABLE_DMA /dev/ccsds-tm N.A. Enables DMA transfers.

CCSDS_DISABLE_DMA /dev/ccsds-tm N.A Disables DMA transfers.

CCSDS_INIT /dev/ccsds N.A. Sets a default configuration
of the CCSDS IP.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 63 of 98

5.10.3.2. Receive Telecommands

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc” and “/dev/ccsds”. Set up the TC path

by ioctl-call CCSDS_SET_TC_CONFIG on device “/dev/ccsds-tc” or or ioctl

CCSDS_INIT on device “/dev/ccsds”

2. Enable the different interrupts to be generated by ioctl CCSDS_SET_IE_CONFIG

3. Do a read from “/dev/ccsds-tc”. This call will block until a new TC has been received.

5.10.3.3. Application configuration

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions open(),

close(), read(), write() and ioctl() to access the CCSDS device.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/ccsds_rtems.h> is required for data-types, definitions of IOCTL of device

CCSDS.

CONFIGURE_APPLICATION_NEEDS_CCSDS_DRIVER must be defined to use the

CCSDS driver from the application.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 64 of 98

5.11. ADC

5.11.1. Description

This section describes the driver for accessing the ADC device when reading the house-

keeping (HK) data. The following ADC channels contain housekeeping information:

Parameter Abbreviation ADC channel

Temperature Temp 9

Input current Iin 8

Input voltage Vin 7

Regulated 3.3V 3V3 6

Regulated 2.5V 2V5 5

Regulated 1.2V 1V2 4

To convert the ADC value into mV, mA eller m°C the following formulas shall be used:

HK channel Formula

Temp [m°C] = 1000*(1000*(3V3_mV – ((ADC_value*2500)/2^24)) - ((ADC_value*2500)/2^24)*1210) /
(1000*0.00385*(((ADC_value*2500)/2^24)-3300))

Iin [mA] = (ADC_value*2500)/(2^24)*2

Vin [mV] = (ADC_value*2500)/(2^24)*(82.3/10)

3V3 [mV] = (ADC_value*2500)/(2^24)*(20/10)

2V5 [mV] = (ADC_value*2500)/(2^24)*(20/10)

1V2 [mV] =(ADC_value*2500)/(2^24)*(1010/1000)

5.11.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.11.2.1. Function int open(…)

Opens access to the ADC. Only one instance can be open at any time, only read access is

allowed and only blocking mode is supported.

Argument name Type Direction Description

Pathname const char * in The absolute path to the ADC to be opened.
ADC device is defined as
ADC_DEVICE_NAME.

Flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

Fd A file descriptor for the device
on success

-1 See errno values

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 65 of 98

errno values

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.11.2.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.11.2.3. Function ssize_t read(…)

This is a blocking call to read data from the ADC.

Note! The size of the given buffer must be a multiple of 32 bit.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Buf void* in Pointer to buffer to write data into.

Count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

5.11.2.4. Function int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode, clock

divisor etc.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 66 of 98

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val int / int* in/out Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC chip,
see [RD6].

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC chip,
see [RD6].

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock used
for communication with the ADC chip.
Minimum 0 and maximum 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Set the clock divisor of the clock used
for communication with the ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to
IOCTL

5.11.3. Usage

The following #define needs to be set by the user application to be able to use the ADC:

CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.11.3.1. RTEMS application example

In order to use the ADC driver on RTEMS environment, the following code structure is

suggested to be used:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 67 of 98

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

5.11.4. Limitations

Only one enabled channel at a time is supported in current implementation.

Only the default divisor value is supported in the current implementation.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument){

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);

 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);

 size = read(read_fd, &buffer, 4);

 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);

 status = close(read_fd);

}

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 68 of 98

6. Spacewire router

In both OBC-S
TM

 and TCM-S
TM

 products, a smaller router is integrated onto their relative

SoCs. The routers all use path addressing (see [RD2]) and given the topology illustrated in

Figure 6-1, the routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In reference to the topology above, sending a package from the OBC-S
TM

 to the TCM-S
TM

 or

vice versa, the routing address will be 1-3.

In addition to this, each end node, OBC-S
TM

 or TCM-S
TM

, has one or more logical

address(es) to help distinguish between different applications or services running on the

same node. The logical address complements the path address and must be included in a

SpaceWire packet.

Example: If a packet is to be sent from OBC-S
TM

 to the TCM-S
TM

 it needs to be prepended

with 0x01 0x03 XX.

0x01 routes the packet to port 1 of the OBC-S
TM

router.

0x03 routes the packet to port 3 of the TCM-S
TM

router.

XX is the logical address of the recipient application/service on the TCM-S.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 69 of 98

7. TCM-S
TM

7.1. Description

TCM-S
TM

 handles receiving of Telecommands (TCs) and Telemetry (TM).

TC, received from ground, can be of two command types; a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin accordingly to the pulse command parameters. All other commands are

handled by TCM-S
TM

. Any command that is not to be addressed by TCM-S
TM

, the command

is routed to other nodes in the satellite bus.

TM is received from other nodes on the satellite bus. TCM-S
TM

 supports both the storage of

TM directly to the Mass Memory for later retrieval or downloaded to ground during ground

passes.

TCM-S
TM

 is highly configurable to be adaptable to different customer needs and missions.

TCM-S
TM

 currently supports SpaceWire (SpW) with Read Memory Access Protocol (RMAP).

Future support for Serial Peripheral Interface (SPI), I2C, RS 422/485 and Ethernet interfaces

are planned to be implemented.

7.2. TM/TC-related configurations

 Live Telemetry is mapped to Virtual Channel 0 during download of Telemetry.

 Telemetry stored on Mass Memory is mapped to Virtual Channel 1 during

download of Telemetry.

 Reed-Solomon Encoding is always enabled on the TM path

 Pseudo Randomizer Encoding of the TM path is enabled.

 Convolutional Encoding is disabled on the TM path.

 Derandomizer is disabled on the TC path.

 Idle-frame generation is enabled

 Master Channel frame counter is enabled in Telemetry Transfer Frames

 Frame Error Control Field is enabled in Telemetry Transfer Frames

 Telemetry is enabled

 The default clock divisor of the TM path is set to 0x16

 The SCID is 0x22E

7.3. RMAP

To access sub-systems in the TCM-S from SpaceWire, the RMAP (see [RD3]) protocol is

supported with the following limitations:

 No buffering of received commands is done, so the TCM-S
TM

 handles one command at

a time.

 The TCM-S does not support verification of data or increment.

 Live TM perfomance limitations in this release of the TCM-S requires a delay of 20 msecs

between every SpaceWire-packet when sending Live TM.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 70 of 98

 RMAP Reply Address Length in Instruction filed must be set to 0b11 and the size of

Reply Address field must be 12 bytes accordingly in the RMAP protocol. Currently only

this configuration is supported by the TCM-S
TM

.

Reply path length is determined by path addresses terminated by a NULL (0x00) value.

7.3.1. Commands overview

According to the RMAP protocol [RD3], a 40-bits address map consists of an 8-bit Extended

Address field and a 32-bit Address field. TCM-S
TM

 utilizes these fields as described in

subchapters 7.3.1.1 to 7.3.1.2.

7.3.1.1. Input commands

Table 7-1: Extended addresses

Extended Address Field Description

0x00 Configuration

0x01-0xFF Partitions on Mass Memory

An overview of the commands is given in the table below:

Table 7-2: RMAP Commands

Extended Address Field Address Command Comment

0x00 0x00000000 Telemetry status Read command
0x00 0x000001xx Partition Virtual Channel Read/Write command.

xx-Partition Number (1-15)
0x00 0x00000200 Downlink Baseband

Configuration
Read command

0x00 0x00000210 Downlink Baseband
Telemetry Control

Write command

0x00 0x00000211 Downlink Baseband Frame
Error Control Field Control

Write command

0x00 0x00000212 Downlink Baseband Master
Frame Counter Control

Write command

0x00 0x00000213 Downlink Baseband Idle
Frame Control

Write command

0x00 0x00000214 Downlink Baseband
Pseudo Randomization
Control

Write command

0x00 0x00000215 Downlink Baseband
Convolution Encoding
Control

Write command

0x00 0x00000217 Bitrate Write command
0x00 0x00000300 Timestamp control Write command
0x00 0x00000400 SendTelemetry Write command
0x00 0x00000500 GetTMBufferSpace Read

command
0x00 0x01000000 Telecommand status Read

command
0x00 0x01000100 Telecommand

Derandomizer Control
Write command

0x00 0x02000000 Housekeeping status Read command
0x00 0x03000000 Error status Read command
0x00 0x05000000 MassMemoryStatus Read command

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 71 of 98

0x00 0x050001xx WritePointer,

Read command.
xx-Partition Number (1-15)
Write to be implemented

0x00 0x050002xx ReadPointer,

Read command.
xx-Partition Number (1-15)
Write to be implemented.

0x00 0x050003xx PartitionConfiguration.
(Read/Write)

Read/Write command. xx-
Partition Number (1-15)

0x00 0x050004xx GetPartitionSpace Read command xx-
Partition Number (1-15)

0x00 0x050005xx DownloadData Write
command. xx-Partition
Number (1-15)

0x00 0x050006xx ResetVolatileReadPtr Write
command. xx-Partition
Number (1-15)

0x00 0x050007xx SetWipemark Write
command. xx-Partition
Number (1-15)

0x00 0x050008xx WipeData Write
command. xx-Partition
Number (1-15)

0x00 0x06000000 SCETTime Read/Write
command

0x00 0x06000100 SCET Configuration Read/Write command
0x01-0x0F 0x00000000 PartitionData Read/Write command

7.3.1.2. Output commands

The TCM-S publishes data to other nodes according to the address map below:

Table 7-3: RMAP Commands supported by TCM-S

Extended Address Field Address Field Description

0x00 0x00000000 Routed Telecommands
0x00 0x00000200 Telemetry Error. Asynchrounous reporting of

Telemetry errors. To be implemented
0x00 0x00000300 Telecommand Error. Asynchronous reporting of

Telecommand errors. To be implemented
0x00 0x00000400 Routed data from transcevier

7.3.2. Telemetry Status (Read)

To get status of the Telemetry Interface a Read Command is sent. The Extended Address

Field and Address Field are shown in table below:

Table 7-4 Telemetry Status

Extended Address Field Address Field Description

0x00 0x00000000 Telemetry status.

In the response message, the data described below is returned:

Table 7-5 Telemetry Status Parameters

Data Type Description

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 72 of 98

FIFOStatus UINT8 0 – No error
1 – FIFO error. Reset when read

TMBusy UINT8 0 – No transfer
1 – Transfer in progress

7.3.3. PartitionVirtualChannel (Read/Write)

To configure the virtual channel to use for Telemetry Transfer Frames when downloading

data from a partition, a write command with an Extended Address Field and Address Field

as described below is sent. To get the configured virtual channel for a partition, a read

command is sent.

Table 7-6 PartitionVirtualChannel (Read/Write)

Extended Address Field Address Field Description

0x00 0x000001nn nn – Partition Number

The data in the read and write command is described in table below:

Table 7-7 PartitionVirtualChannel data

Data Type Description

Virtual Channel UINT32 The virtual channel for a partition.

7.3.4. Downlink Baseband Configuration (Read)

Retrieves downlink baseband configuration for telemetry. To get configuration, a read

command must be sent.

Table 7-8 Downlink Baseband Control Command (Read)

Extended Address Field Address Field Description

0x00 0x00000200 Downlink Baseband Configuration command

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 73 of 98

In the response message, the data described below is returned:

Table 7-9 Reply data of Downlink Baseband Configuration command

Data Type Description

Bitrate Control UINT8 Bitrate divisor value.
Telemetry Control UINT8 0x00 – Disabled

0x01 – Enabled
Frame Error Counter Field Control UINT8 0x00 – Disabled

0x01 – Enabled
Master Frame Control UINT8 0x00 – Disabled

0x01 – Enabled
Idle Frame Control UINT8 0x00 – Disabled

0x01 – Enabled
Convolution Encoding Control UINT8 0x00 – Not bypassed

0x01 – Bypassed
Pseudo Randomization Control UINT8 0x00 – Not bypassed

0x01 – Bypassed

7.3.5. Downlink Baseband Telemetry Control (Write)

Sets telemetry configuration. To set the control value, a write command must be sent.

Default setting is set to enable.

Table 7-10 Downlink Baseband Telemetry Control Command

Extended Address Field Address Field Description

0x00 0x00000210 Downlink Baseband Telemetry Control command

Table 7-11 Downlink Baseband Telemetry Command Data

Data Type Description

TM Control UINT8 0x00 – Disable
0x01 – Enable

7.3.6. Downlink Baseband Frame Error Control Field Control (Write)

Configures Frame Error Control Field for Transfer Frames. When enabled Frame Error

Control Field is set in Transfer Frames. To set the control value, a write command must be

sent.

Default setting is set to enable.

Table 7-12 Downlink Baseband FEFC Control Command

Extended Address Field Address Field Description

0x00 0x00000211 Downlink FEFC Control command

Table 7-13 Downlink Baseband FEFC Command Data

Data Type Description

FECF Control UINT8 0x00 – Disable
0x01 – Enable

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 74 of 98

7.3.7. Downlink Baseband Master Frame Control (Write)

Sets Master Frame Control (MFC) configuration. To set the control value, a write command

must be sent.

Default setting is set to enable.

Table 7-14 Downlink Baseband MFC Control Command

Extended Address Field Address Field Description

0x00 0x00000212 Downlink MFC Control command

Table 7-15 Downlink Baseband MFC Command Data

Data Type Description

MFC Control UINT8 0x00 – Disable
0x01 – Enable

7.3.8. Downlink Baseband Idle Frame Control (Write)

Sets Idle Frame Control configuration. To set the control value, a write command must be

sent.

Default setting is set to enable.

Table 7-16 Downlink Baseband MFC Control Command

Extended Address Field Address Field Description

0x00 0x00000213 Downlink Idle Frame Control command

Table 7-17 Downlink Baseband Idle Frame Command Data

Data Type Description

Idle Frame Control UINT8 0x00 – Disable
0x01 – Enable

7.3.9. Downlink Baseband Pseudo Randomization Control (Write)

Sets Pseudo Randomization Control configuration. To set the control value, a write

command must be sent.

Default setting is set to on.

Table 7-18 Downlink Baseband Pseudo Randomization Control Command

Extended Address Field Address Field Description

0x00 0x00000214 Downlink Pseudo Randomization Control command

Table 7-19 Downlink Baseband Pseudo Randomization Command Data

Data Type Description

Pseudo Randomization Control UINT8 0x00 – Off
0x01 – On

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 75 of 98

7.3.10. Downlink Baseband Convolution Encoding Control (Write)

Sets downlink baseband Convolution Encoding Control configuration. To set the control

value, a write command must be sent.

Default setting is set to on.

Note! Convolution encoding doubles the telemetry clock frequency in relation with the clock

divisor setting as defined in subchapter 7.3.11.

Table 7-20 Downlink Baseband Convolution Encoding Control Command

Extended Address Field Address Field Description

0x00 0x00000215 Downlink Convolution Encoding Control command

Table 7-21 Downlink Baseband Convolution Encoding Command Data

Data Type Description

Convolution Encoding Control UINT8 0x00 – Off
0x01 – On

7.3.11. Downlink Baseband Bitrate Control (Write)

Configures the telemetry clock frequency. To set the control value, a write command must

be sent.

The telemetry clock is fed to the radio. The frequency of the telemetry clock is the system

clock (50 MHz) divided by the divisor times two. I.e. if the divisor value is set to 4, the

telemetry clock frequency is 12.5 MHz.

Note! If the convolution encoding is on, configurable as defined in subchapter 7.3.10, the

clock frequency is doubled i.e. 25 MHz from example above.

Default setting is set to 50.

Table 7-22 Downlink Baseband Bitrate Control Command

Extended Address Field Address Field Description

0x00 0x00000216 Downlink Bitrate Control command

Table 7-23 Downlink Baseband Bitrate Command Data

Data Type Description

Bitrate Control UINT8 Bitrate divisor value.

7.3.12. Downlink Baseband Timestamp Control (Write)

Sets downlink Timestamp Control configuration. To set the control value, a write command

must be sent.

Default setting is set to 0x00 (No time stamping).

Table 7-24 Downlink Baseband Timestamp Control Command

Extended Address Field Address Field Description

0x00 0x00000300 Downlink Timestamp Control command

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 76 of 98

Table 7-25 Downlink baseband Timestamp Command Data

Data Type Description

TimestampRate UINT8 0x00 – No time stamping
0x01 – Take a time stamp every time frame sent
0x02 – Take a time stamp every 2

nd
 time frame sent

…
0xFF – Take a time stamp every 255

th
 time frame sent

7.3.13. SendTelemetry (Write)

To send telemetry to the TM path a write command with an Extended Address Field and

Address Field as described below is sent. The data shall contain at least one Telemetry

PUS Packet.

Table 7-26 SendTelemetry (Write)

Extended Address Field Address Field Description

0x00 0x00000400 See [RD3]. (Write)

The data parameter of Read/Write Data command is described below:

Table 7-27 SendTelemetry data

Data Type Description

DataArray Array of
UINT8

The bytes of the Telemetry PUS packet(s).

7.3.14. GetTMBufferSpace (Read)

Retrieves available buffer size in bytes that can additionally added with telemetry data to

complete the telemetry frame.

Table 7-28 GetTMBufferSpace(Read)

Extended Address Field Address Field Description

0x00 0x00000600 Telemetry buffer space

In the response message, the data described below is returned:

Table 7-29 GetTMBufferSpace data

Data Type Description

TMBufferSpace UINT32 Available space in bytes

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 77 of 98

7.3.15. Telecommand Interface

The telecommand interface provides functionality to read status of the TC path and pulse

commands.

Table 7-30 Telecommand Interface (Read)

Extended Address Field Address Field Description

0x00 0x01000000 Telecommand status (Read)
0x00 0x01000100 Configure Telecommand Derandomizer (Write)

7.3.15.1. Status of TC path (Read)

The status of received of TC’s are described in table below:

Table 7-31 Status of TC Path

Data Type Description

CLCW UINT32 The CLCW word of the last received TC
TC_OVERFLOW UINT8 Indicates how many telecommand frames that were

missed due to overflow in telecommand buffers. The
counter will wrap around when 0xFF is reached.

TC_CPDU_REJECTED UINT8 Indicates how many CPDU commands that were
rejected. The counter will wrap around when 0xFF is
reached.

TC_BUF_REJECTED UINT8 Indicates how many telecommands that were rejected.
The counter will wrap around when 0xFF is reached.

TC_PARERR UINT8 Indicates number of parity errors in buffers of the
telecommand transfer path. The counter will wrap around
when 0xFF is reached.

TC_FRAME_COUNTER UINT8 Counter of received Telecommands
CPDU_INDEX UINT16 Shows the status of output line executed on last

command.
Bit 15 - Line 11
Bit 14 - Line 10
Bit 13 - Line 9
Bit 12 - Line 8
Bit 11 - Line 7
Bit 10 - Line 6
Bit 9 - Line 5
Bit 8 - Line 4
Bit 7 - Line 3
Bit 6 - Line 2
Bit 5 - Line 1
Bit 4 - Line 0
Bit 3 – Bit 0 Not used

CPDU_BYPASS_COUNTER UINT8 Counter of accepted CPDUs
TC_DERANDOMIZER_BYPASS UINT8 Indicates if Telecommand Derandomizer is bypassed.

0 – No Bypass
1 – Derandomizer bypassed

Reserved UINT16 For future use

7.3.15.2. Configure Telecommand Derandomizer (Write)

To configure derandomizer of the Telecommand path, a write command with the parameters

below is sent. Default value is (1), Derandomizer is bypassed.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 78 of 98

Table 7-32 TC Derandomizer

Data Type Description

TC_DERANDOMIZER_BYPASS UINT8 0 – No bypass of Derandomizer
1- Derandomizer is bypassed

7.3.16. Housekeeping Interface (Read)

To get House Keeping data from TCM-S, a read command with an Extended Address Field

and Address Field as described below is sent.

Table 7-33 Housekeeping Interface (Read)

Extended Address Field Address Field Description

0x00 0x02000000 Housekeeping data.

The data parameters of the read command are described below:

Table 7-34 Housekeeping Interface data

Data Type Description

InputVoltage[V] UINT16 The input voltage to the TCM-S as MSBs from the ADC.
RegulatedVoltage_3V3[V] UINT16 The regulated 3V3 voltage of the TCM-S as MSBs from

the ADC.
RegulatedVoltage_2V5[V] UINT16 The regulated 2V5 voltage of the TCM-S as MSBs from

the ADC.
RegulatedVoltage_1V2[V] UINT16 The regulated 1V2 voltage of the TCM-S as MSBs from

the ADC.
InputCurrent[A] UINT16 The input current to the TCM-S as MSBs from the ADC.
Temperature[degC] UINT16 The temperature as MSBs from the ADC.
SCETSeconds UINT32 SCET Seconds
EDACMultiErrors UINT8 EDACMultiErrors, where the 4 MSBs contain multiple

critical errors (“crit”) and the 4 LSBs contain multiple non
critical errors (“oth”).

EDACSingleErrors UINT8 EDACSingleErrors, where the 4 MSBs contain single
critical errors (“crit”) and the 4 LSBs contain single non
critical errors (“oth”).

CPUErrorsAndWatchdogTrips UINT8 CPUErrors as the 4 MSBs and WatchdogTrips as the 4
LSBs.

FSWVer UINT8 S/W version.

7.3.17. Error Interface

To get error information from TCM-S, a read command with an Extended Address Field and

Address Field as described below is sent.

Table 7-35 Error Interface

Extended Address Field Address Field Description

0x00 0x03000000 Error information (Read)

The data parameters of the read command are described below:

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 79 of 98

Table 7-36 Error Interface data

Data Type Description

Bankflips UINT32 Number of bankflips
EDACMultiErrors UINT8 EDACMultiErrors, where the 4 MSBs contain multiple

critical errors (“crit”) and the 4 LSBs contain multiple non
critical errors (“oth”).

EDACSingleErrors UINT8 EDACSingleErrors, where the 4 MSBs contain single
critical errors (“crit”) and the 4 LSBs contain single non
critical errors (“oth”).

CPUErrorsAndWatchdogTrips UINT8 CPUErrors as the 4 MSBs and WatchdogTrips as the 4
LSBs.

7.3.18. Mass Memory Interface

To read status and configuration of partitions of the partitions of the TCM-S, read and write

commands with an Extended Address Field and Address Field as described below is sent.

Table 7-37 Mass Memory Interface

Extended Address Field Address Field Description

0x00 0x05000000 MassMemoryStatus, (Read)
0x00 0x050001nn WritePointer,

nn-Partition Number (1-15) (Write/Read)
0x00 0x050002nn ReadPointer,

nn-Partition Number (1-15) (Write/Read)
0x00 0x050003nn PartitionConfiguration.

nn-Partition Number (1-15) (Read/Write)
0x00 0x050004nn GetPartitionSpace

nn-Partition Number (1-15)
(Read)

0x00 0x050005nn DownloadData
nn-Partition Number (1-15)
(Write)

0x00 0x050006nn ResetVolatileReadPtr
nn-Partition Number (1-15)
(Write)

0x00 0x050007nn SetWipemark
nn-Partition Number (1-15)
(Write)

0x00 0x050008nn WipeData
nn-Partition Number (1-15)
(Write)

7.3.18.1. MassMemoryStatus (Read)

In the reply message of the read-command, the data in table below is returned.

Table 7-38 MassMemoryStatus(Read)

Data Type Description

Data Status UINT32 The status buffer of the data-chips are returned in this
parameter.
Bit 0:7 - Status of chip0
Bit 8:15 - Status of chip1
Bit 16:23 - Status of chip2
Bit 24:31- Status of chip3

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 80 of 98

EDAC Status UINT8 The status buffer of the EDAC-chip is returned in this
parameter.

Controller Status UINT8 The status of the mass memory flash controller is
returned in this parameter.
Bit 0 - Program page done when bit set
Bit 1 - Read status done when bit set
Bit 2 - Read page setup done when bit set
Bit 3 - Erase block done when bit set
Bit 4 - Read ID done when bit set
Bit 5 - Reset done when bit set
Bit 6 - Reserved
Bit 7 - Busy. Set when command in progress.

Chip ID[5] Array[5] of
UINT8

Chip ID[0] - EDAC
Chip ID[1] - Chip0
Chip ID[2] - Chip1
Chip ID[3] - Chip2
Chip ID[4] - Chip3

7.3.18.2. WritePointer (Read/Write)

To read the value of the write pointer of a partion a read command with the parameter below

is sent.

Table 7-39 WritePointer(Read)

Data Type Description

Partition UINT32 The partition (1-15)

The parameters below are returned in the read reply.

Table 7-40 WritePointer(Read reply)

Data Type Description

Partition UINT32 The partition (1-15)
WritePointer UINT64 The write pointer of the selected partition. The value of

the pointer corresponds to data that has been written to
the NAND-flash of the Mass Memory.

To set the value of the write pointer of a partion a write command with the parameter below

is sent. This function is not implemented.

Table 7-41 WritePointer(Write)

Data Type Description

Partition UINT32 The partition (1-15)
WritePointer UINT64 The write pointer of the selected partition

The parameter below is returned in the write reply.

Table 7-42 WritePointer(Write reply)

Data Type Description

Partition UINT32 The partition (1-15)

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 81 of 98

7.3.18.3. ReadPointer (Read/Write)

To read the value of the read pointer of a partion a read command with the parameter below

is sent.

Table 7-43 ReadPointer(Read)

Data Type Description

Partition UINT32 The partition (1-15)

The parameters below are returned in the read reply.

Table 7-44 ReadPointer(Read reply)

Data Type Description

Partition UINT32 The partition (1-15)
ReadPointer UINT64 The read pointer of the selected partition.The value of

the pointer corresponds to data that has been read from
the NAND-flash of the Mass Memory

To set the value of the read pointer of a partion a write command with the parameter below

is sent.

Table 7-45 ReadPointer(Write)

Data Type Description

Partition UINT32 The partition (1-15)
ReadPointer UINT64 The read pointer of the selected partition

The parameter below is returned in the write reply.

Table 7-46 ReadPointer(Write reply)

Data Type Description

Partition UINT32 The partition (1-15)

7.3.18.4. PartitionConfiguration (Read/Write)

Partitions can be configured on the Mass Memory. In total 15 partitions can be configured.

When a partition is configured, the read and write pointers of the partition will be set to 0.

To write a partition configuration, a write command with the parameters below is sent.

Table 7-47 PartitionConfiguration(Write)

Data Type Description

Partition UINT32 The partition (1-15)
ConfigurationArray Array of

UINT8
The partition configuration. See Table 7-48

The content of the array is:

Table 7-48 PartitionConfiguration data

Byte Type Description

0:3 UINT32 The partition number (1-15)

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 82 of 98

4:12 UINT64 Size in bytes. Must be in multiples of block size (128
pages * 16384 bytes)

12:15 UINT32 The offset in blocks of the partition
16 UINT8 The mode of the partition.

1: FIFO (Writing not possible when full)
2: Circular (Old data overwritten)
3: Static Circular (Read pointer is non-volatile)

17:24 UINT64 Write pointer. Is set to 0 when a partition is configured
25:32 UINT64 Read pointer. Is set to 0 when a partition is configured
33 UINT8 Reserved
34:35 UINT16 The data source identifier for the partition. Can be used

to set a custom identifier of a data producer to a partition.
Setting of this value is not required to successfully
configure a partition

To read a partition configuration, a read command with the parameter below is sent.

Table 7-49 PartitionConfiguration data (Read)

Data Type Description

Partition UINT32 The partition (1-15)

The parameters below are returned in the read reply.

Table 7-50 PartitionConfiguration (Read reply)

Data Type Description

Partition UINT32 The partition (1-15)
ConfigurationArray Array of

UINT8
The partition configuration. See Table 7-48

7.3.18.5. GetPartitionSpace (Read)

To read available space of a partition, a read command with parameters below is sent.

Table 7-51 GetPartitionSpace (Read)

Data Type Description

Partition UINT32 The partition (1-15)

The parameters below are returned in the read reply.

Table 7-52 GetPartitionSpace (Read reply)

Data Type Description

Partition UIN32 The partition (1-15)
AvailableSpace UINT64 The available space in bytes of the partition. The

available space is based on on data that has been
written to the NAND-flash of the Mass Memory

7.3.18.6. DownloadData (Write)

To download data from a partition, a write command with the parameters below is sent.

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 83 of 98

Table 7-53 DownloadData(Write)

Data Type Description

Partition UINT32 The partition (1-15)
DataLength UINT32 The number of bytes to download as Telemetry

7.3.18.7. ResetVolatileReadPtr (Write)

Applies only to partitions of type static circular

Table 7-54 ResetVolatileReadPtr(Write)

Data Type Description

Partition UINT32 The partition (1-15)

7.3.18.8. SetWipemark (Write)

Applies only to partitions of type static circular

Table 7-55 SetWipemark(Write)

Data Type Description

Partition UINT32 The partition (1-15)

7.3.18.9. WipeData (Write)

Applies only to partitions of type static circular

Table 7-56 WipeData(Write)

Data Type Description

Partition UINT32 The partition (1-15)

7.3.19. SCET Interface

To get/set the time and configuration of the SCET, the commands described below are sent.

Table 7-57 SCET Interface

Extended Address Field Address Field Description

0x00 0x06000000 SCET Time (Write/Read)
0x00 0x06000100 SCET Configuration (Write/Read)

7.3.19.1. SCET Time

The data parameters of the SCET Time command are described below.

Table 7-58 SCET Time

Data Type Description

SCETSeconds UINT32 SCET Seconds
SCETSubSeconds UINT32 SCET Subseconds

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 84 of 98

7.3.19.2. SCET Configuration

Table 7-59 SCET Configuration

Data Type Description

SCETConfiguration UINT32 Configuration of SCET in master/slave mode, read of
SCET values of external triggers

7.3.20. Mass Memory Partition Data

Commands for writing/reading data to/from a partition are described below.

Table 7-60 Mass Memory Partition Data

Extended Address Field Address Field Description

0x01-0xNN 0x00000000 Reads or writes data to/from a partition. The
extended address field states which partition to
access.

7.3.20.1. Writing to a partition

Table 7-61 Writing to a partition

Extended Address Field Address Field Description

0x01-0xNN 0x00000000

To write data to a partition, a write command with the parameters below is sent.

Table 7-62 Writing to partition parameters

Data Type Description

Partitition UINT32 The partition (1-15).
Length UINT32 The length of data to write.
Data Array of

UINT8
The data to write

7.3.20.2. Reading from a partition

Table 7-63 Reading from a partition

Extended Address Field Address Field Description

0x01-0xNN 0x00000000

To read data from a partition, a read command with the parameters below is sent.

Table 7-64 Reading from a partition parameters

Data Type Description

Partitition UINT32 The partition (1-15)
Length UINT32 The length of data to read

The parameters below are returned in the read reply.

Table 7-65 Reading from a partition reply parameters

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 85 of 98

Data Type Description

Partitition UINT32 The partition (1-15)
Length UINT32 The length of data to write
Data Array of

UINT8
The data to write

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 86 of 98

8. System-on-Chip definitions

The ÅAC Sirius products include two boards built around the OR1200 fault tolerant

processor, the OBC-S
TM

 and the TCM-S
TM

. Below are the peripherals, memory sections and

interrupts defined for the SoC for these two boards. Some of these might not be equipped in

this development release.

8.1. Memory mapping

Table 8-1 - Sirius memory structure definition

Memory Base Address Function
0xF0000000 Boot ROM

0xE0000000 CCSDS (TCM-S
TM

 only)

0xCB000000 Watchdog

0xCA000000 SpaceCraft Elapsed Time

0xC1000000 SoC info

0xC0000000 Error Manager

0xBD000000 - 0xBF000000 Reserved

0xBC000000 Reserved for SPI interface 1

0xBB000000 SPI interface 0

0xBA000000 GPIO

0xB6000000 Reserved for ADC controller 1

0xB5000000 ADC controller 0

0xB4000000 Reserved

0xB3000000 Mass memory flash controller (TCM-S
TM

 only)

0xB2000000 System flash controller

0xB1000000 Reserved

0xB0000000 NVRAM controller

0xAC000000 Reserved for PCIe

0xAB000000 Reserved for CAN

0xAA000000 Reserved for USB

0xA9000000 -0xA3000000 Reserved

0xA2000000 Reserved for redundant SpaceWire

0xA1000000 SpaceWire

0xA0000000 Ethernet MAC

0x9C000000 -0x9F000000 Reserved

0x9B000000 I2C interface 1

0x9A000000 I2C interface 0

0x99000000 Reserved

0x98000000 UART 7 (Safe bus functionality, RS485)

0x97000000 UART 6 (PSU control functionality, RS485)

0x96000000 UART 5 (OBC-S
TM

 only, High speed UART w. DMA)

0x95000000 UART 4 (Routed to LVDS HK on TCM-S
TM

)

0x94000000 UART 3 (Routed to RS422 HK on TCM-S
TM

)

0x93000000 UART 2

0x92000000 UART 1

0x91000000 UART 0

0x90000000 UART Debug (LVTTL)

0x80000000 - 0x8F000000 Customer IP

0x00000000 SDRAM memory including EDAC (64 MB)

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 87 of 98

8.2. Interrupt sources

The following interrupts are available to the processor:

Table 8-2 - Sirius interrupt assignment

Interrupt no. Function Description
0-1 Reserved Internal use

2 UART Debug UART interrupt signal

3 UART 0 UART interrupt signal

4 UART 1 UART interrupt signal

5 UART 2 UART interrupt signal

6 UART 3 UART interrupt signal

7 UART 4 UART interrupt signal

8 UART 5 UART interrupt signal

9 UART 6 UART interrupt signal

10 UART 7 UART interrupt signal

11 ADC Controller ADC measurement completed

12 - Ready to use (reserved for ADC)

13 i2c 0 Master/slave transaction complete/req

14 - Ready to use (reserved for i2c)

15 - Ready to use (reserved for i2c)

16 - Ready to use (reserved for i2c)

17 SCET SCET interrupt signal

18 Error manager Error manager interrupt

19 - Reserved for redundant spacewire

20 System flash System flash controller interrupt

21 Mass memory Mass memory flash controller interrupt

22 Spacewire Spacewire interrupt

23 CCSDS CCSDS interrupt

24 Ethernet Ethernet MAC interrupt signal

25 GPIO GPIO interrupt

26 SPI 0 Serial Peripheral interface

27 - Ready to use (reserved for SPI 1)

28 - Ready to use (reserved for custom adaptation)

29 - Ready to use (reserved for custom adaptation)

30 - Ready to use (reserved for custom adaptation)

8.3. SCET timestamp trigger sources

Some of the peripherals in the SoC have the capability of sending a timestamp trigger signal

on specific events. These signals are routed to the SCET which has a number of general

purpose trigger registers where a snapshot of the SCET counter is stored for later retrieval

by application software, see chapter 5.4. The tables below detail the mapping between the

trigger signals and the general purpose trigger registers in the two products.

Table 3 General purpose trigger map

GP number Trigger source Description

0 power_loss
Triggered when the voltage drops below a certain level, i.e. power is
lost to the board

1 ccsds
Triggered when telemetry sending on virtual channel 0 starts
(TCM-S

TM
 only)

2 gpio
Triggered when one of the pins input changes states and edge
detection and timestamping are enabled

3 adc Triggered when an ADC conversion is started

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 88 of 98

9. Connector interfaces

Figure 9-1 - Sirius ports

9.1. JTAG-RTL, FPGA-JTAG connector

The following pins are available on the ST60-10P connector, see Table 9-1.

Table 9-1 - JTAG pin-outs

Pin # Signal name Description

Pin 1 GND Ground

Pin 2 RTL-JTAG-TDI Test Data In, data shifted into the device.

Pin 3 RTL-JTAG-TRSTB Test Reset

Pin 4 VCC_3V3 Power supply

Pin 5 VCC_3V3 Power supply

Pin 6 RTL-JTAG-TMS Test Mode Select

Pin 7 Not connected -

Pin 8 RTL-JTAG-TDO Test Data Out, data shifted out of the device

Pin 9 GND Ground

Pin 10 RTL-JTAG-TCK Test Clock

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 89 of 98

9.2. DEBUG-SW

The following pins are available on the ST60-18P, connector. See Table 9-2.

Table 9-2 - Debug SW pin-outs

Pin # Signal name Description

Pin 1 ETH-DEBUG-RESET Reset

Pin 2 GND Ground

Pin 3 ETH-DEBUG-SYNC Not available

Pin 4 ETH-DEBUG-TX Not available

Pin 5 ETH-DEBUG-RX Not available

Pin 6 ETH-DEBUG-MDC Not available

Pin 7 ETH-DEBUG-MDIO Not available

Pin 8 ETH-DEBUG-CLK Not available

Pin 9 GND Ground

Pin 10 DEBUG-JTAG-TDI Debug Test data in

Pin 11 DEBUG-JTAG-RX Debug UART RX

Pin 12 DEBUG-JTAG-TX Debug UART TX

Pin 13 VCC_3V3 Power supply

Pin 14 DEBUG-JTAG-TMS Debug Test mode select

Pin 15 VCC_3V3 Power supply

Pin 16 DEBUG-JTAG-TDO Debug Test data out

Pin 17 GND Ground

Pin 18 DEBUG-JTAG-TCK Debug Test clock

9.3. SPW1 - Spacewire

The following pins are available on the nano-D9 socket connector, see Table 9-3

Table 9-3 - SPW1 pin-outs

Pin # Signal name Description

Pin 1 SPW1_DIN_LVDS_P SpaceWire data in positive, pair with p6

Pin 2 SPW1_SIN_LVDS_P SpaceWire strobe in positive, pair with p7

Pin 3 Shield Cable shielded, connected to chassis

Pin 4 SPW1_SOUT_LVDS_N SpaceWire strobe out negative, pair with p8

Pin 5 SPW1_DOUT_LVDS_N SpaceWire data out negative, pair with p9

Pin 6 SPW1_DIN_LVDS_N SpaceWire data in negative, pair with p1

Pin 7 SPW1_SIN_LVDS_N SpaceWire strobe in negative, pair with p2

Pin 8 SPW1_SOUT_LVDS_P SpaceWire strobe out positive, pair with p4

Pin 9 SPW1_DOUT_LVDS_P SpaceWire data out positive, pair with p5

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 90 of 98

9.4. SPW2 - Spacewire

The following pins are available on the nano-D9 socket connector, see Table 9-4

Table 9-4 – SPW2 pin-outs

Pin # Signal name Description

Pin 1 SPW2_DIN_LVDS_P SpaceWire data in positive, pair with p6

Pin 2 SPW2_SIN_LVDS_P SpaceWire strobe in positive, pair with p7

Pin 3 Shield Cable shielded, connected to chassis

Pin 4 SPW2_SOUT_LVDS_N SpaceWire strobe out negative, pair with p8

Pin 5 SPW2_DOUT_LVDS_N SpaceWire data out negative, pair with p9

Pin 6 SPW2_DIN_LVDS_N SpaceWire data in negative, pair with p1

Pin 7 SPW2_SIN_LVDS_N SpaceWire strobe in negative, pair with p2

Pin 8 SPW2_SOUT_LVDS_P SpaceWire strobe out positive, pair with p4

Pin 9 SPW2_DOUT_LVDS_P SpaceWire data out positive, pair with p5

9.5. ANALOGS, Analog input and 4xGPIO (OBC-S)

The following pins are available on the nanoD25 socket connector, see Table 9-5

Table 9-5 – ANALOGS, 4xGPIO pin-outs

Pin # Signal name Description

Pin 1 ADC_IN_0 Analog input to ADC with buffer

Pin 2 ADC_IN_1 Analog input to ADC with buffer

Pin 3 ADC_IN_2 Analog input to ADC with buffer

Pin 4 ADC_IN_3 Analog input to ADC with buffer

Pin 5 ADC_IN_4 Analog input to ADC with buffer

Pin 6 ADC_IN_5 Analog input to ADC with buffer

Pin 7 ADC_IN_6 Analog input to ADC with buffer

Pin 8 ADC_IN_7 Analog input to ADC with buffer

Pin 9 ADC_IN_8 Analog input to ADC with buffer

Pin 10 ADC_IN_9 Analog input to ADC with buffer

Pin 11 GPIO12 Digital input/output

Pin 12 GPIO13 Digital input/output

Pin 13 GPIO14 Digital input/output

Pin 14 GND Board ground

Pin 15 GND Board ground

Pin 16 GND Board ground

Pin 17 GND Board ground

Pin 18 GND Board ground

Pin 19 GND Board ground

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 91 of 98

Pin 20 GND Board ground

Pin 21 GND Board ground

Pin 22 GND Board ground

Pin 23 GND Board ground

Pin 24 GPIO15 Digital input/output

Pin 25 GND Board ground

9.6. DIGITALS, 3x I2C, PPS and 12xGPIO

The following pins are available on the nanoD25 socket connector, see Table 9-6

Table 9-6 DIGITALS pinouts

PIN # SIGNAL NAME DESCRIPTION

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Board ground

Pin 14 SPI_MISO SPI Master-In-Slave-Out

Pin 15 SPI_MOSI SPI Master-out-Slave-In

Pin 16 SPI_CLK SPI clock

Pin 17 I2C_SCL0 I2C bus 0, clock

Pin 18 I2C_SDA0 I2C bus 0, data

Pin 19 I2C_SCL1 I2C bus 1, clock

Pin 20 I2C_SDA1 I2C bus 1, data

Pin 21 I2C_SCL2 I2C bus 2, clock

Pin 22 I2C_SDA2 I2C bus 2, data

Pin 23 PPS_INPUT_RS422_N Pulse per second, differential RS422 signal for time
synchronization Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Board ground

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 92 of 98

9.7. COM02_RS4XX, 3xRS422/485

The following pins are available on the nanoD15 socket connector, see Table 9-7

Table 9-7 COM02_RS4XX pinouts

Pin # Signal name Description

Pin 1 UART0_RX_RS4XX_P
Uart Port 0 RX

Pin 2 UART0_RX_RS4XX_N

Pin 3 UART0_TX_RS4XX_P
Uart Port 0 TX

Pin 4 UART0_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART1_RX_RS4XX_P
UART Port 1 RX

Pin 8 UART1_RX_RS4XX_N

Pin 9 UART1_TX_RS4XX_P
UART Port 1 TX

Pin 10 UART1_TX_RS4XX_N

Pin 11 UART2_RX_RS4XX_P
UART Port 2 RX

Pin 12 UART2_RX_RS4XX_N

Pin 13 UART2_TX_RS4XX_P
UART Port 2 TX

Pin 14 UART2_TX_RS4XX_N

Pin 15 GND Ground

9.8. COM35_RS4XX, RS422/485

The following pins are available on the nanoD15 socket connector, see Table 9-8

Table 9-8 COM35_RS4XX pin-outs

Pin # Signal name Description

Pin 1 UART3_RX_RS4XX_P
Uart Port 3 RX

Pin 2 UART3_RX_RS4XX_N

Pin 3 UART3_TX_RS4XX_P
Uart Port 3 TX

Pin 4 UART3_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART4_RX_RS4XX_P
UART Port 4 RX

Pin 8 UART4_RX_RS4XX_N

Pin 9 UART4_TX_RS4XX_P
UART Port 4 TX

Pin 10 UART4_TX_RS4XX_N

Pin 11 UART5_RX_RS4XX_P
UART Port 5 RX

Pin 12 UART5_RX_RS4XX_N

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 93 of 98

Pin 13 UART5_TX_RS4XX_P
UART Port 5 TX

Pin 14 UART5_TX_RS4XX_N

Pin 15 GND Ground

9.9. CCSDS RS422, S-BAND TRX (TCM-S)

The following pins are available on the nano-D25, socket connector, see Table 9-9

Table 9-9 S-BAND TRX pin-outs

Pin # Signal name Description

Pin 1 SBAND_DOUT_RS422_P Baseband data out, RS422

Pin 2 SBAND_DOUT_RS422_N

Pin 3 SBAND_COUT_RS422_P Baseband clock out, RS422

Pin 4 SBAND_COUT_RS422_N

Pin 5 SBAND_DIN_RS422_P Baseband data in, RS422

Pin 6 SBAND_DIN_RS422_N

Pin 7 SBAND_CIN_RS422_P Baseband clock in, RS422

Pin 8 SBAND_CIN_RS422_N

Pin 9 SBAND_SC_LOCK_IN_RS422_P Sub-carrier lock in

Pin 10 SBAND_SC_LOCK_IN_RS422_N

Pin 11 SBAND_C_LOCK_IN_RS422_P Carrier lock in

Pin 12 SBAND_C_LOCK_IN_RS422_N

Pin 13 GND

Pin 14 SBAND_HKCTRL1_TX_RS422_P TRX control & housekeeping signaling

Pin 15 SBAND_HKCTRL1_TX_RS422_N

Pin 16 SBAND_HKCTRL2_TX_RS422_P TRX control & housekeeping signaling

Pin 17 SBAND_HKCTRL2_TX_RS422_N

Pin 18 SBAND_HKCTRL3_TX_RS422_P TRX control & housekeeping signaling

Pin 19 SBAND_HKCTRL3_TX_RS422_N

Pin 20 SBAND_HKCTRL4_TX_RS422_P TRX control & housekeeping signaling

Pin 21 SBAND_HKCTRL4_TX_RS422_N

Pin 22 SBAND_HKCTRL1_RX_RS422_P TRX control & housekeeping signaling

Pin 23 SBAND_HKCTRL1_RX_RS422_N

Pin 24 EXTRA TX_RS422_P (reserved)

Pin 25 EXTRA TX_RS422_N (reserved)

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 94 of 98

9.10. UMBI – Baseband Umbilical (TCM-STM)

The following pins are available on the nano-D15 socket connector, see Table 9-10

Table 9-10 UMBI pin-outs

Pin # Signal name Description

Pin 1 UMBI_DOUT_RS422_P Baseband data out

Pin 2 UMBI_DOUT_RS422_N

Pin 3 UMBI_COUT_RS422_P Baseband clock out

Pin 4 UMBI_COUT_RS422_N

Pin 5 UMBI_DIN_RS422_P Baseband data in

Pin 6 UMBI_DIN_RS422_N

Pin 7 UMBI_CIN_RS422_P Baseband clock in

Pin 8 UMBI_CIN_RS422_N

Pin 9 UMBI_SC_LOCK_IN_RS422_P Sub-carrier lock in

Pin 10 UMBI_SC_LOCK_IN_RS422_N

Pin 11 UMBI_C_LOCK_IN_RS422_P Carrier lock in

Pin 12 UMBI_C_LOCK_IN_RS422_N

Pin 13 GND Ground (reference)

Pin 14 GND

Pin 15 GND

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 95 of 98

10. Updating the Sirius FPGA

To be able to update the SoC on the OBC-S
TM

and TCM-S
TM

 you need the following items.

10.1. Prerequisite hardware

 Microsemi FlashPro5 unit

 104470 FPGA programming cable assembly

10.2. Prerequisite software

 Microsemi FlashPro Express v11.7 or later

 The updated FPGA firmware

10.3. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable

assembly to connector 4 in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from ÅAC should contain three files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

c. The programmer script file with a .tcl file ending

4. Execute the following command:

FPExpress script:fileWithTclEnding.tcl

Please note that you either need to launch FPExpress with super user rights or

change the user rights to the usb node.

5. If the programming was successful one of the last commands should be:

programmer: Chain programming PASSED.

6. The Sirius FPGA image is now updated

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 96 of 98

11. Mechanical data

The total size of the Sirius board is 183x136 mm.

Mounting holes are ø3.4 mm with 4.5 mm pad size.

The outline in the left upper corner of the drawing below corresponds to the FM version of

the TCM-S
TM

 and OBC-S
TM

 boards.

Figure 11-1 - The Sirius board mechanical dimensions

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 97 of 98

12. Environmental information

The Sirius Breadboard is an engineering model and as such it is only intended for office

usage.

Table 12-1 - Environmental temperature ranges

Environment Range
Operating temperature EM 0-40 ºC

Storage temperature EM 0-40 ºC

13. Glossary

ADC Analog Digital Converter
BSP Board Support Package
EDAC Error Detection and Correction
EM Engineering model
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
GCC GNU Compiler Collection program (type of standard in Unix)
GPIO General Purpose Input/Output
Gtkterm Is a terminal emulator that drives serial ports
I
2
C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
Minicom Is a text based modem control and terminal emulation program
NA Not Applicable
OBC On Board Computer
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface
RAM Random Access Memory, however modern DRAM has not random access. It is often associated

with volatile types of memory
ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SoC System-on-Chip
SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-

wire serial bus.
TC Telecommand
TCL Tool Command Language, a script language
TCM Mass memory
TM Telemetry
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data

 Document number 204911
 Version F

 Issue date 2016-05-03

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 98 of 98

