

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 1 of 65

ÅAC Main Template Rev. D.Dotx

Sirius Breadboard User Manual

C

© ÅAC Microtec 2016

ÅAC Microtec AB owns the copyright of this document which is supplied in confidence and which shall
not be used for any purpose other than for which it is supplied and shall not in whole or in part be
reproduced, copied, or communicated to any person without written permission from the owner.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 2 of 65

ÅAC Main Template Rev. D.Dotx

REVISION LOG

Rev Date Change description

A 2015-11-10 First Release

B 2016-03-07
Updates for new release with lots of minor corrections and
clarifications.

C 2016-03-18

Version C released with the following updates:

 TCM-S Chapter 6 updated

 UART chapter update

 Spacewire router chapter 6 added.

 Added GPIO chapter

 Updated SCET ioctl

 Corrected BSP section to be board-agnostic

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 3 of 65

ÅAC Main Template Rev. D.Dotx

TABLE OF CONTENT

1. INTRODUCTION .. 5
1.1. Intended users .. 5
1.2. Getting support ... 5
1.3. Reference documents .. 5

2. EQUIPMENT INFORMATION .. 6
2.1. System Overview with peripherals ... 7

3. SETUP AND OPERATION ... 8
3.1. User prerequisites .. 8
3.2. Connecting cables to the Sirius Breadboard ... 9
3.3. Installation of toolchain ... 10

3.3.1. Supported Operating Systems ... 10
3.3.2. Installation Steps .. 10

3.4. Installing the Board Support Package (BSP) ... 11
3.5. Deploying a Sirius application .. 11

3.5.1. Establish a debugger connection to the Breadboard.. 11
3.5.2. Setup a serial terminal to the device debug UART... 12
3.5.3. Loading the application .. 12

3.6. Programming an application (boot image) to system flash .. 13

4. SOFTWARE DEVELOPMENT ..14
4.1. RTEMS step-by-step compilation .. 14
4.2. Software disclaimer of warranty ... 14

5. RTEMS ..15
5.1. Introduction ... 15
5.2. Watchdog .. 15

5.2.1. Description ... 15
5.2.2. RTEMS API .. 15
5.2.3. Usage description .. 17

5.3. Error Manager ... 19
5.3.1. Description ... 19
5.3.2. RTEMS API .. 19
5.3.3. Usage description .. 21

5.4. SCET .. 22
5.4.1. Description ... 22
5.4.2. RTEMS API .. 22
5.4.3. Usage description .. 24
5.4.4. RTEMS .. 24

5.5. UART .. 27
5.5.1. Description ... 27
5.5.2. RTEMS API .. 27
5.5.3. Usage description .. 29
5.5.4. Limitations .. 30

5.6. Mass memory .. 30
5.6.1. Description ... 30
5.6.2. RTEMS API .. 30
5.6.3. Usage description .. 35

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 4 of 65

ÅAC Main Template Rev. D.Dotx

5.7. Spacewire .. 37
5.7.1. Description ... 37
5.7.2. RTEMS API .. 37
5.7.3. Usage description .. 40
5.7.4. Limitations .. 42

5.8. GPIO ... 42
5.8.1. Description ... 42
5.8.2. RTEMS API .. 42
5.8.3. Usage description .. 48
5.8.4. Limitations .. 49

6. SPACEWIRE ROUTER ...50

7. TCM-STM ..51
7.1. Description .. 51
7.2. RMAP ... 51

7.2.1. Input commands... 52
7.2.2. Output commands .. 52
7.2.3. SendTelemetry(Write) .. 52
7.2.4. Mass Memory Interface .. 52
7.2.5. Mass Memory Partition Data .. 53

8. SYSTEM-ON-CHIP DEFINITION ...55
8.1. Memory mapping .. 55
8.2. Interrupt sources .. 56
8.3. Peripherals/ports .. 57

8.3.1. JTAG_RTL ... 57
8.3.2. Debug SW .. 58
8.3.3. Spacewire/SPA-S (SPW1-6) .. 58
8.3.4. DIGITALS, 3x I2C / SPA-1, PPS and 12xGPIO. .. 59
8.3.5. UART RS422/485-1 ... 59
8.3.6. UART RS422/485-2 ... 60
8.3.7. Digital I/O ... 60

9. UPDATING THE SIRIUS FPGA ..61
9.1. Prerequisite hardware .. 61
9.2. Prerequisite software ... 62
9.3. Step by step guide .. 62

10. MECHANICAL DATA ..63

11. ENVIRONMENTAL INFORMATION ..64

12. GLOSSARY ..64

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 5 of 65

ÅAC Main Template Rev. D.Dotx

1. Introduction

This manual describes the functionality and usage of the ÅAC Sirius Breadboard. The

Breadboard is a prototype board for products under development, which means that not all

functions are implemented yet. The OBC-S
TM

 and TCM-S
TM

 functionality is described and

can both run on the breadboard. The breadboard has fitted or non-fitted components and

unique SoCs that give the desired functionality to match either the OBC-S
TM

 or TCM-S
TM

.

1.1. Intended users

This manual is written for software engineers who want to work with the ÅAC Sirius product

suite.

1.2. Getting support

If you encounter any problem using the breadboard or another ÅAC product please use the

following address to get help:

Email: support@aacmicrotec.com

1.3. Reference documents

RD# Document ref Document name

RD1 http://opencores.org/openrisc,architecture
OpenRISC 1000 Architecture
Manual

RD2 ECSS-E-ST-50-12C
SpaceWire – Links, nodes,
routers
and networks

RD3 ECSS-E-ST-50-52C
SpaceWire – Remote memory
access protocol

RD4 ECSS-E-70-41A
Ground systems and
operations – Telemetry and
telecommand packet utilization

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 6 of 65

ÅAC Main Template Rev. D.Dotx

2. Equipment information

The Sirius Breadboard is a robust prototyping platform designed to support the TCM-S
TM

,

and the OBC-S
TM

 products. The Breadboard layout is depicted in Figure 3-1.

The development board supports both a debugger interface for developing software

applications and a JTAG interface for upgrading the FPGA firmware.

The FPGA firmware implements SoC based on a 32 bit OpenRISC Fault Tolerant processor

[RD1] running at a system frequency of 50 MHz and with the following set of peripherals:

 Error manager, error handling, tracking and log of e.g. power loss and/or memory

error detection.

 SDRAM 64 MB data + 64 MB EDAC running @100MHz

 Spacecraft Elapsed Timer (SCET), for accurate time measurement with a

resolution of 15 µs

 SpaceWire, for communication with external peripheral units

 UARTs (Number of interfaces differ between the products) uses the RS422 and

RS485 line drivers on the board with line driver mode set by software.

 GPIOs

 Watchdog, fail-safe mechanism to prevent a system lockup

 System flash of 2 GB with EDAC-protection for storing boot images in multiple

copies

For the TCM-S
TM

 the following additional peripherals are included in the SoC:

 CCSDS, communications IP.

 Mass memory of 16GB with EDAC-protection, NAND flash based, for storage of

mission critical data.

The input power supply provided to the breadboard shall use a range of +4.5V to absolute

max. of +16V. Nominal voltage supply level shall be set to +5V. The power consumption is

highly dependent on peripheral loads and it ranges from 0.8 W to 2 W.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 7 of 65

ÅAC Main Template Rev. D.Dotx

2.1. System Overview with peripherals

Figure 2-1 depicts a system overview with peripherals of the OBC-S
TM

 and TCM-S
TM

. The

figure shows what parts are general for OBC-S
TM

 and TCM-S
TM

 (green), TCM-S
TM

-specific

(blue) and what parts are not yet implemented (white) since the products are still under

development.

FPGA

FPU

OpenRISC

1200FT

I/D Cache

I2C

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

2 GB System
Flash

4x 4 GB
Storage

Flash

SpW/SPA-S

R
ad

io
 In

te
rf

ac
es

R
S4

2
2

/L
V

D
S

I2
C

/S
P

A
-1

R
S4

2
2

/R
S4

8
5

JT
A

G
/D

EB
U

G
Pulse CMDUMBI/EGSEETHERNET GPIO

ADC
Housekeeping

Ethernet
10/100

ADC
controller

OBC-S/TCM-S

NVRAM

Analog inputs

NVRAM

TCM-S TCM-S/OBC-S Not implemented

Figure 2-1 - The OBC-S
TM

 / TCM-S
TM

 SoC Overview

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 8 of 65

ÅAC Main Template Rev. D.Dotx

3. Setup and operation

3.1. User prerequisites

The following hardware and software is needed for the setup and operation of the

Breadboard.

PC computer

 1 Gb free space for installation (minimum)

 Debian 7 or 8 64-bit with sudo rights

 USB 2.0

Recommended applications and software

 Installed terminal e.g. gtkterm or minicom

 Driver for USB/COM port converter, FTDI, www.ftdichip.com

 Host build system, e.g. debian package build-essential

 The following software is installed by the ÅAC toolchain package

o GCC, C compiler for OpenRISC

o GCC, C++ compiler for OpenRISC

o GNU binutils and linker for OpenRISC

For FPGA update capabilities

 Microsemi FlashPro Express v11.7, http://www.microsemi.com/products/fpga-

soc/design-resources/programming/flashpro#software

http://www.ftdichip.com/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 9 of 65

ÅAC Main Template Rev. D.Dotx

3.2. Connecting cables to the Sirius Breadboard

Figure 3-1 – ÅAC Sirius Breadboard with connector numbering

The Sirius Breadboard runs on a range of 4.5 to 16V DC. The instructions below refer to the

connector numbering in Figure 3-1.

 Connect Ground to the black connector 1

 Connect 4.5 - 16 V DC to the yellow connector 2. The unit will nominally draw

about 260-300 mA @5V DC.

 Connect the 104451 ÅAC Debugger and Ethernet adapter with the 104471

Ethernet debug unit cable to connector 3. Connect the adapter USB-connector to

the host PC. The ÅAC debugger is mainly used for development of custom

software for the OBC-S with monitoring/debug capabilities, but is also used for

programming an image to the system flash memory. For further information refer to

chapter 3.6.

 For FPGA updating only: Connect a FlashPro programmer to connector 4 using the

104470 FPGA programming cable assembly. For further information how to update

the SoC refer to Chapter 9.

 For connecting the SpaceWire:

o Option 1: Connect the nano-D connector to connector 5 or 6. Be careful

when plugging and unplugging this connector.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 10 of 65

ÅAC Main Template Rev. D.Dotx

o Option 2: Connect the Display port cable to connector 7 or 8 and to the

104510 Converter board. Connect your SpaceWire system to the

converter board with the SpaceWire cable.

 Connecting UARTs:

o Option 1: Connect to the nano-D number 12 (UART0-2) or 13 (UART3-5).

Be careful when plugging and unplugging this connector.

o Option 2: Connect to the debug connector 10 using a flat cable to DSUB

connector harness. This can then be connected to a PC using something

similar to the FTDI USB-COM485/COM422-PLUS4.

For more detailed information about the connectors, see section 8.3.

3.3. Installation of toolchain

This chapter describes instructions for installing the aac-or1k-toolchain.

3.3.1. Supported Operating Systems

Debian 7 64-bit

Debian 8 64-bit

3.3.2. Installation Steps

1. Add the ÅAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

deb http://repo.aacmicrotec.com/archive/ aac/

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

Terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the toolchain by issuing the following commands:

sudo apt-get update

sudo apt-get install aac-or1k-toolchain

Note: The toolchain package is roughly 1GB uncompressed, downloading/installing it

will take some time.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 11 of 65

ÅAC Main Template Rev. D.Dotx

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them, this can be done either temporarily for the current shell via

source /opt/aac/aac-path.sh

or permanently by editing the ~/.profile file

gedit ~/.profile

and adding the following snippet at the end of the file, and then save and close it:

AAC OR1k toolchain PATH setup

if [-f /opt/aac/aac-path.sh]; then

 . /opt/aac/aac-path.sh >/dev/null

fi

3.4. Installing the Board Support Package (BSP)

The BSP can either be downloaded from http://repo.aacmicrotec.com/bsp or copied from the

accompanying DVD. Simply extract the tarball aac-or1k-xxx-x-bsp-y.tar.bz2 to a directory of

your choice (xxx-x depends on your intended hardware target - OBC-S or TCM-s and y

matches the current version number of that BSP).

The newly created directory aac-or1k-xxx-x-bsp now contains the drivers for both bare-metal

applications and RTEMS. See the included README and chapter 4.1 for build instructions.

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Breadboard

The Sirius Breadboard is shipped with a debugger which connects to the PC via USB. To

interface the Breadboard, the Open On-Chip Debugger (OpenOCD) software is used. A

script called run_aac_debugger.sh is shipped with the toolchain package which starts an

OpenOCD server for gdb to connect to.

1. Connect the Breadboard according to section 3.

2. Start the run_aac_debugger.sh script from a terminal.

3. If the printed message is according to Figure 3-2, the connection is working.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 12 of 65

ÅAC Main Template Rev. D.Dotx

Figure 3-2 - Successful OpenOCD connection to the Breadboard

3.5.2. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A terminal emulator such as minicom or gtkterm is necessary to communicate with the

Breadboard, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected and you have to make sure you're using the correct device number to

communicate to the board's debug UART.

3.5.3. Loading the application

Application loading during the development stages (before programming to flash) are done

using gdb.

1.a) Start gdb with the following command from a shell for a bare-metal environment

or1k-aac-elf-gdb

 or

1.b) Start gdb with the following command from a shell for an RTEMS environment

or1k-aac-rtems4.11-gdb

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 13 of 65

ÅAC Main Template Rev. D.Dotx

2. When gdb has opened successfully, connect to the hardware through the

OpenOCD server using the gdb command

target remote localhost:50001

3. To start an executable program in hardware, first specify it's name using the gdb

command file. Make sure the application is in ELF format.

file path/to/binary_to_execute

4. Now it needs to be uploaded onto the target RAM

load

5. In the gdb prompt, type c to start to run the application

3.6. Programming an application (boot image) to system flash

This chapter describes how to program the NAND flash memory with a selected boot image.

To achieve this, the boot image binary is bundled together with the NAND flash

programming application during the latter's compilation and then uploaded to target just as

an ordinary application is started through gdb. The maximum allowed size for the boot

image for this release is 16 Mbyte. The nandflash_program application can be found in

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Then make sure that this is in a binary-only format and not ELF. This can otherwise

be accomplished with the help of the gcc tools included in the toolchain. Note that

X is to be replaced according to what your application has been compiled against.

Either elf for a bare-metal application or rtems4.11 for the RTEMS variant.

or1k-aac-X-objcopy -O binary boot_image.elf boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/nandflash_programmer/src

4. Now, compile the nandflash-program application, bundling it together with the boot

image binary.

make nandflash-program.elf

PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of gdb and

execute it. Follow the instructions on screen and when it's ready, reboot the board

by resetting or power cycling.

OBSERVE: The nandflash-program application might report bad blocks during

programming. This is taken care of in the application itself, but isn't supported by the

bootrom on the board. Please contact support@aacmicrotec.com for further assistance

if this occurs.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 14 of 65

ÅAC Main Template Rev. D.Dotx

4. Software development

Applications to be deployed on the Sirius Breadboard can either use a bare-metal approach

or use the RTEMS OS. This corresponds to the two toolchain prefixes available: or1k-aac-

elf-* or or1k-aac-rtems4.11-*

Drivers for both are available in the BSP, see the chapter 3.4 and the BSP README for

more information.

4.1. RTEMS step-by-step compilation

The BSP is supplied with an application example of how to write an application for RTEMS

and engage all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to have been installed and the

BSP unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory:

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/

2. Type make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory

export RTEMS_MAKEFILE_PATH=path/to/librtems/or1k-aac-

rtems4.11/or1k-aac

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter

3.5.

4.2. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

This source code is provided without any express or implied warranties whatsoever.

Because of the diversity of conditions and hardware under which this source code may be

used, no warranty of fitness for a particular purpose is offered. The user is advised to

test the source code thoroughly before relying on it. The user must assume the entire risk of

using the source code.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 15 of 65

ÅAC Main Template Rev. D.Dotx

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The Block diagram representing driver

functionality access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device.

5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 16 of 65

ÅAC Main Template Rev. D.Dotx

5.2.2.1. int open(…)

Opens access to the bare-metal driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in

The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in

A bitwise”or” separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write).

Return value Description

> 0 A file descriptor for the device on success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

5.2.2.3. size_t write(…)

Any data is accepted as a watchdog kick.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

* nNumber of bytes that were written.

- 1 see errno values

errno values

EPERM Device was not opened

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 17 of 65

ÅAC Main Template Rev. D.Dotx

EBUSY Device is busy

5.2.2.4.int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL
1 = Enables the watchdog
0 = Disables the watchdog

WATCHDOG_SET_TIMEOUT_IOCTL 0 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EINVAL Invalid data sent

RTEMS_NOT_DEFINED Invalid I/O command

5.2.3. Usage description

To enable the watchdog use the wdt_enable() function.

To disable the watchdog use the wdt_disable() function.

The watchdog must be kicked using wdt_kick() before the timeout occurs or else the

watchdog will bark.

5.2.3.1.RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 18 of 65

ÅAC Main Template Rev. D.Dotx

Figure 5-2 - RTEMS driver usage description

All calls to RTEMS driver are blocking calls.

5.2.3.2.RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code structure

is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/wdt.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 19 of 65

ÅAC Main Template Rev. D.Dotx

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER must be defined for using the

watchdog driver. By defining this as part of the RTEMS configuration, the driver will

automatically be initialized at boot up.

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device

5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of usage. In case

of failure on a function call, errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

5.3.2.1.int open(…)

Opens access to the low bare-metal driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in
The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in

A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

fd A file descriptor for the device on success

-1 see errno values

errno values

EALREADY Device already opened

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 20 of 65

ÅAC Main Template Rev. D.Dotx

5.3.2.2.int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.3.int ioctl(…)

Ioctl allows for disabling/enabling of the error manager and setting of the timeout.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Buffer to either read to or write from

Command table Description

ERRMAN_GET_SR_IOCTL Get the status register

ERRMAN_GET_CF_IOCTL Gets the Carry flag register

ERRMAN_GET_SELFW_IOCTL Gets the next boot firmware

ERRMAN_GET_RUNFW_IOCTL Gets the running firmware

ERRMAN_GET_SCRUBBER_IOCTL Gets the scrubber. 1 = On, 0 = Off

ERRMAN_GET_RESET_ENABLE_IOCTL Gets the reset enable register

ERRMAN_GET_WDT_ERRCNT_IOCTL Gets the watchdog error count register

ERRMAN_GET_EDAC_SINGLE_ERRCNT_IOCTL Gets the EDAC single error count register

ERRMAN_GET_EDAC_MULTI_ERRCNT_IOCTL Gets the EDAC multiple error count register

ERRMAN_GET_CPU_PARITY_ERRCNT_IOCTL Gets the CPU Parity error count register

ERRMAN_SET_SR_IOCTL Sets the status register

ERRMAN_SET_CF_IOCTL Sets the carry flag register

ERRMAN_SET_SELFW_IOCTL Sets the next boot firmware

ERRMAN_SET_RUNFW_IOCTL Sets the running firmware

ERRMAN_RESET_SYSTEM_IOCTL Performs a software reset

ERRMAN_SET_SCRUBBER_IOCTL Sets the scrubber. 1 = On, 0 = Off

ERRMAN_SET_RESET_ENABLE_IOCTL Sets the reset enable register

ERRMAN_SET_WDT_ERRCNT_IOCTL Sets the watchdog error count register

ERRMAN_SET_EDAC_SINGLE_ERRCNT_IOCTL Sets the EDAC single error count register

ERRMAN_SET_EDAC_MULTI_ERRCNT_IOCTL Sets the EDAC multiple error count register

ERRMAN_SET_CPU_PARITY_ERRCNT_IOCTL Sets the CPU Parity error count register

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 21 of 65

ÅAC Main Template Rev. D.Dotx

Return value Description

0 Command executed successfully

-1 See errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.3.3. Usage description

5.3.3.1.RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-3 - RTEMS driver usage description

5.3.3.2.RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code

structure is suggested to be used:

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/error_manager.h>

#define CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 22 of 65

ÅAC Main Template Rev. D.Dotx

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, ioctl access the error manager.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager.h> is required for accessing error manager device

name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialized at boot up.

5.4. SCET

5.4.1. Description

This section describes the driver as one utility for accessing the SCET device.

5.4.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

SCET accesses can either be done by reading and writing to the device file. In this way the

second and subsecond values can be read and/or modified.

The SCET RTEMS driver also supports a number of different IOCTLs.

Finally there is a message queue interface allowing the application to act upon different

events.

5.4.2.1.int open(…)

Opens access to the low bare-metal driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in
The absolute path to the file that is to be
opened. SCET device is defined as
RTEMS_SCET_DEVICE_NAME.

oflags int in

A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc).

Return value Description

* A file descriptor for the device on success

-1 see errno values

errno values

EALREADY Device already opened

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 23 of 65

ÅAC Main Template Rev. D.Dotx

5.4.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.4.2.3.int ioctl(…)

Ioctl allows for disabling/enabling of the SCET and setting of the timeout.

Argument name Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in
Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

SCET_GET_SECONDS_IOCTL uint32_t out
Returns the current number of
seconds

SCET_GET_SUBSECONDS_IOCTL uint32_t out
Returns the current fraction of a
second

SCET_GET_PPS_SOURCE_IOCTL uint32_t out Returns the current set PPS source

SCET_GET_GP_TRIGGER_LEVEL_IOCTL uint32_t in/out
val input argument is the GP Trigger.
Returns the currently configured level
of the selected GP trigger

SCET_GET_INTERRUPT_ENABLE_IOCTL uint32_t out
Returns the current interrupt level
register

SCET_GET_INTERRUPT_STATUS_IOCTL uint32_t out
Returns the current interrupt status
register

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL uint32_t out

Returns the PPS arrived counter.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_GP_TRIGGER_COUNTER_IOCTL
uint32_t

*
in/out

Pointer to input argument is the GP
trigger.
Returns the counter of the selected
GP trigger.
Bit 23:16 contains lower 8 bits of
second.
Bit 15:0 contains fraction of second

SCET_GET_SECONDS_ADJUST_IOCTL int32_t out
Returns the value of the second
adjust register

SCET_GET_SUBSECONDS_ADJUST_IOCTL int32_t out
Returns the value of the subsecond
adjust register

SCET_GET_PPS_O_EN_IOCTL uint32_t out

Returns whether the external PPS
out driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 24 of 65

ÅAC Main Template Rev. D.Dotx

SCET_SET_SECONDS_IOCTL int32_t in
Input argument is the new second
value to set

SCET_SET_SUBSECONDS_IOCTL int32_t in
Input argument is the new subsecond
value to set

SCET_SET_INTERRUPT_ENABLE_IOCTL uint32_t in
Sets the interrupt enable mask
register

SCET_SET_INTERRUPT_STATUS_IOCTL uint32_t in Sets the interrupt status register

SCET_SET_PPS_SOURCE_IOCTL uint32_t in
Sets the PPS source.
0 = External PPS source
1 = Internal PPS source

SCET_SET_GP_TRIGGER_LEVEL_IOCTL
uint32_t

*
in/out

Pointer to input argument selects
which GP trigger. Return value is the
current value of that trigger.
0 = trigger activates on 0 to 1
transitiosn
1 = trigger activates on 1 to 0
transition

SCET_SET_PPS_O_EN_IOCTL uint32_t In

Controls if the external PPS out
driver is enabled or not.
0 = Driver is disabled
1 = Driver is enabled

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.4.3. Usage description

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of time stamps.

By utilizing the GP triggers one can trap the time stamp of different events. An interrupt

trigger can optionally be set up to notify the CPU of that the GP trigger has fired.

If an external PPS source is used, an interrupt trigger can be used to synchronize the SCET

by reading out the SCET second and subsecond value at the time of the external PPS

trigger. This value can then be subtracted from the current second and subsecond value to

calculate a time difference.

This time difference can then be written to the adjustment registers to align the local time to

the external pulse.

5.4.4. RTEMS

The RTEMS driver must be opened before it can access the SCET device. Once opened, all

provided operations can be used as described in the RTEMS API defined in subchapter

5.2.2. And, if desired, the device can be closed when not needed.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 25 of 65

ÅAC Main Template Rev. D.Dotx

Figure 5-4 - RTEMS driver usage description

5.4.4.1.Time handling

Getting the current SCET time in RTEMS can be done in two ways:

1. Using read call, reading 6 bytes.

The first 4 bytes contains the second count.

The two last bytes contain the subsecond count.

2. Using the SCET_GET_SECONDS_IOCTL and SCET_GET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Adjusting the SCET time is done the same way as getting the SCET time but reversed.

You can either write 6 bytes to the device.

1. The first 4 bytes contains the second count difference to adjust with.

The last 2 bytes contains the subsecond count difference to adjust with.

2. Using the SCET_SET_SECONDS_IOCTL and SCET_SET_SUBSECONDS_IOCTL

system calls defined in 5.4.2.3.

Negative adjustment is done by writing data in two complement notations.

5.4.4.2.Event callback via message queue

The SCET driver exposes three message queues.

This queue is used to emit messages from the driver to the application.

A single subscriber is allowed for each queue.

‘S’, ‘P’, ‘P’, ‘S’ handles PPS related messages with a prefix of:

SCET_INTERRUPT_STATUS_*

Event name Description

PPS_ARRIVED
An external PPS signal has arrived. Use the
SCET_GET_PPS_ARRIVE_COUNTER_IOCTL to get the timestamp of the external
PPS signal in relation to the local SCET counter

PPS_LOST The external PPS signal is lost

PPS_FOUND The external PPS signal was found

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 26 of 65

ÅAC Main Template Rev. D.Dotx

‘S’, ‘G’, ‘T’, ‘0’ handles messages sent from the general purpose trigger 0.

Event name Description

TRIGGER0 Trigger 0 was triggered

‘S’, ‘G’, P’, ‘1’ handles messages sent from the general purpose trigger 1.

Event name Description

TRIGGER1 Trigger 1 was triggered

5.4.4.3.Typical SCET use case

A typical SCET use case scenario is to connect a GPS PPS pulse to the PPS input of the

board. On every PPS_ARRIVED message the time difference is calculated and the internal

SCET counter is adjusted.

5.4.4.4.RTEMS application example

In order to use the scet driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing scet device name

RTEMS_SCET_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the scet

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 27 of 65

ÅAC Main Template Rev. D.Dotx

5.5. UART

5.5.1. Description

This driver is using the de facto standard interface for a 16550D UART given in [Error!

eference source not found.]. As such, it is an 8 bit interface with a maximum FIFO level of

16 bytes and as such does not easily lend itself to high-speed communication exchanges for

longer periods of time.

5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.5.2.1.Function int open(...)

Opens access to the requested UART. Only blocking mode is supported.

Upon each open call the device interface is reset to 115200 bps and its default mode

according to the table below.

Argument name Type Direction Description

Path const char * In The absolute path to the file that is to be
opened.
See table below for uart naming.

Oflag Int In A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write etc). See below.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

Fildes A file descriptor for the device
on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

Device name Description

/dev/uart0 Ordinary UART, default mode RS422

/dev/uart1 Ordinary UART, default mode RS422

/dev/uart2 Ordinary UART, default mode RS422

/dev/uart3 Ordinary UART, default mode RS422

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 28 of 65

ÅAC Main Template Rev. D.Dotx

/dev/uart4 Ordinary UART, default mode RS422

/dev/uart_psu_control PSU Control, RS485 only

/dev/uart_safe_bus Safe bus, RS485 only

5.5.2.2.Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

Fildes int In File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3.Function int read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO.

Please note that it is not uncommon for the read call to return less data than requested.

Argument name Type Direction Description

Fildes int In File descriptor received at open

Buf void * In Pointer to character buffer to write data to

Nbytes unsigned int In Number of bytes to read

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

5.5.2.4.Function int write(…)

Write data to the UART. The write call is blocking until all data have been transmitted.

Argument name Type Direction Description

Fildes int In File descriptor received at open

Buf const void * In Pointer to character buffer to read data from

Nbytes unsigned int In Number of bytes to write

Return value Description

>= 0 Number of bytes that were
written.

- 1 see errno values

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 29 of 65

ÅAC Main Template Rev. D.Dotx

errno values

EINVAL Invalid number of bytes to be
written.

5.5.2.5.int ioctl(…)

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 Mode selection is not applicable for safe bus and power ctrl UART.

Argument name Type Direction Description

Fd int In File descriptor received at open

Cmd int In Command to send

Val int In Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

UART_SET_BITRATE_IOCTL uint32_t in Sets the bitrate of the line interface:
7 = 115200 bps (default)
6 = 57600 bps
5 = 38400 bps
4 = 19200 bps
3 = 9600 bps
2 = 4800 bps
1 = 2400 bps
0 = 1200 bps

UART_MODE_SELECT_IOCTL uint32_t in Sets the mode of the interface.
0 = RS422 (default)
1 = RS485
2 = Loopback mode (TX connected to
RX internally)

UART_RX_FLUSH_IOCTL uint32_t in Flushes the RX software FIFO

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

5.5.3.1.RTEMS application example

In order to use the uart driver on RTEMS environment, the following code structure is

suggested to be used:

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 30 of 65

ÅAC Main Template Rev. D.Dotx

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.4. Limitations

No parity support.

8 data bits only.

1 stop bit only.

No configuration of RX watermark level, fixed to 8.

No hardware flow control support.

Fixed set of configurable bit rates.

5.6. Mass memory

5.6.1. Description

This section describes the mass memory driver’s design and usability.

5.6.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of usage. In case

of failure on a function call, errno value is set for determining the cause.

5.6.2.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument ignored){}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 31 of 65

ÅAC Main Template Rev. D.Dotx

filename char * in
The absolute path to the file that is to be
opened. Mass memory device is defined as
MASSMEM_DEVICE_NAME.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-1.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-1 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.6.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

5.6.2.3. size_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 32 of 65

ÅAC Main Template Rev. D.Dotx

EBADF The file descriptor fd is not an open file descriptor

EINVAL
The whence argument is not a proper value, or the resulting file
offset would be negative for a regular file, block special file, or
directory.

EOVERFLOW
The resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

5.6.2.4.size_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

Return value Description

>0 Number of bytes that were read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL
Page offset set in lseek is out of range or nbytes is too large and

reaches a page that is out of range.

EBUSY Device is busy with previous read/write operation.

5.6.2.5. size_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write from buf.

Return value Description

>0 Number of bytes that were written.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL
Page offset set in lseek is out of range or nbytes is too large and

reaches a page that is out of range.

EAGAIN Driver failed to write data. Try again.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 33 of 65

ÅAC Main Template Rev. D.Dotx

5.6.2.6.int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in
Command defined in subchapters 5.6.2.6.1 to
5.6.2.6.9.

value void * in
The value relating to command operation as
defined in subchapters 5.6.2.6.1 to 5.6.2.6.9.

5.6.2.6.1. Bad block check
Checks if the given block is a bad block.

Return value Description

0 Block is OK.

-1 Bad block

5.6.2.6.2. Reset mass memory device
Resets the mass memory device.

Return value Description

0 Always

5.6.2.6.3. Read status data
Reads the status register value.

Return value Description

≥0 Status register value

Command Value
type

Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

Command Value
type

Direction Description

MASSMEM_IO_RESET

Command Value
type

Direction Description

MASSMEM_IO_READ_STATUS_DATA uint32_t* out

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 34 of 65

ÅAC Main Template Rev. D.Dotx

5.6.2.6.4. Read control status data
Reads the control status register value.

Return value Description

0 Always

5.6.2.6.5. Read EDAC register data
Reads the EDAC register value.

Return value Description

0 Always

5.6.2.6.6. Read ID
Reads the ID

Return value Description

0 Always

5.6.2.6.7. Erase block
Erases a block

Return value Description

0 Always

5.6.2.6.8. Read spare area
Reads the spare area with given data.

Command Value
type

Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out

Command Value
type

Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out

Command Value
type

Direction Description

MASSMEM_IO_READ_ID uint8_t* out Of type massmem_cid_t.

Command Value
type

Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 35 of 65

ÅAC Main Template Rev. D.Dotx

Return value Description

0 Read operation was successful.

-1 Read operation failed.

5.6.2.6.9. Program spare area
Programs the sapre area from the given data

Return value Description

0 Program operation was successful.

-1 Program operation failed.

5.6.3. Usage description

5.6.3.1.RTEMS

5.6.3.1.1. Overview
The RTEMS driver accesses the mass memory by the reference a page number. There are

MASSMEM_BLOCKS blocks starting from block number 0 and

MASSMEM_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page is of size MASSMEM_PAGE_SIZE bytes.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

5.6.3.1.2. Usage
The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapter 5.6.2.

And, if desired, the access can be closed when not needed.

Command Value
type

Direction Description

MASSMEM_IO_READ_SPARE_AREA uint8_t* in/out
Of type
massmem_ioctl_spare_area_args_t.

Command Value
type

Direction Description

MASSMEM_IO_PROGRAM_SPARE_AREA uint8_t* in/out
Of type
massmem_ioctl_spare_area_args_t

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 36 of 65

ÅAC Main Template Rev. D.Dotx

Figure 5-5 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

5.6.3.1.3. RTEMS application example
In order to use the mass memory flash driver in RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for driver related definitions.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASS_MEMORY_FLASH_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 37 of 65

ÅAC Main Template Rev. D.Dotx

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

5.7. Spacewire

5.7.1. Description

This section describes the SpaceWire driver’s design and usability.

5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.7.2.5.

5.7.2.1.int open(…)

Registers the application to the device name for data transactions. Although multiple

accesses for data transaction is allowed, only one access per unique device name is valid.

Device name must be set with a logical number as described in usage description in

subchapter 5.7.3.1.

Argument name Type Direction Description

filename char * in Device name to register to for data transaction.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-2.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid device name

EEXIST Device already opened.

EEGAIN Opening of device failed due to internal error. Try again.

Table 5-2 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 38 of 65

ÅAC Main Template Rev. D.Dotx

5.7.2.2.int close(…)

Deregisters the device name from data transactions.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device name deregistered successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

5.7.2.3.size_t read(…)

Receives a packet.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT. It is recommended to

assign the buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

Note! This call is blocked till a package for the logic address is received

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in buf size in bytes.

Return value Description

>0 Received size of the actual packet. Can be less than nbytes.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL buf size is 0.

5.7.2.4.size_t write(…)

Transmits a packet.

Note! Given buffer must be aligned to CPU_STRUCTURE_ALIGNMENT. It is recommended to

assign the buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

Note! A packet must be of a size of at least 4 bytes.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 39 of 65

ÅAC Main Template Rev. D.Dotx

Note! This call is blocked till the package is transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in Packet size in bytes.

Return value Description

>0 Number of bytes that were transmitted.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL Packet size is 0.

5.7.2.5.int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.7.2.5.1

value void * in
The value relating to command operation as
defined in subchapter 5.7.2.5.1.

5.7.2.5.1. Mode setting
Sets the device into the given mode.

Note! The mode setting effects the SpaceWire device and therefore all file descriptors

registered to it.

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EINVAL Invalid mode.

Command Value
type

Direction Description

SPWN_IOCTL_MODE_SET uint32_t in
SPWN_IOCTL_MODE_NORMAL for normal
mode or SPWN_IOCTL_MODE_LOOPBACK
for loopback mode

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 40 of 65

ÅAC Main Template Rev. D.Dotx

5.7.3. Usage description

5.7.3.1.RTEMS

5.7.3.1.1. Overview
The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register with a

logical address.

The logical address is tied to a device number. To register to the device, the application

must use the predefined string SPWN_DEVICE_0_NAME_PREFIX with a chosen logical

address to register itself to the driver. See code example in subchapter 5.7.3.1.3. The

registration is done by function open and deregistered by the function close.

Only one logical address can be registered at a time yet multiple logical addresses can be

used at the same time within an application.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard and cannot be registered to.

Note! A packet buffer must be aligned to CPU_STRUCTURE_ALIGNMENT in order to handle

packet’s transmission and reception correctly. It is therefore recommended to assign the

buffer in the following way:

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

5.7.3.1.2. Usage
The application must first register to a device name before it can be accessed for data

transaction. Once registered via function open, all provided operations can be used as

described in the subchapter 5.6.2. And, if desired, the access can be closed when not

needed.

Figure 5-6 - RTEMS driver usage description

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 41 of 65

ÅAC Main Template Rev. D.Dotx

Note! All calls to RTEMS driver are blocking calls.

5.7.3.1.3. RTEMS application example
In order to use the driver in RTEMS environment, the following code structure is suggested

to be used:

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

Two buffers, buf_tx and buf_rx, are aligned with CPU_STRUCTURE_ALIGNMENT for

correctly handling DMA access regarding transmission and reception of a SpaceWire

packet.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

.

.

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

#define RESOURCES_MEM_SIZE (512*1024) /* 1 Mb */

#define CONFIGURE_EXECUTIVE_RAM_SIZE RESOURCES_MEM_SIZE

#define CONFIGURE_MAXIMUM_TIMERS 1 /* Needed by driver */

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t CPU_STRUCTURE_ALIGNMENT buf_rx[PACKET_SIZE];

uint8_t CPU_STRUCTURE_ALIGNMENT buf_tx[PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 42 of 65

ÅAC Main Template Rev. D.Dotx

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

CONFIGURE_EXECUTIVE_RAM_SIZE must also be defined for objects needed by the

driver.

5.7.4. Limitations

Currently, default transmission/reception bit rate is set to 50 MBAUD and cannot be altered

during operation. This functionality is planned to be added in a future release.

A packet must be of a size of at least 4 bytes.

5.8. GPIO

5.8.1. Description

This section describes the GPIO driver’s design and usability.

5.8.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.8.2.1.int open(...)

The function opens and retrieves access right to a specific GPIO pin from RTEMS. The type

of access right is specified by a specific flag.

Argument name Type Direction Description

Path const char * in The absolute path to the file that is to be
opened, e.g. “/dev/gpioX” where X is 0..
(IO_WIDTH – 1)

Flag Int in A flag which tells RTEMS the access rights for
the device driver that shall be opened. That is,
if corresponding file can be read, written or
both read and written.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

File descriptor
(>0)

A file descriptor is returned as
an integer value for the
device on success.

(-1) A status value indication
operation failure. See errno
values.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 43 of 65

ÅAC Main Template Rev. D.Dotx

errno values

ENODEV Device does not exist

EALREADY Device is already open

5.8.2.2.int close(...)

The function closes access to a specific GPIO pin. Neither the value nor the pin

configuration is affected, but the access right is left back to RTEMS.

Argument name Type Direction Description

File descriptor Int in File descriptor for the previously opened
device.

Return value Description

 (0) A status value indication
operation success.

 (-1) A status value indication
operation failure. See errno
values.

errno values

ENODEV Device does not exist

5.8.2.3.int read(...)

The function reads data from a specific GPIO pin. The operation is non-blocking, i.e. it

returns the present value directly after reading.

Argument name Type Direction Description

File descriptor Int in The file descriptor received at operation open.

Read buffer uint8_t * in A buffer for the data value read from the GPIO
pin.

Buffer size uint8_t in The buffer size, which shall be set to 1.

Return value Description

File descriptor A file descriptor is returned as
an integer value for the
device on success.

Status (-1) A status value indication
operation failure. See errno
values.

errno values

ENODEV Device does not exist

EIO Wrong I/O width

EINVAL Invalid argument

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 44 of 65

ÅAC Main Template Rev. D.Dotx

5.8.2.4.int write(...)

The function writes data to a specific GPIO pin. The write operation is dependent on the

configured write mode, either open drain or push pull. The write mode is controlled by a

specific ioctl operation and shall be set before the write operation.

Argument name Type Direction Description

File descriptor Int in The file descriptor received at operation open.

Write buffer uint8_t * in A buffer for the data value written to the GPIO
pin.

Buffer size uint8_t in The buffer size, which shall be set to 1.

Return value Description

File descriptor A file descriptor is returned as
an integer value for the
device on success.

Status (-1) A status value indication
operation failure. See errno
values.

errno values

ENODEV Device does not exist

EIO Wrong I/O width

EINVAL Invalid argument

5.8.2.5.int ioctl(...)

The function is used to configure a specific GPIO pin.

Argument name Type Direction Description

File descriptor Int in The file descriptor received at operation open.

Flag uint8_t in A buffer for the data value written to the GPIO
pin.

Configuration typedef struct{
 bool in_1
bool in_2
 bool out_1
 bool out_2
}
gpio_rtems_configuratio
n_t

in A data structure with four different input and
output parameters:
 in_1 – input argument 1 – 'true' =1, 'false'=0
 in_2– input argument 2 – 'true' =1, 'false'=0
 out_1– output argument 1 – 'true' =1, 'false'=0
 out_2– output argument 2 – 'true' =1, 'false'=0
The data structure is used as a general input
and output configuration with two possible
values in each direction. For a given operation
the value is ‘bool’ when used, i.e. it can be
either ‘true’ or ‘false’. If the parameter is not
used the value is ‘N/A’ and will be treated as
‘don’t care” of the device driver.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 45 of 65

ÅAC Main Template Rev. D.Dotx

Flags Configuration
parameter

Configuration
Value

Description

GPIO_IOCTL_GET_CO
NFIGURED_DIRECTIO
N

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=N/A

Gets the configured
direction of the pin.
'false' indicates that the
corresponding pin is in
write mode
'true' indicates that the
corresponding pin is in
read mode

GPIO_IOCTL_SET_CO
NFIGURED_DIRECTIO
N

gpio_rtems_conf
iguration_t

in_1=bool
in_2=N/A
out_1=N/A
out_2=N/A

Sets the configured
direction of the pin.
'false' indicates that the
corresponding pin is in
write mode
'true' indicates that the
corresponding pin is in
read mode

GPIO_IOCTL_GET_STA
TUS

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=N/A

Gets the status of the pin.
'false' indicates that the
corresponding pin has not
detected change
'true' indicates that the
corresponding pin has
detected change

GPIO_IOCTL_SET_STA
TUS

gpio_rtems_conf
iguration_t

in_1=bool
in_2=N/A
out_1=N/A
out_2=N/A

Sets the status of the pin.
'false' indicates that the
corresponding pin is not
affected
'true' indicates that the
corresponding pin shall be
cleared

GPIO_IOCTL_GET_OU
TPUT_MODE

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=N/A

Gets the output mode of
the pin.
'false' indicates that the
corresponding pin is in
open drain mode
'true' indicates that the
corresponding pin is in
push pull mode

GPIO_IOCTL_SET_OU
TPUT_MODE

gpio_rtems_conf
iguration_t

in_1=bool
in_2=N/A
out_1=N/A
out_2=N/A

Sets the output mode of
the pin.
'false' indicates that the
corresponding pin is in
open drain mode
'true' indicates that the
corresponding pin is in
push pull mode

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 46 of 65

ÅAC Main Template Rev. D.Dotx

GPIO_IOCTL_GET_ED
GE_DETECTION

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=bool

Gets the edge detection of
the pin.
'false' indicates the
corresponding pin to not
be in edge detection, for
falling edge and rising
edge respectively.
'true indicates the
corresponding pin to be in
edge detection, for falling
edge and rising edge
respectively.

GPIO_IOCTL_SET_ED
GE_DETECTION

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=bool

Sets the edge detection of
the pin.
'false' indicates the
corresponding pin to not
be in edge detection, for
falling edge and rising
edge respectively.
'true indicates the
corresponding pin to be in
edge detection, for falling
edge and rising edge
respectively.

GPIO_IOCTL_GET_INT
ERRUPT_ENABLE

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=N/A

Gets the interrupt enable
of the pin.
'false' indicates the
corresponding pin to not
be in interrupt enable.
'true' indicates the
corresponding pin to be in
interrupt enable.

GPIO_IOCTL_SET_INT
ERRUPT_ENABLE

gpio_rtems_conf
iguration_t

in_1=bool
in_2=N/A
out_1=N/A
out_2=N/A

Sets the interrupt enable
of the pin.
'false' indicates the
corresponding pin to not
be in interrupt enable.
'true' indicates the
corresponding pin to be in
interrupt enable.

GPIO_IOCTL_GET_TIM
ESTAMP_ENABLE

gpio_rtems_conf
iguration_t

in_1=N/A
in_2=N/A
out_1=bool
out_2=N/A

Gets the time stamp
enable of the pin.
'false' indicates the
corresponding pin does
not generate a time stamp
on change.
'true' indicates the
corresponding pin does
generate a time stamp on
change.

GPIO_IOCTL_SET_TIM
ESTAMP_ENABLE

gpio_rtems_conf
iguration_t

in_1=bool
in_2=N/A
out_1=N/A
out_2=N/A

Sets the time stamp
enable of the pin.
'false' indicates the
corresponding pin does
not generate a time stamp
on change.
'true' indicates the
corresponding pin does
generate a time stamp on
change.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 47 of 65

ÅAC Main Template Rev. D.Dotx

Return value Description

File descriptor A file descriptor is returned as
an integer value for the
device on success.

Status (-1) A status value indication
operation failure. See errno
values.

errno values

ENODEV Device does not exist

EIO Wrong I/O width

EINVAL Invalid argument

5.8.2.6.Device and message queue definitions

Device
name

Message queue name Description

/dev/gpio0 GP-A Device driver '0' associated with its interrupt
message queue 'A'.

/dev/gpio1 GP-B Device driver '1' associated with its interrupt
message queue 'B'.

/dev/gpio2 GP-C Device driver '2' associated with its interrupt
message queue 'C'.

/dev/gpio3 GP-D Device driver '3' associated with its interrupt
message queue 'D'.

/dev/gpio4 GP-E Device driver '4' associated with its interrupt
message queue 'E'.

/dev/gpio5 GP-F Device driver '5' associated with its interrupt
message queue 'F'.

/dev/gpio6 GP-G Device driver '6' associated with its interrupt
message queue 'G'.

/dev/gpio7 GP-H Device driver '7' associated with its interrupt
message queue 'H'.

/dev/gpio8 GP-I Device driver '8' associated with its interrupt
message queue 'I'.

/dev/gpio9 GP-J Device driver '9' associated with its interrupt
message queue 'J'.

/dev/gpio10 GP-K Device driver '10' associated with its
interrupt message queue 'K'.

/dev/gpio11 GP-L Device driver '11' associated with its
interrupt message queue 'L'.

/dev/gpio12 GP-M Device driver '12' associated with its
interrupt message queue 'M'.

/dev/gpio13 GP-N Device driver '13' associated with its
interrupt message queue 'N'.

/dev/gpio14 GP-O Device driver '14' associated with its
interrupt message queue 'O'.

/dev/gpio15 GP-P Device driver '15' associated with its
interrupt message queue 'P'.

/dev/gpio16 GP-Q Device driver '16' associated with its
interrupt message queue 'Q'.

/dev/gpio17 GP-R Device driver '17' associated with its
interrupt message queue 'R'.

/dev/gpio18 GP-S Device driver '18' associated with its
interrupt message queue 'S'.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 48 of 65

ÅAC Main Template Rev. D.Dotx

/dev/gpio19 GP-T Device driver '19' associated with its
interrupt message queue 'T'.

/dev/gpio20 GP-U Device driver '20' associated with its
interrupt message queue 'U'.

/dev/gpio21 GP-V Device driver '21' associated with its
interrupt message queue 'V'.

/dev/gpio22 GP-X Device driver '22' associated with its
interrupt message queue 'X'.

/dev/gpio23 GP-Y Device driver '23' associated with its
interrupt message queue 'Y'.

/dev/gpio24 GP-Z Device driver '24' associated with its
interrupt message queue 'Z'.

/dev/gpio25 GP-[Device driver '25' associated with its
interrupt message queue '['.

/dev/gpio26 GP-\ Device driver '26' associated with its
interrupt message queue '\'.

/dev/gpio27 GP-] Device driver '27' associated with its
interrupt message queue ']'.

/dev/gpio28 GP-^ Device driver '28' associated with its
interrupt message queue '^'.

/dev/gpio29 GP-_ Device driver '29' associated with its
interrupt message queue '_'.

/dev/gpio30 GP-` Device driver '30' associated with its
interrupt message queue '`'.

/dev/gpio31 GP-a Device driver '31' associated with its
interrupt message queue 'a'.

5.8.3. Usage description

A RTEMS device driver has a device name and is associated with a specific GPIO pin. The

pin has a number from 0 until IO_WIDTH – 1. The IO_WIDTH constant is the number of

supported GPIO pins in hardware, with a default value of 16 and maximum value of 32. The

IO_WIDTH is fixed and determined during compiled time.

Initializing of the driver and call back functions are done automatically during start up.

Exclusive access to each GPIO pin is achieved using normal device driver open-, close,

ioctl-, read- and write-operations. These operations are non-blocking.

Each device driver is associated with an interrupt message queue. Data is received on the

queue from the corresponding pin when the interrupt is enabled. This can be used as a

blocking read operation. The queue is numbered according to the ASCII table, starting from

'A' for pin '0'. A single subscriber is allowed for each queue.

A typical use case scenario for GPIO is the following:

1. Open one driver for each desired GPIO pin.

2. Configure the usage of each driver individually.

3. Optionally, when interrupt is enabled for a GPIO pin, subscribe to the

corresponding message queue.

4. Handle read, write and receive operations according to the preceding configuration

for each driver individually.

5. Close the previously opened driver(s).

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 49 of 65

ÅAC Main Template Rev. D.Dotx

5.8.4. Limitations

The maximum number of GPIO pins supported in a block is 32. There is support for one

GPIO block on the board.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 50 of 65

ÅAC Main Template Rev. D.Dotx

6. Spacewire router

In both OBC-S
TM

 and TCM-S
TM

 products, a smaller router is integrated onto their relative

SoCs. The routers all use path addressing (see [RD2]) and given the topology illustrated in

Figure 6-1, the routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In reference to the topology above, sending a package from the OBC-S
TM

 to TCM-S
TM

 or

vice versa, the routing address will be 1-3.

In addition to this, each end node, OBC-S
TM

 or TCM-S
TM

, has one or more logical

address(es) to help distinguish between different applications or services running on the

same node. The logical address complements the path address and must be included in a

SpaceWire packet.

Example: If a packet is to be sent from OBC-S
TM

 to the TCM-S
TM

 it needs to be prepended

with 0x01 0x03 XX.

0x01 routes the packet to port 1 of the OBC-S
TM

router.

0x03 routes the packet to port 3 of the TCM-S
TM

router.

XX is the logical address of the recipient application/service on the TCM-S.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 51 of 65

ÅAC Main Template Rev. D.Dotx

7. TCM-S
TM

7.1. Description

TCM-S
TM

 handles receiving of Telecommands (TCs) and Telemetry (TM).

TC, received from ground, can be of two command types; a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin accordingly to the pulse command parameters. All other commands are

handled by TCM-S
TM

. Any command that is not to be addressed by TCM-S
TM

, the command

is routed to other nodes in the satellite bus.

TM is received from other nodes on the satellite bus. TCM-S
TM

 supports both the storage of

TM directly to the Mass Memory for later retrieval or downloaded to ground during ground

passes.

TCM-S
TM

 is highly configurable to be adaptable to different customer needs and missions.

TCM-S
TM

 currently supports SpaceWire (SpW) with Read Memory Access Protocol (RMAP).

Future support for Serial Peripheral Interface (SPI), I2C, RS 422/485 and Ethernet interfaces

are planned to be implemented.

7.2. RMAP

To access sub-systems in the TCM-S from SpW, the RMAP (see RD3) protocol is supported

with the following limitations:

 No buffering of received commands is done, so the TCM-S
TM

 handles one command at

a time.

 The TCM-S does not support verification of data or increment.

 RMAP Reply Address Length in Instruction filed must be set to 0b11 and the size of

Reply Address field must be 12 bytes accordingly in the RMAP protocol. Currently only

this configuration is supported by TCM-S
TM

.

Reply path length is determined by path addresses terminated by a NULL (0x00)

value.

According to RMAP protocol (RD3), a 40-bits address map consists of an 8-bit Extended

Address field and a 32-bit Address field. TCM-S
TM

 utilizes these fields as shown in Table 7-1

and Table 7-2 respectively for input and Table 7-3 for all outputs.

Note! The logical address of TCM-S
TM

 is predefined to 66 (0x42).

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 52 of 65

ÅAC Main Template Rev. D.Dotx

7.2.1. Input commands

Extended Address Field Description

0x00 Configuration

0x01-0xFF Partitions on Mass Memory
Table 7-1: Extended addresses

An overview of the commands is given in the table below:

Extended
Address Field

Address Command Comment

0x00 0x00000500 SendTelemetry Write command

0x00 0x05000300 PartitionConfiguration. Read/Write
command.

0x01-0xFF 0x00000000-
0xFFFFFFFF

PartitionData Read/Write
command

Table 7-2: RMAP Commands

7.2.2. Output commands

The TCM-S publishes data to other nodes according to the address map below:

Extended Address Field Address Field Description

0x00 0x00000000 Routed Telecommands
Table 7-3: RMAP Commands supported by TCM-S

7.2.3. SendTelemetry(Write)

To send telemetry to the TM path a write command with an Extended Address Field and

Address Field as described below is sent.

Extended Address Field Address Field Description

0x00 0x00000500 Sends telemetry data
Table 7-4: SendTelemetry(Write)

The data parameter of Write Data command is described below:

Data Type Description

DataArray Array of UINT8 PUS packet to send.
Table 7-5: SendTelemetry(Write) Variable

7.2.4. Mass Memory Interface

To read status and configuration of partitions of the partitions of the TCM-S, read and write

commands with an Extended Address Field and Address Field as described below is sent.

Extended Address Field Address Field Description

0x00 0x050003nn PartitionConfiguration.
(Read/Write)

Table 7-6: Mass Memory Interface

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 53 of 65

ÅAC Main Template Rev. D.Dotx

7.2.4.1. PartitionConfiguration (Read/Write)

The data parameter of PartitonConfiguration command is described below:

Data Type Description

ConfigurationArray Array of UINT8 The partition
configuration

Table 7-7: PartitionConfigration (Read/Write)

The content of the array is:

Byte Type Description

0 uint8_t The partition number

1:8 uint64_t Size in bytes. Must be in
multiples of block size
(128 pages * 16384
bytes)

9:12 uint32_t The offset in blocks of the
partition

13 uint8_t The mode of the partition.
1: FIFO
2: Circular
3: Static Circular

14 uint8_t The data source identifier
for the partition.

Table 7-8: PartitionConfiguration variables

7.2.5. Mass Memory Partition Data

To command for writing/reading data to/from a partition is described below.

Extended
Address Field

Address Field Description

0x01-0xFF 0x00000000-
0xFFFFFFFF

Reads or writes data
to/from a partition. The
extended address field
states which partition to
access and the address
field states how many bytes
to read/write from/to the
partition

Table 7-1 Mass Memory Partition Data

The data parameter of Read/Write Data command is described below:

Data Type Description

DataArray Array of UINT8 The written or read bytes
Table 7-2 Mass Memory Partition Data, data array

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 54 of 65

ÅAC Main Template Rev. D.Dotx

An example of a command for writing 7 bytes to partition 1 is shown in below:

Target Logic Address:
0x30

Protocol Identifier:
0x01

Instruction: 0x6b Key: 0x00

Initiator Logic
Address: 0x40

Transaction Id. (MS):
0x01

Transaction Id. (LS):
0x02

Extended Address:
0x01

Address (MS): 0x00 Address: 0x00 Address: 0x00 Address (LS): 0x00

Data Length (MS):
0x00

Data Length: 0x00 Data Length (LS):
0x07

Header CRC: 0xae

Data: 0x10 Data: 0x20 Data: 0x30 Data: 0x40

Data: 0x50 Data: 0x60 Data: 0x70 Data CRC: 0xe4

The response to the command above is:

Initiator Logic
Address: 0x40

Protocol Identifier:
0x01

Instruction: 0x28 Status: 0x00

Target Logic Address:
0x30

Transaction Id. (MS):
0x01

Transaction Id. (LS):
0x02

Header CRC: 0x72

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 55 of 65

ÅAC Main Template Rev. D.Dotx

8. System-on-Chip definition

The ÅAC Sirius products include two boards built around the OR1200 fault tolerant

processor, the OBC-S
TM

 and the TCM-S
TM

. Below are the peripherals, memory sections and

interrupts defined for the SoC for these two boards. Some of these might not be equipped in

this development release.

8.1. Memory mapping

Table 8-1 - Sirius memory structure definition

Memory Base Address Function
0xF0000000 Boot ROM

0xE0000000 CCSDS (TCM-S
TM

 only)

0xCB000000 Watchdog

0xCA000000 SpaceCraft Elapsed Time

0xC1000000 SoC info

0xC0000000 Error Manager

0xBD000000 - 0xBF000000 Reserved

0xBC000000 Reserved for SPI interface 1

0xBB000000 SPI interface 0

0xBA000000 GPIO

0xB6000000 Reserved for ADC controller 1

0xB5000000 ADC controller 0

0xB4000000 Reserved

0xB3000000 Mass memory flash controller (TCM-S
TM

 only)

0xB2000000 System flash controller

0xB1000000 Reserved

0xB0000000 NVRAM controller

0xAC000000 Reserved for PCIe

0xAB000000 Reserved for CAN

0xAA000000 Reserved for USB

0xA9000000 -0xA3000000 Reserved

0xA2000000 Reserved for redundant SpaceWire

0xA1000000 SpaceWire

0xA0000000 Ethernet MAC

0x9C000000 -0x9F000000 Reserved

0x9B000000 I2C interface 1

0x9A000000 I2C interface 0

0x99000000 Reserved

0x98000000 UART 7 (Safe bus functionality, RS485)

0x97000000 UART 6 (PSU control functionality, RS485)

0x96000000 UART 5 (OBC-S
TM

 only, High speed UART w. DMA)

0x95000000 UART 4 (OBC-S
TM

 only)

0x94000000 UART 3 (OBC-S
TM

 only)

0x93000000 UART 2

0x92000000 UART 1

0x91000000 UART 0

0x90000000 UART Debug (LVTTL)

0x80000000 - 0x8F000000 Customer IP

0x00000000 SDRAM memory including EDAC (64 MB)

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 56 of 65

ÅAC Main Template Rev. D.Dotx

8.2. Interrupt sources

The following interrupts are available to the processor:

Table 8-2 - Sirius interrupt assignment

Interrupt no. Function Description
0-1 Reserved Internal use

2 UART Debug UART interrupt signal

3 UART 0 UART interrupt signal

4 UART 1 UART interrupt signal

5 UART 2 UART interrupt signal

6 UART 3 UART interrupt signal

7 UART 4 UART interrupt signal

8 UART 5 UART interrupt signal

9 UART 6 UART interrupt signal

10 UART 7 UART interrupt signal

11 ADC Controller ADC measurement completed

12 - Ready to use (reserved for ADC)

13 i2c 0 Master/slave transaction complete/req

14 - Ready to use (reserved for i2c)

15 - Ready to use (reserved for i2c)

16 - Ready to use (reserved for i2c)

17 SCET SCET interrupt signal

18 Error manager Error manager interrupt

19 - Reserved for redundant spacewire

20 System flash System flash controller interrupt

21 Mass memory Mass memory flash controller interrupt

22 Spacewire Spacewire interrupt

23 CCSDS CCSDS interrupt

24 Ethernet Ethernet MAC interrupt signal

25 GPIO GPIO interrupt

26 SPI 0 Serial Peripheral interface

27 - Ready to use (reserved for SPI 1)

28 - Ready to use (reserved for custom adaptation)

29 - Ready to use (reserved for custom adaptation)

30 - Ready to use (reserved for custom adaptation)

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 57 of 65

ÅAC Main Template Rev. D.Dotx

8.3. Peripherals/ports

Figure 8-1 - Sirius ports

8.3.1. JTAG_RTL

The following pins are available on the JTAG_RTL, Hirose ST60-10P, connector. See Table

8-3.

Table 8-3 - JTAG pin-outs

Pin # Signal name Description

Pin 1 GND Ground

Pin 2 RTL-JTAG-TDI Test Data In, data shifted into the device.

Pin 3 RTL-JTAG-TRSTB Test Reset

Pin 4 VCC_3V3 Power supply

Pin 5 VCC_3V3 Power supply

Pin 6 RTL-JTAG-TMS Test Mode Select

Pin 7 Not connected -

Pin 8 RTL-JTAG-TDO Test Data Out, data shifted out of the device

Pin 9 GND Ground

Pin 10 RTL-JTAG-TCK Test Clock

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 58 of 65

ÅAC Main Template Rev. D.Dotx

8.3.2. Debug SW

The following pins are available on the DEBUG SW, Hirose ST60-18P, connector. See

Table 8-4.

Table 8-4 - Debug SW pin-outs

Pin # Signal name Description

Pin 1 ETH-DEBUG-RESET Reset

Pin 2 GND Ground

Pin 3 ETH-DEBUG-SYNC Not available

Pin 4 ETH-DEBUG-TX Not available

Pin 5 ETH-DEBUG-RX Not available

Pin 6 ETH-DEBUG-MDC Not available

Pin 7 ETH-DEBUG-MDIO Not available

Pin 8 ETH-DEBUG-CLK Not available

Pin 9 GND Ground

Pin 10 DEBUG-JTAG-TDI Debug Test data in

Pin 11 DEBUG-JTAG-RX Debug UART RX

Pin 12 DEBUG-JTAG-TX Debug UART TX

Pin 13 VCC_3V3 Power supply

Pin 14 DEBUG-JTAG-TMS Debug Test mode select

Pin 15 VCC_3V3 Power supply

Pin 16 DEBUG-JTAG-TDO Debug Test data out

Pin 17 GND Ground

Pin 18 DEBUG-JTAG-TCK Debug Test clock

8.3.3. Spacewire/SPA-S (SPW1-6)

The following pins are available on the SPW1-6 connectors, Glenair Nano-D 891-013-9SA2-

BRST. See Table 8-5

Table 8-5 - SPW1 pin-outs

Pin # Signal name Description

Pin 1 SPW1_DIN_LVDS_P SpaceWire data in positive, pair with p6

Pin 2 SPW1_SIN_LVDS_P SpaceWire strobe in positive, pair with p7

Pin 3 Shield Cable shielded, connected to chassis

Pin 4 SPW1_SOUT_LVDS_N SpaceWire strobe out negative, pair with p8

Pin 5 SPW1_DOUT_LVDS_N SpaceWire data out negative, pair with p9

Pin 6 SPW1_DIN_LVDS_N SpaceWire data in negative, pair with p1

Pin 7 SPW1_SIN_LVDS_N SpaceWire strobe in negative, pair with p2

Pin 8 SPW1_SOUT_LVDS_P SpaceWire strobe out positive, pair with p4

Pin 9 SPW1_DOUT_LVDS_P SpaceWire data out positive, pair with p5

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 59 of 65

ÅAC Main Template Rev. D.Dotx

8.3.4. DIGITALS, 3x I2C / SPA-1, PPS and 12xGPIO.

The following pins are available on the DIGITALS connector, Connector_nanoD_25_Socket

Table 8-6 DIGITALS pinouts

PIN # SIGNAL NAME DESCRIPTION

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Board ground

Pin 14 SPI_MISO

Pin 15 SPI_MOSI

Pin 16 SPI_CLK

Pin 17 I2C_SCL0 I2C bus 0, clock

Pin 18 I2C_SDA0 I2C bus 0, data

Pin 19 I2C_SCL1 I2C bus 1, clock

Pin 20 I2C_SDA1 I2C bus 1, data

Pin 21 I2C_SCL2 I2C bus 2, clock

Pin 22 I2C_SDA2 I2C bus 2, data

Pin 23 PPS_INPUT_RS422_N Pulse per second, differential RS422 signal for time
synchronization Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Board ground

8.3.5. UART RS422/485-1

 The following pins are available on the COM02_RS4XX connector, Glenair Nano-D 891-

013-15SA2-BRST. SeeTable 8-5.

Table 8-7 COM02_RS4XX pinouts

Pin # Signal name Description

Pin 1 COM0_RX_RS4XX_P
Com Port 0 RX

Pin 2 COM0_RX_RS4XX_N

Pin 3 COM0_TX_RS4XX_P Com Port 0 TX

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 60 of 65

ÅAC Main Template Rev. D.Dotx

Pin 4 COM0_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 COM1_RX_RS4XX_P
COM Port 1 RX

Pin 8 COM1_RX_RS4XX_N

Pin 9 COM1_TX_RS4XX_P
COM Port 1 TX

Pin 10 COM1_TX_RS4XX_N

Pin 11 COM2_RX_RS4XX_P
COM Port 2 RX

Pin 12 COM2_RX_RS4XX_N

Pin 13 COM2_TX_RS4XX_P
COM Port 2 TX

Pin 14 COM2_TX_RS4XX_N

Pin 15 GND Ground

8.3.6. UART RS422/485-2

 The following pins are available on the COM35_RS4XX connector, Glenair Nano-D 891-

013-15SA2-BRST. See Table 8-8.

Table 8-8 COM35_RS4XX pin-outs

Pin # Signal name Description

Pin 1 COM3_RX_RS4XX_P
Com Port 3 RX

Pin 2 COM3_RX_RS4XX_N

Pin 3 COM3_TX_RS4XX_P
Com Port 3 TX

Pin 4 COM3_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 COM4_RX_RS4XX_P
COM Port 4 RX

Pin 8 COM4_RX_RS4XX_N

Pin 9 COM4_TX_RS4XX_P
COM Port 4 TX

Pin 10 COM4_TX_RS4XX_N

Pin 11 COM5_RX_RS4XX_P
COM Port 5 RX

Pin 12 COM5_RX_RS4XX_N

Pin 13 COM5_TX_RS4XX_P
COM Port 5 TX

Pin 14 COM5_TX_RS4XX_N

Pin 15 GND Ground

8.3.7. Digital I/O

 The following pins are available on the DIGITALS connector, Glenair Nano-D 891-013-

25SA2-BRST. See Table 8-9 Table 8-5.

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 61 of 65

ÅAC Main Template Rev. D.Dotx

Table 8-9 DIGITALS pin-outs

Pin # Signal name Description

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Ground

Pin 14 SPI_MISO SPI Master In/Slave Out

Pin 15 SPI_MOSI SPI Master Out/Slave In

Pin 16 SPI_CLK SPI Clock

Pin 17 I2C_SCL0 I2C-0 Clock

Pin 18 I2C_SDA0 I2C-0 Data

Pin 19 I2C_SCL1 I2C-1 Clock

Pin 20 I2C_SDA1 I2C-1 Data

Pin 21 I2C_SCL2 I2C-2 Clock

Pin 22 I2C_SDA2 I2C-2 Data

Pin 23 PPS_INPUT_RS422_N
Optional Pulse Per Second input

Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Ground

9. Updating the Sirius FPGA

To be able to update the SoC on the OBC-S
TM

and TCM-S
TM

 you need the following items.

9.1. Prerequisite hardware

 Microsemi FlashPro5 unit

 104470 FPGA programming cable assembly

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 62 of 65

ÅAC Main Template Rev. D.Dotx

9.2. Prerequisite software

 Microsemi FlashPro Express v11.7 or later

 The updated FPGA firmware

9.3. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable assembly

to connector 4 in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from ÅAC should contain three files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

c. The programmer script file with a .tcl file ending

4. Execute the following command:

FPExpress script:fileWithTclEnding.tcl

Please note that you either need to launch FPExpress with super user rights or change the

user rights to the usb node.

5. If the programming was successful one of the last commands should be:

programmer: Chain programming PASSED.

6. The Sirius FPGA image is now updated

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 63 of 65

ÅAC Main Template Rev. D.Dotx

10. Mechanical data

The total size of the Sirius board is 183x136 mm.

Mounting holes are ø3.4 mm with 4.5 mm pad size.

The outline in the left upper corner of the drawing below corresponds to the FM version of

the TCM-S
TM

 and OBC-S
TM

 boards.

Figure 10-1 - The Sirius board mechanical dimensions

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 64 of 65

ÅAC Main Template Rev. D.Dotx

11. Environmental information

The Sirius Breadboard is an engineering model and as such it is only intended for office

usage.

Table 11-1 - Environmental temperature ranges

Environment Range
Operating temperature EM 0-40 ºC

Storage temperature EM 0-40 ºC

12. Glossary

ADC Analog Digital Converter
BSP Board Support Package
EDAC Error Detection and Correction
EM Engineering model
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
GCC GNU Compiler Collection program (type of standard in Unix)
GPIO General Purpose Input Output
Gtkterm Is a terminal emulator that drives serial ports
I
2
C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
Minicom Is a text based modem control and terminal emulation program
NA Not Applicable
OBC On Board Computer
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface
RAM Random Access Memory, however modern DRAM has not random access. It is often associated

with volatile types of memory
ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SoC System-on-Chip
SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-

wire serial bus.
TC Telecommand
TCL Tool Command Language, a script language
TCM Mass memory
TM Telemetry
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data

 Document number 204911
 Version C

 Issue date 2016-03-18

Sirius Breadboard User Manual

 www.aacmicrotec.com Page 65 of 65

ÅAC Main Template Rev. D.Dotx

