

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 1 of 222

Sirius OBC and TCM User Manual

 V

© AAC Clyde Space 2016-2023

AAC Clyde Space AB owns the copyright of this document which is supplied in confidence, and which
shall not be used for any purpose other than for which it is supplied and shall not in whole or in part be

reproduced, copied, or communicated to any person without written permission from the owner.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 2 of 222

REVISION LOG

Rev Date Change description

A 2016-10-25 First release, drafted from 204911 Sirius Breadboard User Manual Rev
L

B 2016-12-15 Updated after editorial updates

C 2017-01-03 Release with updates to the following sections:

• Massmem (new API with DMA)

• Error manager (IOCTL API)

• ADC (channel table update, channel limitation)

• Sirius TCM (TM/TC defaults, API updates {errno, MMStatus,
TMTSStatus}, removed limitations)

• Bootrom (extended description)

• SCET (extended description, new API)

• UART32 (removed)

• CCSDS (interrupt API deprecation)

• NVRAM (EDAC/non-EDAC modes described)

D 2017-02-01 Release with updates to the following sections:

• Sirius TCM (Extra info sections, TMBRSet->TMBRControl)

• Mass memory (IOCTL API, error inject info)

• SCET (Clarify threshold)

E 2017-03-01 Release with updates to the following sections:

• ADC (minor updates to clock div limits)

• Setup and operation (find debugger serial, use of multiple
debuggers)

F 2017-04-18 Release with updates to the following sections:

• CCSDS (new API)

• Sirius TCM (new timesync API, NVRAM table updated, new
segment sizing for partitions)

G 2017-10-31 Release with updates to the following sections:

• Fault tolerant design (new section)

• CCSDS (updated API)

• Mass memory (updated API)

• Sirius TCM (new mass memory partition configuration
behaviour & RMAP API)

• System flash (new)

H 2018-03-07 Release with updates to the following sections:

• Introduction

• Equipment information

• Sirius TCM (updated API and formatting)

• NVRAM (updated API)

I 2018-04-16 Release with updates of the following sections:

• Software upload (new)

• NVRAM (updated EDAC error reporting API)

J 2018-06-28 Release with updates of the following sections:

• SCET, UART, WDT, NVRAM and SpW (updated API)

• Mass Memory Handling (auto-padding)

• Removed chapter with connector pinout

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 3 of 222

K 2018-10-26 Release with updates to the following sections:

• Re-initialising the NVRAM (new)

• Mass Memory (new optional runtime-size API, new chip type
support)

• System flash (deprecate spare area writes without
EDAC/interleaving)

• Sirius TCM (config fallback parameters, direct partition limits,
new PUS 2.2 service, RMAP transid allocation
recommendations, limited direct partition utilisation
recommendations)

M 2018-12-04 Release with updates to the following sections:

• Software development (how to build silent BSP)

• TM/TC-structure and COP-1 (new)

• System-on-Chip defitions (system flash bad block table
reserved location in NVRAM)

• NVRAM (safe/update area address corrections)

• Sirius TCM-S (bit error correction information for
telecommands)

N 2019-02-01 Release with updates to the following sections:

• Sirius TCM (noted possible pointer reset to address 0 on
massmem handler recovery)

O 2019-06-28 Release with updates to the following sections:

• Clarification and correction of error handling in System Flash
driver.

• Correction to 10.5.1: RS encoding can only be configured in
NVRAM.

• Add status code ECANCELED in table 7-27.

• Corrected information on SCET event queues.

P 2019-08-27 Release with updates of the following sections:

• Updated image 3.1 to include UART5

• Changed text in 5.5.1 to clarify UART-implementation is not
fully compliant with 16550D

Q 2019-09-11 Release with updates to the following sections

• 1.1: Add LEON3

• 2: Add LEON3

• 3: Add LEON3, minor corrections.

• 4: Add LEON3, minor corrections

• 8: Add memory mapping and interrupts for LEON3
General formatting clean-up.

R 2020-01-09 Release with following modifications

• 5.3 Removed refs to Power Loss

• 9.3 Added return codes in PUS service and table with numeric
values of error codes

• 10.7.9 Added Image of Data Field Header used in TCM-S

• 10.7.13 Added description of Idle Data

S 2020-03-05 Release with following modifications

• 5.10 Added info about conversion factors for analog input0-7

• 5.5.1.3 Added description of modes of the UART

• Updated image 2.1

T 2020-11-05 Release with following modifications

• Updated 2.1 System Overview

• Added section 4.2 about floating-point

• Added RMAP command MMGetPageSize

• Updated SoC Info

• Minor corrections and clarifications

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 4 of 222

U 2023-04-18 Release with following modifications

• Removed sections about OpenRISC

• Added instructions on how to use the GRMON with the FTDI
D2XX driver

• Various clarifications in chapter 5

• Added Error Manager Reset Cause ioctl

• Added Read Timeout functionality on UART and SpW
interfaces

• Added Backup Routing for TCM TC and UART forwarding

• Added RIRP as an alternative way to use the TCM RMAP
interface

• Added TCStorage service in the TCM

• Clarification of TM bitrate configuration in 7.16.5.10

• Added HKResetCause command for the TCM

• Broke out unit specific information to a new document, and
rearranged some information into new chapters

• Added details about the convolutional code implementation in
12.5.1

V 2023-10-16 Release with following modifications

• Move out SoC configuration to its own document

• Restructure chapters, correct formatting

• 2: Add overview of OBC/TCM concept

• 2: Add overview of manual

• 3: Add info on GRMON issues

• 3: Add debugging tips

• 3: Update supported OS

• 3: Update required software

• 5.2: Note that Watchdog is active by default

• 5.3: Add missing ioctls

• 5.3: Clarify ioctl types

• 5.3: Add Boot Status

• 5.4: Clarify usage of broadcast queue

• 5.5: Add baud rate

• 5.9: VC selectable

• 5.9: Correct TM bitrate divisor description

• 5: Changes to CCSDS_SET_TM_TIMESTAMP to better
support implementation of PUS service 9

• 7: Additional configuration for UARTs, add baud rate

• 7: Update TC_CONFIG table

• 7: TC VC configurable

• 7: Clarify RMAP Verify-Data-Before-Write behavior

• 7: Add TCQueue

• 7: Add GPIO control over RMAP

• 7: Update HKResetCause with time stamp

• 7: Add HKBootStatus

• 7: Add HKDeathReports

• 7: Add MMBadBlockCount

• 7: Correct TMBRControl description

• 7: Change TMTSControl to better support implementation of
PUS service 9

• 10: Update error codes for acceptance reports

• 11: Add chapter on DeathReports

• 12: Update handling of TC Ack flags

• 12: Add info on Carrier/Subcarrier lock

• 12: Add info on TM channel coding, randomization, and
synchronization

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 5 of 222

TABLE OF CONTENT

1. INTRODUCTION ..10
1.1. Applicable releases .. 10
1.2. Intended users .. 10
1.3. Getting support ... 10
1.4. Reference documents .. 11

2. SYSTEM OVERVIEW ..13
2.1. Description .. 13
2.2. OBC/TCM peripherals ... 14
2.3. Fault tolerant design .. 14
2.4. Usage and concept ... 15

2.4.1. Combined setup ... 15
2.4.2. OBC concept .. 15
2.4.3. TCM concept .. 16

2.5. Manual chapters overview ... 16

3. SETUP AND OPERATION ...17
3.1. User prerequisites .. 17
3.2. Connecting cables to the Sirius products .. 18
3.3. Installation of toolchain ... 19

3.3.1. Supported Operating Systems ... 19
3.3.2. Installation Steps .. 19

3.4. Installing the Board Support Package (BSP) ... 20
3.5. Deploying a Sirius application .. 21

3.5.1. Establish a debugger connection to the Sirius products ... 21
3.5.2. JTAG connection.. 21
3.5.3. Setup a serial terminal to the device debug UART... 21
3.5.4. Using multiple debuggers on the same PC .. 22
3.5.5. Alternative USB library for GRMON ... 22
3.5.6. Loading an application on LEON3 ... 23
3.5.7. Debugging software ... 23

3.6. Programming an application (boot image) to system flash .. 24
3.7. Re-initialising the NVRAM .. 25

4. SOFTWARE DEVELOPMENT ...25
4.1. RTEMS step-by-step compilation .. 26

4.1.1. Compiling the BSP and compiling an example .. 26
4.1.2. Compiling the BSP with debug output removed ... 26

4.2. RTEMS floating-point considerations ... 27
4.3. Software disclaimer of warranty ... 27

5. RTEMS ...28
5.1. Introduction ... 28
5.2. Watchdog .. 29

5.2.1. Description ... 29
5.2.2. RTEMS API .. 29
5.2.3. Usage description .. 31

5.3. Error Manager ... 33
5.3.1. Description ... 33

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 6 of 222

5.3.2. RTEMS API .. 33
5.3.3. Usage description .. 41
5.3.4. Limitations .. 44

5.4. SCET .. 45
5.4.1. Description ... 45
5.4.2. General purpose triggers ... 45
5.4.3. Pulse-Per-Second (PPS) signals ... 45
5.4.4. RTEMS API .. 46
5.4.5. Usage description .. 52
5.4.6. Limitations .. 55

5.5. UART .. 56
5.5.1. Description ... 56
5.5.2. RTEMS API .. 56
5.5.3. Usage description .. 61
5.5.4. Limitations .. 62

5.6. Mass memory .. 62
5.6.1. Description ... 62
5.6.2. Data Structures .. 62
5.6.3. RTEMS API .. 63
5.6.4. Usage description .. 71
5.6.5. Error injection ... 75
5.6.6. Limitations .. 75

5.7. Spacewire .. 76
5.7.1. Description ... 76
5.7.2. RTEMS API .. 76
5.7.3. Usage description .. 81

5.8. GPIO ... 84
5.8.1. Description ... 84
5.8.2. RTEMS API .. 84
5.8.3. Usage description .. 88
5.8.4. Limitations .. 89

5.9. CCSDS ... 89
5.9.1. Description ... 89
5.9.2. Non-blocking .. 89
5.9.3. Blocking ... 90
5.9.4. Buffer data containing TM Space packets .. 90
5.9.5. RTEMS API .. 90
5.9.6. Usage description .. 98

5.10. ADC .. 99
5.10.1. Description ... 99
5.10.2. RTEMS API .. 100
5.10.3. Usage description .. 103
5.10.4. Limitations .. 104

5.11. NVRAM .. 105
5.11.1. Description ... 105
5.11.2. EDAC mode ... 105
5.11.3. Non-EDAC mode ... 105
5.11.4. RTEMS API .. 105
5.11.5. Usage description .. 109

5.12. System flash ... 111
5.12.1. Description ... 111
5.12.2. Data structure types ... 111

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 7 of 222

5.12.3. RTEMS API .. 111
5.12.4. Usage description .. 117
5.12.5. Debug detect .. 119
5.12.6. Limitations .. 119

6. SPACEWIRE ROUTER .. 120

7. SIRIUS TCM... 121
7.1. Description .. 121
7.2. Block diagram ... 122
7.3. TCM application overview .. 122
7.4. Configuration .. 123

7.4.1. Configuration parameters ... 123
7.4.2. Creating and writing a new configuration ... 129
7.4.3. Fallback NVRAM parameters ... 130

7.5. Telemetry ... 133
7.6. Telecommands ... 134

7.6.1. Description ... 134
7.6.2. Pulse commands.. 135
7.6.3. COP-1 .. 135

7.7. Time Management .. 135
7.7.1. Description ... 135
7.7.2. TM time stamps.. 135

7.8. Error Management and System Supervision ... 136
7.9. Mass Memory Handling .. 136

7.9.1. Description ... 136
7.9.2. Partition configuration .. 137
7.9.3. Recovery .. 140

7.10. TC Storage .. 141
7.11. TC Queue ... 142
7.12. Spacewire Backup Routing ... 143
7.13. RIRP RMAP Interface .. 144
7.14. ECSS standard services .. 144

7.14.1. PUS-1 Telecommand verification service .. 144
7.14.2. PUS-2 Distributing Register Load Command ... 144
7.14.3. PUS-2 Device Command Distribution Service ... 145
7.14.4. PUS-2 Distributing Device Command .. 145

7.15. Custom services ... 147
7.15.1. PUS-130 Software upload .. 147
7.15.2. PUS-131 TC Storage ... 147

7.16. Spacewire RMAP .. 148
7.16.1. Description ... 149
7.16.2. RIRP Interface.. 150
7.16.3. Input ... 152
7.16.4. Output .. 156
7.16.5. Status code in reply messages .. 156
7.16.6. Transaction ID .. 158
7.16.7. RMAP input address details ... 159
7.16.8. RMAP output address details ... 187

7.17. Death Report Handling ... 187
7.18. FPU Traps .. 189
7.19. Limitations .. 189

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 8 of 222

8. NVRAM AREAS ... 190

9. BOOT PROCEDURE ... 191
9.1. Description .. 191
9.2. Usage description... 191
9.3. Limitations .. 192
9.4. Cause of last reset .. 192
9.5. Pulse commands .. 192

10. SOFTWARE UPLOAD ... 193
10.1. Description .. 193
10.2. Block diagram ... 194
10.3. CCSDS API – custom PUS service 130 ... 194

10.3.1. Description ... 194
10.3.2. Subtype 1 – Image transfer start .. 195
10.3.3. Subtype 2 – Image data ... 196
10.3.4. Subtype 3 – Verify uploaded image ... 196
10.3.5. Subtype 4 – Write uploaded image .. 197
10.3.6. Subtype 5 – Calculate CRC in flash ... 197

10.4. Software API ... 198
10.4.1. int32_t swu_init(…) .. 198
10.4.2. int32_t swu_segment_add(…) ... 199
10.4.3. int32_t swu_check(…) .. 199
10.4.4. int32_t swu_update(…) .. 200
10.4.5. int32_t swu_flash_check(…) .. 200

10.5. Usage description... 201
10.6. Limitations .. 201

11. DEATH REPORTS ... 202
11.1. Format ... 202
11.2. Reports for FPU Traps ... 203
11.3. NVRAM .. 203
11.4. Usage Description .. 203

12. TM/TC-STRUCTURE AND COP-1 ... 204
12.1. SCID ... 204
12.2. APID ... 204
12.3. Virtual Channel Allocation ... 204
12.4. Uplink Channel Coding, Randomization and Synchronization .. 204

12.4.1. Channel Coding ... 204
12.4.2. Randomization ... 204
12.4.3. Channel Synchronization ... 204

12.5. Downlink Channel Coding, Randomization and Synchronization .. 205
12.5.1. Channel Coding ... 205
12.5.2. Randomization ... 205
12.5.3. Synchronization.. 205

12.6. Telecommand format ... 205
12.6.1. Telecommand Transfer Frame ... 205
12.6.2. Transfer Frame Header .. 207
12.6.3. Transfer Frame Data Field ... 208
12.6.4. Frame Error Control Field .. 208

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 9 of 222

12.6.5. Telecommand Packet .. 209
12.6.6. Carrier Lock and Subcarrier Lock ... 210

12.7. Telemetry Format.. 211
12.7.1. Telemetry Transfer Frame ... 211
12.7.2. Transfer Frame Primary Header .. 211
12.7.3. Transfer Frame Secondary Header.. 212
12.7.4. Transfer Frame Data Field ... 212
12.7.5. Operational control field ... 212
12.7.6. Frame Error Control Field .. 214
12.7.7. Telemetry Packet ... 214
12.7.8. Telemetry Packet Header .. 214
12.7.9. Data Field Header .. 215
12.7.10. Source Data ... 216
12.7.11. Spare ... 216
12.7.12. Packet Error Control ... 216
12.7.13. Idle Data ... 216

12.8. FARM-parameters ... 216
12.8.1. FARM_Sliding_Window_Width(W) ... 216
12.8.2. FARM_Positive_Window_Width(PW) .. 216
12.8.3. FARM_Negative_Window_Width(NW) ... 216

13. UPDATING THE SIRIUS FPGA ... 217
13.1. Prerequisite hardware .. 217
13.2. Prerequisite software ... 217
13.3. Generation of encryption key .. 217
13.4. Step by step guide .. 217

14. MECHANICAL DATA .. 219

15. GLOSSARY ... 220

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 10 of 222

1. Introduction

This manual describes the functionality and usage of the AAC Clyde Space Sirius OBC and

Sirius TCM products. The Sirius OBC or Sirius TCM differ in certain areas such as the SoC,

interfaces etc. but can mostly be described with the same functionality and will throughout

this document be referred to as “the Sirius products” when both products are referred at the

same time.

1.1. Applicable releases

This version of the manual is applicable to the following software releases:

Sirius Leon3 OBC 1.14.1
Sirius Leon3 TCM 1.21.0

1.2. Intended users

This manual is written for software engineers using the AAC Clyde Space Sirius products.

The electrical and mechanical interface is described in more detail in the electrical and

mechanical ICD documents [RD9] and [RD10].

1.3. Getting support

If you encounter any problem using the Sirius products or another AAC Clyde Space

product, please use the following address to get help:

Email: support@aac-clydespace.com

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 11 of 222

1.4. Reference documents

RD# Document ref Document name

RD1 ECSS-E-ST-50-12C
SpaceWire – Links, nodes,
routers and networks

RD2 R ECSS-E-ST-50-52C SpaceWire – Remote memory
access protocol

RD3 ECSS-E-70-41A
Ground systems and
operations – Telemetry and
telecommand packet utilization

RD4 SNLS378B

PC16550D Universal
Asynchronous
Receiver/Transmitter with
FIFOs

RD5 AD7173-8, Rev. A
Low Power, 8-/16-Channel,
31.25 kSPS, 24-Bit, Highly
Integrated Sigma-Delta ADC

RD6 Edition 4.11 RTEMS BSP and Device
Driver Development Guide

RD7 CCSDS 132.0-B-4 TM Space Data Link Protocol

RD8 CCSDS 232.0-B-4 TC Space Data Link Protocol

RD9
205088 Sirius OBC electrical and

mechanical ICD

RD10 205089
Sirius TCM electrical and
mechanical ICD

RD11
SS-EN 61340-5-1

Electrostatics - Part 5-1:
Protection of electronic
devices from electrostatic
phenomena - General
requirements

RD12 Edition 4.11 RTEMS POSIX Users Manual

RD13 CCSDS 201.0-B-3 TC Channel Service

RD14 Edition 4.11 RTEMS C User Manual

RD15 GRIP, May 2019, Version 2019.2 GRLIB IP Core User’s Manual

RD16 GRMON3-UM, June 2019, Version 3.1.0 GRMON3 User’s Manual

RD17 CCSDS 131.0-B-4
TM Synchronization and
Channel Coding

RD18 206222
Sirius SoC Configuration
Document

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 12 of 222

RD19 sparcv8, SAV080SI9308
The SPARC Architecture
Manual, Version 8

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 13 of 222

2. System overview

2.1. Description

The Sirius OBC and Sirius TCM products are depicted in Figure 3-1 and Figure 3-2.

In addition to the external interfaces, the Sirius products also include both a debugger

interface for downloading and debugging software applications and a JTAG interface for

programming the FPGA during manufacturing.

The FPGA firmware implements a SoC built around a LEON3FT processor [RD15] running

at a system frequency of 50 MHz and with the following key peripherals:

• Error manager - error handling, tracking and log of e.g. memory error detection.

• SDRAM controller - 64 MB data + 64 MB EDAC running @100MHz

• Spacecraft Elapsed Timer (SCET) - including a PPS (Pulse Per Second) time

synchronization interface for accurate time measurement with a resolution of 15 µs

• SpaceWire - including a three-port SpaceWire router, for communication with

external peripheral units

• UARTs - RS422 and RS485 line drivers on the board with line driver mode set by

software.

• GPIOs

• Watchdog - a fail-safe mechanism to prevent a system lockup

• System flash - 2 GB of EDAC-protected flash for storing boot images in multiple

copies

• Pulse command inputs - for reset to a specific software image

• NVRAM - for storage of metadata and other data that requires a large number of

writes that shall survive loss of power

For the Sirius TCM the following additional peripherals are included in the SoC:

• CCSDS - communications IP with RS422/LVDS interfaces for radio communication

and an UMBI interface for communication with EGSE

• Mass memory - 32GB of EDAC-protected NAND flash based, for storage of

mission critical data.

For the Sirius OBC:

• An analog interface is included for external analog measurements.

The input power supply provided to the Sirius products shall be between +4.5 and +16 VDC.

Power consumption is highly dependent on activities and peripheral loads and ranges from

1.2 W to 2 W.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 14 of 222

2.2. OBC/TCM peripherals

Figure 2-1 shows an overview of the System-on-Chip (SoC) together with the peripheral

circuitry of the Sirius OBC and Sirius TCM products. The color coding in the figure shows

what parts are included for which products. The CPU is a LEON3FT.

Figure 2-1 - The Sirius OBC / Sirius TCM SoC Overview

2.3. Fault tolerant design

The Sirius OBC and Sirius TCM are both fault tolerant by design to withstand the

environmental loads that the modules are subjected to when used in space applications.

The following error mitigation techniques are used.

• Continuous EDAC scrubbing of SDRAM data with at least 1 bit error correction and

2 bit error detection for each 16-bit word. Non-correctable errors cause a processor

interrupt to allow the software to handle the error differently depending on in which

section of the memory it appeared, unless the error appear in the execution path

(see below).

• EDAC checking of instructions before execution and on data used in the instruction

(at least 1 bit error correction and 2 bit error detection as described in the previous

point). Non-correctable errors cause automatic reboot.

• Parity checking of Instruction and Data caches when they are enabled. Errors

cause a processor interrupt with a cache reload as the default error handling.

• Parity checking of peripheral FIFOs. Errors cause processor interrupt.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 15 of 222

• EDAC checking on system flash with double bit error correction and extended bit

error detection in combination with interleaving that corrects bursts with up to 16

bits in error.

• Triple Modular Redundancy (TMR) on all FPGA flip-flops

• All software stored in boot flash is, in addition to the EDAC protection of the flash

data, encoded with a header for checksum and length. Each boot image is stored

in three copies to allow for an automatic fallback option if the ECC and/or length

check fails on one copy.

• Watchdog, tripping leads to automatic reboot of the device.

• Advanced Error Manager keeping the detected failures during reset/reboot for later

analysis.

2.4. Usage and concept

This section describes the concept and normal intended use for the Sirius OBC and Sirius

TCM in the default product configuration.

2.4.1. Combined setup

The OBC and TCM are intended to be used together to form the data processing and data

handling portion of an on-board satellite system.

The OBC and TCM connect via spacewire, which provides the main interface for both

commanding and data transfers.

Figure 2-2 shows an overview of an example setup with the OBC, TCM, a radio, and a pair

of payloads in a suggested normal setup.

OBC TCM

payload

payload

radio

Figure 2-2 Conceptual design of an on-board data handling system

2.4.2. OBC concept

The OBC provides a platform for hosting mission-specific flight software developed by the

user, it is intended to handle the overall command and control handling of the on-board

satellite system.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 16 of 222

The OBC is also intended to handle the main data processing, and several interfaces for

connecting to payloads and other on-board modules are provided.

The OBC Board Support Package (BSP) contains the RTEMS operation system along with

drivers (see section 5) for use when developing its software.

2.4.3. TCM concept

2.4.3.1. Description

The TCM contains pre-programmed flight software (see section 7). This software is

conceptually passive and relies on external command and control, intended to be provided

by the OBC.

The TCM is intended to be connected to a radio and provide a TM/TC communications

interface for use by the OBC. The TCM also provides a data storage interface which can be

used by the OBC for both custom data and pre-prepared telemetry for later downlinking.

The TCM is configured by the user to fit the specific mission parameters (see section 7.4).

2.4.3.2. Use without pre-programmed flight software

The TCM may be used without the pre-programmed flight software and a TCM BSP is

provided to allow the user to develop mission-specific software on the TCM, in a similar

procedure as is normal for the OBC.

Using the TCM without the pre-programmed flight software is normally not the main intended

use.

2.5. Manual chapters overview

Information on how to connect to the Leon3 processor to load/debug software can be found

in section 3.5. An introduction to how to build software for the boards is in chapter 4.

Different aspects of how to use the System Flash and the board bootloader can be found in

sections 3.6, 5.12, 9, and 10.

Non-volatile RAM structure and usage is detailed in sections 8 and 5.11 for the OBC and

sections 8 and 7.4 for the TCM.

How to use the different peripheral units in the System-on-Chip in an RTEMS application

can be found in the subsections of chapter 5.

Information on usage of the TCM flight software is mainly in chapter 7, with details of the

specific implementation of the CCSDS standards in chapter 12.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 17 of 222

3. Setup and operation

3.1. User prerequisites

The following hardware and software are needed for the setup and operation of the Sirius

products.

PC computer

• 1 GB free space for installation (minimum)

• Debian 10 or Debian 11 64-bit with super user rights

• USB 2.0

JTAG debugger

• AAC JTAG debugger hardware including harness (104452)

Recommended applications and software packages

• Installed serial communication terminal, e.g. gtkterm or minicom

• GPG for encryption/decryption of files containing sensitive data

• Host build system, e.g. the debian package build-essential

• AAC toolchain for LEON3 with RTEMS 4.11

• BCC2 bare metal toolchain from Frontgrade Gaisler

For FPGA update capabilities

• Microsemi FlashPro Express v11.9

http://www.microsemi.com/products/fpga-soc/design-

resources/programming/flashpro#software

• FlashPro5 programmer

http://www.aac-clyde.space/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 18 of 222

3.2. Connecting cables to the Sirius products

Figure 3-1 – Sirius OBC with connector naming

Figure 3-2 - Sirius TCM with connector naming

• All products and ingoing material shall be handled with care to prevent damage of

any kind.

JTAG-RTL

DEBUG-SW

SPW1

SPW2

UART0-2

PWR

UART3-5

DIGITAL

ANALOG

JTAG-RTL

DEBUG-SW

UMBI

SPW1

UART0-2

PWR

TRX2-LVDS

TRX1-RS422

DIGITAL

PULSE

SPW2

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 19 of 222

• ESD protection and other protective measures shall be considered. Handling should

be performed according to applicable ESD requirement standards such as [RD11] or

equivalent.

• Ensure that all mating connectors have the same zero reference (ground) before

connecting.

• Connect the nano-D connector to the PWR connector with 4.5 - 16 V DC. The units

will nominally draw about 260-300 mA @5V DC.

• The AAC debugger is mainly used for development of custom software for the Sirius

OBC or Sirius TCM and has both a debug UART for monitoring and a JTAG interface

for debug capabilities. It is also used for programming an image to the system flash

memory. For further information refer to Chapter 3.6. When it is to be used, connect

the 104452 AAC Debugger to the DEBUG-SW connector. Connect the adapter USB-

connector to the host PC.

• For FPGA updating only: Connect a FlashPro5 programmer to the JTAG-RTL

connector using the 104470 FPGA programming cable assembly. For further

information how to update the SoC refer to Chapter 13.

• For connecting the SpaceWire interface, connect the nano-D connector to

connector SPW1 or SPW2.

For more detailed information about the connectors, see [RD9] and [RD10].

3.3. Installation of toolchain

This chapter describes instructions for installing the AAC toolchains.

3.3.1. Supported Operating Systems

• Debian 10 64-bit

• Debian 11 64-bit

When installing Debian, we recommend using the “netinst” (network install) method. Images

for installing are available via https://www.debian.org/releases/jessie/debian-installer/

In order to install the toolchain below, a Debian package server mirror must be added, either

in the installation procedure (also required during network install) or after installation. For

adding a package server mirror after installation, follow the instructions at

https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

On Debian 11 some packages required to build the BSP have been noted to not be installed

by default. These need to be installed in order to configure and build:

sudo apt-get update

sudo apt-get install m4 autoconf

3.3.2. Installation Steps

1. Add the AAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

http://www.aac-clyde.space/
https://www.debian.org/releases/jessie/debian-installer/
https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 20 of 222

deb http://repo.aacmicrotec.com/archive/ aac/

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

The terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the wanted toolchain by issuing the following

commands:

sudo apt-get update

sudo apt-get install aac-sparc-toolchain

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them. This can be done temporarily for the current shell via

source /opt/aac-sparc/aac-path.sh

To always have the toolchain in the PATH, edit the ~/.bashrc (or equivalent) file

gedit ~/.bashrc

and add the following snippet at the end of the file:

AAC LEON3 toolchain PATH setup

if [-f /opt/aac-sparc/aac-path.sh]; then

 . /opt/aac-sparc/aac-path.sh >/dev/null

fi

NOTE: The AAC toolchain for LEON3 only supports RTEMS application development, for

bare metal software the BCC2 toolchain from Cobham Gaisler is recommended (available at

https://www.gaisler.com/index.php/downloads/compilers).

3.4. Installing the Board Support Package (BSP)

Board support packages can be found at http://repo.aacmicrotec.com/bsp. Download the file

aac-<cpu>-<board>-bsp-<version>.tar.bz2, where <cpu> is the processor type (currently

only leon3); <board> is obc-s or tcm-s; and <version> is the wanted version number of that

BSP; and extract it to a directory of your choice.

The extracted directory aac-<cpu>-<board>-bsp now contains the drivers for both bare-

metal applications and RTEMS. See the included README and chapter 4.1 for build

instructions.

http://www.aac-clyde.space/
https://www.gaisler.com/index.php/downloads/compilers
http://repo.aacmicrotec.com/bsp

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 21 of 222

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Sirius products

The Sirius products are shipped with debuggers that connect to a PC via USB and have two

interfaces towards the board:

• One JTAG interface to the SoC debug unit.

• One debug UART to exchange information with the running software.

3.5.2. JTAG connection

To communicate with the debug unit in LEON3 based SoC’s the program GRMON from

Frontgrade Gaisler is used. This is not included in the AAC toolchain package as it requires

a special license and thus needs to be installed separately.

GRMON3 Pro version 3.0.10 or higher is required. This can be downloaded from Gaisler at

https://www.gaisler.com/index.php/downloads/debug-tools. For further instructions please

refer to the GRMON3 manual, which is available at https://www.gaisler.com/doc/grmon3.pdf.

GRMON3 can be used as a standalone debug monitor to load and run applications, set

breakpoints and read/write system registers and memory, and it is scriptable using TCL. It

can also run as a server for the GNU Debugger if that interface is preferred.

3.5.3. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A serial communication terminal such as minicom or gtkterm is necessary to communicate

with the Sirius product, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected, and the user must make sure to use the correct device number to communicate

to the board’s debug UART.

On Debian, a more foolproof way of identifying the terminal to use is the by-id mechanism

using the serial number of the debugger obtained in section 3.5.4. When the AAC debugger

is connected the system automatically creates named symbolic links to the device files

under /dev/serial/by-id. The interface to use is

usb-AAC_Microtec_JTAG_Debugger_FTZ7QCMF-if01-port0, where FTZ7QCMF is

the serial number in this case. The debug UART is on if01, while if00 is used for the

JTAG interface (any serial device created for if00 should disappear when a debug monitor

is started).

http://www.aac-clyde.space/
https://www.gaisler.com/index.php/downloads/debug-tools
https://www.gaisler.com/doc/grmon3.pdf

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 22 of 222

3.5.4. Using multiple debuggers on the same PC

In order to use multiple debuggers connected to the same PC, each instance of

run_aac_debugger.sh must be configured to connect to the specific debugger serial number

and to use unique ports.

To determine the serial number for a specific device, run the following command before

connecting the debugger:

sudo tail -f /var/log/kern.log

This initially prints the last 10 lines of the kernel log file, which can be ignored. When

plugging in the debugger USB cable into the PC, this should produce new output similar to

[363061.959120] usb 1-1.3.3.3: new full-speed USB device number 15

using ehci_hcd

[363062.058152] usb 1-1.3.3.3: New USB device found, idVendor=0403,

idProduct=6010

[363062.058176] usb 1-1.3.3.3: New USB device strings: Mfr=1,

Product=2, SerialNumber=3

[363062.058194] usb 1-1.3.3.3: Product: JTAG Debugger

[363062.058207] usb 1-1.3.3.3: Manufacturer: AAC Microtec

[363062.058220] usb 1-1.3.3.3: SerialNumber: FTZ7QCMF

where FTZ7QCMF is the serial number for the debugger.

For GRMON3 the port to use for the GDB server needs to be unique. The default is 50001.

For example, two debuggers with serial numbers FTZ7QCMF and FTZ7IB10 can be setup

via

run_aac_debugger.sh -s FTZ7QCMF -g 50001

run_aac_debugger.sh -s FTZ7IB10 -g 50002

Two instances of GDB can then be opened and connected to the different debuggers

through the chosen ports.

3.5.5. Alternative USB library for GRMON

Some versions of GRMON have had issues communicating with the USB connected

debugger hardware, particularly when dumping memory. This shows as error messages at

the GRMON3 prompt noting “usb bulk write failed”, “usb bulk read failed” or similar. These

come from the open source libftdi and libusb libraries included with GRMON. In case of such

issues a workaround is to use the proprietary D2XX library from FTDI instead.

To install the library, download the D2XX driver package for linux from FTDI:

https://ftdichip.com/drivers/d2xx-drivers/

The package contains a lot of examples and things needed to build applications that

communicate with FTDI USB devices, but the only thing needed here is the file

libftd2xx.so.<version>. This can be extracted and copied to a suitable directory on

the computer running GRMON, for example /usr/local/lib. Then a symbolic link should

be created in the same directory so that there appears to be a file without the version:

http://www.aac-clyde.space/
https://ftdichip.com/drivers/d2xx-drivers/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 23 of 222

sudo ln -s libftd2xx.so.1.2.27 libftd2xx.so

GRMON can then be started with this library instead of the included open source libftdi:

LD_LIBRARY_PATH=/usr/local/lib /opt/grmon-pro-

3.3.2/linux/bin64/grmon -v -abaud 115200 -ftdi d2xx -ftdigpio

0x08100000 -gdb 50001 -stack 0x04000000

To handle multiple debugger units connected to the same computer when using the D2XX

library, the user can select the unit to use by serial number by adding the command line

switch -jtagserial FTZ7QCMF, or alternatively listing the available debuggers using

LD_LIBRARY_PATH=/usr/local/lib /opt/grmon-pro-

3.3.2/linux/bin64/grmon -ftdi d2xx -jtaglist

and selecting the wanted unit using -jtagcable <num>.

3.5.6. Loading an application on LEON3

An application can either be loaded only to the board SDRAM, which is easier and typically

used during the development stages, or to the system flash (see section 3.6). In this manual

it is done using GDB, but it could also be done using only GRMON (see sections 3.4.2 and

3.4.3 in the GRMON3 User’s Manual [RD16]). From GDB the user can also pass commands

to GRMON by prefixing them with the GDB command monitor.

1. Start GDB with the following command from a shell to debug RTEMS executables:

sparc-aac-rtems4.11-gdb

2. When GDB has opened successfully, connect to the hardware through the

GRMON server using the GDB command target.

target extended-remote localhost:50001

3. Specify the executable file for GDB to work with. Make sure the file is in ELF

format.

file path/to/executable

4. Transfer into the target RAM

load

5. Start the application.

run

3.5.7. Debugging software

Halting and reloading software via GRMON or GDB may leave peripheral units in an

unknown state, and thus give unexpected behavior, especially if there is communication

running on SpaceWire and UARTs. When working with software through the debugger it is

good to start from a system reset, preferably with a very simple software in flash.

The Watchdog timer (see section 5.2) is enabled by default and can only be disabled when

the debugger is connected. To avoid unexpected resets while debugging it is good to have a

prepared command in GRMON or GDB to disable the Watchdog as soon as possible after

software is halted.

In GRMON: wmem 0xCB000000 0x0

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 24 of 222

In GDB: set *(unsigned int) 0xCB000000 = 0

A manual reset can be triggered through the Error Manager (see section 5.3).

In GRMON: wmem 0xC0000000 0xFFFFFFFF

In GDB: set *(unsigned int) 0xC0000000 = 0xFFFFFFFF

If GRMON gives the error “CPU not in debug mode” when executing a command, that

usually means that the board has reset, and the Debug Support Unit in the SoC is not in

control of the CPU. To take back control the attach command is used.

In GRMON: attach

In GDB: monitor attach

This should be immediately followed by disabling the Watchdog to avoid losing the

connection again.

3.6. Programming an application (boot image) to system flash

To have an application start automatically when the board is powered the application image

must be programmed to the system flash. This is done by taking the boot image binary and

building it into the NAND flash programming application. The NAND flash programming

application is then uploaded to the target and started using GDB, as described in the

previous section. The maximum recommended size for the boot image is 16 MB. The

nandflash_program application can be found in the BSP.

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Ensure that this image is in a binary-only format and not ELF. This can be

accomplished with the help of the GCC objcopy tool included in the toolchain:

sparc-aac-rtems4.11-objcopy -O binary boot_image.elf

boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-<cpu>-<board>-bsp/src/nandflash_program/src

4. Now, compile the nandflash-program application, bundling it together with the boot image

binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of GDB and

execute it, see section 3.5.5. The programmer application will output progress

information on the debug UART.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 25 of 222

3.7. Re-initialising the NVRAM

In some situations, it may be desirable to clear and re-initialise the NVRAM from scratch, for

example if a test application has written data to the NVRAM which does not match the

expected format for the system flash bad block table.

Clearing the NVRAM will cause loss of the following data, which should be read out, backed

up, and written back after re-initialising if critical:

• Bad block markings for discovered bad blocks in the system flash (Both OBC and

TCM), may degrade reliability if cleared.

• Bad block markings for discovered bad blocks in the mass memory (TCM with the

TCM core application software), may degrade reliability if cleared.

• Ongoing operation markers for the mass memory handler (TCM with TCM core

application), may cause partial loss of stored partition data if cleared.

• Internal write pointers for the mass memory handler (TCM with TCM core

application), may case loss of start and end location in a completely full partition if

cleared.

The following steps are required in order to clear and re-initialise the NVRAM:

1. Compile and run the nvram_clear application using the debugger. This

application is located in the src/example/ directory in the OBC or TCM BSP; the

steps for compiling it are described in section 4.1.

This will clear the NVRAM.

2. Program a boot image to the system flash as described in section 3.6.

This will initialize the system flash bad block table in the NVRAM.

The following additional steps are needed to re-initialize the TCM with the TCM core

application:

3. Compile and run the board_initialiser application using the debugger. This

application is located in the src/nv_config/src/board_initialiser/

directory in the TCM-S BSP; it is compiled as an RTEMS application in a similar

fashion as the example applications described in section 4.1.

This will initialize the mass memory bad block table in the NVRAM.

4. Compile and run the nv_config utility as described in section 7.4.2

This will initialize the NVRAM configuration parameters.

4. Software development

The RTEMS OS is the recommended way to develop and deploy applications to the Sirius

products.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 26 of 222

The toolchain (see chapter 3.3) provides RTEMS development tools with the <arch>-aac-

rtems4.11- prefix, and the BSP provides drivers with the _rtems postfix for use with

RTEMS. The BSP also provides RTEMS application code examples in the src/example/

directory.

The RTEMS drivers are documented in chapter 5 in this manual.

Bare-metal toolchain and bare-metal drivers in the BSP are also available, but these are

currently not supported for general application development, and documentation for these

drivers is not included in this manual.

4.1. RTEMS step-by-step compilation

4.1.1. Compiling the BSP and compiling an example

The BSP is supplied with an example of how to write an application for RTEMS and engage

all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to be installed and the BSP

unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory

cd path/to/bsp/aac-<cpu>-<board>-bsp/src/

2. Run make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory containing Makefile.inc:

export RTEMS_MAKEFILE_PATH=path/to/librtems/sparc-aac-

rtems4.11/leon3/

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter 3.5.

4.1.2. Compiling the BSP with debug output removed

During development, debug output from the RTEMS drivers can be very useful for detecting

errors. During flight, debug output is unlikely to be useful (it is expected that the debug

UART will be disconnected) and may decrease performance in case of large amounts of

warnings/errors.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 27 of 222

The RTEMS BSP can be compiled without debug output by replacing the make command in

step 2. above with instead:

make clean

make BSP_AAC_DISABLE_DEBUG_OUTPUT=y

(The make clean command is only required if the BSP has previously been compiled with

a different configuration.)

4.2. RTEMS floating-point considerations

For LEON3, RTEMS saves the FPU (Floating Point Unit) register file and FSR (Floating

Point Status Register) register across context switches and disables the FPU temporarily

during interrupts to avoid that a faulty ISR (Interrupt Service Routine) thrashes the FPU

state. If an ISR needs to use FPU it is responsible to save and restore the FPU context itself

using the RTEMS API. Due to the SPARC ABI the OS only needs to save the FPU context

on interrupts since the ABI states that FPU context is clobbered on function calls.

When creating RTEMS classic tasks the RTEMS_FLOATING_POINT option must be set if

the task will execute FP instructions. Otherwise the CPU will generate a fp_disabled trap

(trap type tt=0x04) on the first FP instruction executed by the task.

The RTEMS Init() task is by default configured without the RTEMS_FLOATING_POINT

option. To enable RTEMS_FLOATING_POINT in the Init() task, the following configuration

statement can be used:

#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

Note that the RTEMS BSPs for the Sirius products are built using the floating-point

instructions. This means RTEMS libraries may contains floating point instructions which

require the calling task to have a floating-point context (RTEMS_FLOATING_POINT) to

avoid an exception.

For more information about floating-point usage in RTEMS, please refer to section 7.2.7 in

[RD14]. For details about the floating-point unit in the LEON3 systems, see [RD15].

4.3. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 28 of 222

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The block diagram representing driver functionality

access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 29 of 222

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device. The

watchdog is enabled from boot and cannot be disabled unless the debugger is connected. If

the watchdog device file is not written to within a set time, it will trigger a reset of the board.

5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

Note: The watchdog is enabled by default and can only be disabled if the debugger is

connected.

5.2.2.1. int open(…)

Opens access to the bare metal driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

> 0 A file descriptor for the
device on success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 30 of 222

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

5.2.2.3. ssize_t write(…)

Any data is accepted as a watchdog kick.

Argument
name

Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

* nNumber of bytes that were
written.

- 1 see errno values

errno values

EPERM Device was not opened

EBUSY Device is busy

5.2.2.4. int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument
name

Type Direction Description

fd Int in File descriptor received at open

cmd Int in Command to send

val Int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL 1 = Enables the watchdog (default)
0 = Disables the watchdog
Note! It’s only possible to disable the watchdog when the debugger is
connected.

WATCHDOG_SET_TIMEOUT_IOCTL 0 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

EINVAL Invalid data sent

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 31 of 222

RTEMS_NOT_DEFINED Invalid I/O command

5.2.3. Usage description

5.2.3.1. RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-2 – RTEMS driver usage description

All calls to RTEMS driver are blocking calls.

5.2.3.2. RTEMS application example

To use the watchdog driver in the RTEMS environment, the following code structure is

suggested:

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 32 of 222

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER must be defined for using the watchdog

driver. By defining this as part of the RTEMS configuration, the driver will automatically be

initialised at boot up.

If the application is run directly via GDB (not via the bootrom),

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined in order

to initialise the error manager and enable board reset on watchdog timeout.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MAXIMUM_DRIVERS 10

#define CONFIGURE_MAXIMUM_TASKS 2 /* Idle & Init */

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 1

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument ignored)

{

 int fd = open(RTEMS_WATCHDOG_DEVICE_NAME, O_WRONLY);

 ioctl(fd, WATCHDOG_ENABLE_IOCTL, WATCHDOG_DISABLE);

 ioctl(fd, WATCHDOG_SET_TIMEOUT_IOCTL, 10);

 ioctl(fd, WATCHDOG_ENABLE_IOCTL, WATCHDOG_ENABLE);

 while (1) {

 sleep(9);

 const unsigned char payload = WATCHDOG_KICK;

 write(fd, &payload, sizeof(payload));

 }

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 33 of 222

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device.

5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt driven events such as non-fatal

multiple errors generated by the RAM EDAC mechanism.

5.3.2.1. Struct errman_latest_reset_info_t

Type Name Purpose

uint32_t scet_seconds The SCET seconds at time of latest reset. Zero following a
hard reset or power-up.

uint16_t scet_subseconds The SCET subseconds at time of latest reset. Zero following
a hard reset or power-up.

uint8 cause Latest cause of reset, encoded as:
0x0 – Power-Up
0x1 – Watchdog
0x2 – Manual (SW initiated)
0x3 – CPDU (safe image)
0x4 – CPDU (default image)
0x5 – CPU multi-bit error (Uncorrectable)
0x6 – CPU parity error

uint8_t RESERVED -

5.3.2.2. int open(…)

Opens access to the device. The device driver allows multiple readers but only one writer at

a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in Specifies one of the access modes in the
following table.

Flags Description

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 34 of 222

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

fd A file descriptor for the device on
success

-1 see errno values

errno values

EALREADY Device already opened

5.3.2.3. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.4. int ioctl(…)

5.3.2.4.1. Description
Ioctl allows for disabling/enabling functionality of the error manager, setting of the timeout

and reading out counter values.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd uint32_t in Command to send

val uint32_t / uint32_t * in / out Value to write or a pointer to a buffer
where data will be written

5.3.2.4.2. Commands

Command table Type Description

ERRMAN_GET_SR_IOCTL uint32_t * Get the status register, see 5.3.2.4.3

ERRMAN_GET_CF_IOCTL uint32_t * Gets the carry flag register, see 5.3.2.4.4

ERRMAN_GET_SELFW_IOCTL uint32_t * Points to which boot firmware that will be
loaded and executed upon system reboot.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 35 of 222

ERRMAN_GET_RUNFW_IOCTL uint32_t * Gets the currently running firmware
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_SCRUBBER_IOCTL uint32_t * Gets the state of the memory scrubber.
0 = Scrubber is disabled
1 = Scrubber is enabled.

ERRMAN_GET_RESET_ENABLE_IOCTL uint32_t * Gets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled
The command is deprecated and might be
removed in future releases.

ERRMAN_GET_WDT_ERRCNT_IOCTL uint32_t * Gets the watchdog error count register.
This register can store a value up to 15 and
then wraps. After a wrap the WDT carry
flag bit is set in the carry flag register. see
5.3.2.4.4

ERRMAN_GET_EDAC_SINGLE_
ERRCNT_IOCTL

uint32_t * Gets the EDAC single error count.
See 5.3.2.4.5 for interpretation of the
register.
After a wrap the EDAC single error count
carry flag bit is set in the carry flag register.
See 5.3.2.4.4

ERRMAN_GET_EDAC_MULTI_
ERRCNT_IOCTL

uint32_t * Gets the EDAC multiple error count.
See 5.3.2.4.6 for interpretation of the
register.
After a wrap the EDAC multiple error count
carry flag bit is set in the carry flag register.
See 5.3.2.4.4

ERRMAN_GET_CPU_PARITY_
ERRCNT_IOCTL

uint32_t * Gets the CPU Parity error count register.
This register can store a value up to 15 and
then wraps. After a wrap the CPU parity
error count carry flag bit is set in the carry
flag register. See 5.3.2.4.4

ERRMAN_GET_SYS_SINGLE_
ERRCNT_IOCTL

uint32_t * Gets the system flash single error
(correctable) error count.
This register is 4 bit wide and will wrap
upon overflow.

ERRMAN_GET_SYS_MULTI_
ERRCNT_IOCTL

uint32_t * Gets the system flash multiple error (un-
correctable) error count.
This register is 4 bit wide and will wrap
upon overflow.

ERRMAN_GET_MMU_SINGLE_
ERRCNT_IOCTL

uint32_t * Gets the mass memory single error
(correctable) error count.
This register is 4 bit wide and will wrap
upon overflow.

ERRMAN_GET_MMU_MULTI_
ERRCNT_IOCTL

uint32_t * Gets the mass memory multiple error (un-
correctable) error count.
This register is 4 bit wide and will wrap
upon overflow.

ERRMAN_GET_NVRAM_SINGLE_
ERRCNT_IOCTL

uint32_t* Gets the nvram single error (correctable)
error count.
This register is 4 bit wide and will wrap
upon overflow

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 36 of 222

ERRMAN_GET_NVRAM_DOUBLE_
ERRCNT_IOCTL

uint32_t* Gets the nvram double error (correctable)
error count.
This register is 4 bit wide and will wrap
upon overflow

ERRMAN_GET_NVRAM_MULTI_
ERRCNT_IOCTL

uint32_t* Gets the nvram multiple error (un-
correctable) error count.
This register is 4 bit wide and will wrap
upon overflow

ERRMAN_GET_LAST_RESET_
CAUSE_IOCTL

errman_latest_
reset_info_t*

Gets the last reset cause and the
corresponding timestamp

ERRMAN_GET_LATEST_BOOT_
STATUS_IOCTL

uint32_t* Gets the latest boot status.
See 5.3.2.4.7 for details.

ERRMAN_SET_SR_IOCTL uint32_t Sets the status register, see 5.3.2.4.3

ERRMAN_SET_CF_IOCTL uint32_t Sets the carry flag register, see 5.3.2.4.4

ERRMAN_SET_SELFW_IOCTL uint32_t Sets the next boot firmware.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_RESET_SYSTEM_IOCTL uint32_t Performs a software reset (value ignored).

ERRMAN_SET_SCRUBBER_IOCTL uint32_t Sets the state of the memory scrubber.
1 = On,
0 = Off.
The scrubber is a vital part of keeping the
SDRAM free from errors.

ERRMAN_SET_RESET_ENABLE_IOCTL uint32_t Sets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled
The command is deprecated and might be
removed in future releases.

ERRMAN_SET_WDT_ERRCNT_IOCTL uint32_t Sets the watchdog error count register.
The counter width is 4 bits i. e. 15 is the
maximum value that can be written.

ERRMAN_SET_EDAC_SINGLE_
ERRCNT_IOCTL

uint32_t Sets the EDAC single error count.
See 5.3.2.4.5 for register definition.

ERRMAN_SET_EDAC_MULTI_
ERRCNT_IOCTL

uint32_t Sets the EDAC multiple error count
register.
See 5.3.2.4.6 for register definition.

ERRMAN_SET_CPU_PARITY_
ERRCNT_IOCTL

uint32_t Sets the CPU Parity error count register.
The counter width is 4 bits i. e. 15 is the
maximum value that can be written.

ERRMAN_SET_SYS_SINGLE_
ERRCNT_IOCTL

uint32_t Sets the system flash single (correctable)
error counter.
This register is 4 bit wide.

ERRMAN_SET_SYS_MULTI_
ERRCNT_IOCTL

uint32_t Sets the system flash multiple (un-
correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_SINGLE_
ERRCNT_IOCTL

uint32_t Sets the mass memory single (correctable)
error counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_MULTI_
ERRCNT_IOCTL

uint32_t Sets the mass memory multiple (un-
correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_NVRAM_SINGLE_
ERRCNT_IOCTL

uint32_t Sets the nvram single (correctable) error
counter.
This register is 4 bit wide

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 37 of 222

ERRMAN_SET_NVRAM_DOUBLE_
ERRCNT_IOCTL

uint32_t Sets the nvram double (correctable) error
counter.
This register is 4 bit wide

ERRMAN_SET_NVRAM_MULTI_
ERRCNT_IOCTL

uint32_t Sets the nvram multiple (un-correctable)
error counter.
This register is 4 bit wide

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

EBADF File descriptor not opened

for writing

EINVAL Invalid IOCTL

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 38 of 222

5.3.2.4.3. Status register

Bit position Name Direction Description

31:23 RESERVED

22:20 ERRMAN_RESET_CAUSE R Cause of reset encoded as:
0x0 – Power-Up
0x1 – Watchdog
0x2 – Manual (SW initiated)
0x3 – Pulse Command (safe image)
0x4 – Pulse Command (default image)
0x5 – CPU multi-bit error (Un-correctable)

19 RESERVED

18 ERRMAN_MNVERRFLG R/W A previous un-correctable multi error has
been detected in the NVRAM. Clear flag by
writing a ‘1’.

17 ERRMAN_DNVERRFLG R/W A previous correctable double error has been
detected in the NVRAM. Clear flag by writing
a ‘1’.

16 ERRMAN_SNVERRFLG R/W A previous correctable single error has been
detected in the NVRAM. Clear flag by writing
a ‘1’.

15 ERRMAN_MMMERRFLG R/W A previous un-correctable multi error in the
mass memory has been detected. Clear flag
by writing a ‘1’.

14 ERRMAN_SMMERRFLG R/W A previous correctable single error in the
mass memory has been detected. Clear flag
by writing a ‘1’.

13 ERRMAN_MSYSERRFLG R/W A previous un-correctable multi error in the
system flash has been detected. Clear flag
by writing a ‘1’.

12 ERRMAN_SSYSERRFLG R/W A previous correctable single error in the
system flash has been detected. Clear flag
by writing a ‘1’.

11 ERRMAN_PULSEFLG R/W Pulse command flag bit is set.
Clear flag by writing a ‘1’

10 RESERVED

9 ERRMAN_MEMCLR R This signal is set from the scrubber unit
function in the memory controller. This bit is
set when memory has been cleared after
reset.

8 RESERVED

7 ERRMAN_PARFLG R/W A previous CPU register file parity error has
been detected.
Clear flag by writing a ‘1’

6 ERRMAN_MEOTHFLG R/W A previous RAM EDAC un-correctable
multiple error has been detected for non-
critical data.
Clear flag by writing a ‘1’

5 ERRMAN_SEOTHFLG R/W A previous RAM EDAC single error has been
detected and corrected for non-critical data.
Clear flag by writing a ‘1’.

4 ERRMAN_MECRIFLG R/W A previous RAM EDAC un-correctable
multiple error has been detected for critical
data.
Clear flag by writing a ‘1’.

3 ERRMAN_SECRIFLG R/W A previous RAM EDAC single error has been
detected and corrected for critical data.
Clear flag by writing a ‘1’

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 39 of 222

2 ERRMAN_WDTFLAG R/W A previous watch dog timer reset has been
detected.
Clear flag by writing a ‘1’

1 ERRMAN_RFLG R/W A previous manual reset has been detected.
Clear flag by writing a ‘1’

0 ERRMAN_IFLAG R/W Error Manager Interrupt Flag
0 = No interrupt pending
1 = Interrupt pending
Clear flag by writing a ‘1’

5.3.2.4.4. Carry flag register

Bit position Name Direction Description

31:19 RESERVED

18 ERRMAN_MNVERRCFLG R/W Carry flag set when NVRAM Multiple error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

17 ERRMAN_DNVERRCFLG R/W Carry flag set when NVRAM Double error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

16 ERRMAN_SNVERRCFLG R/W Carry flag set when NVRAM Single error counter
overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

15 ERRMAN_MMMERRCFLG R/W Carry flag set when Mass Memory Multiple error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

14 ERRMAN_SMMERRCFLG R/W Carry flag set when Mass Memory Single error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

13 ERRMAN_MSYSERRCFLG R/W Carry flag set when Sysflash Multiple error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

12 ERRMAN_SSYSERRCFLG R/W Carry flag set when Sysflash Single error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

11:8 RESERVED

7 ERRMAN_PARCFLG R/W Carry flag set when CPU register file parity error
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

6 ERRMAN_MEOFLG R/W Carry flag set when RAM EDAC multiple other
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing ‘1’)

5 ERRMAN_SEOFLG R/W Carry flag set when RAM EDAC single other
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 40 of 222

4 ERRMAN_MECFLG R/W Carry flag set when RAM EDAC multiple critical
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing ‘1’)

3 ERRMAN_SECFLG R/W Carry flag set when RAM EDAC single critical
error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

2 ERRMAN_WDTCFLG R/W Carry flag set when watch dog reset counter
overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by writing a ‘1’)

1:0 RESERVED -

5.3.2.4.5. Single EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_SENOCNT_SDRAM R/W SDRAM EDAC single
error counter for non-
critical errors

15:4 RESERVED -

3:0 ERRMAN_SECRICNT_SDRAM R/W SDRAM EDAC single
error counter for critical
errors

5.3.2.4.6. Multiple EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_MENOCNT R/W SDRAM EDAC multiple error
counter for non-critical errors

15:4 RESERVED -

3:0 ERRMAN_MECRICNT R/W SDRAM EDAC multiple error
counter for critical errors

5.3.2.4.7. Latest boot status register
Indicates the status of the latest failed boot (if any, otherwise latest successful boot). Will be

cleared upon read. The format is defined by the bootrom but is reproduced here for

convenience.

Bit
position

Description

31:28 The first SW image in the current boot
sequence which failed to boot. If none
failed to boot, the current successfully
booted SW image.

0x0 – Updated image copy #3
0x1 – Updated image copy #2
0x2 – Updated image copy #1
0x3 – Safe image copy #3
0x4 – Safe image copy #2
0x5 – Safe image copy #1

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 41 of 222

27:8 Reserved

7:0 Latest boot step successfully passed for
the given SW image. If an SW image
failed to boot, the subsequent step is
the step which failed.

0x01 – Init
0x02 – Init timer
0x03 – Init UART
0x04 – Read SoC info
0x05 – Wait for scrubber
0x06 – Read bad-block table
0x07 – Set image
0x08 – Check bad-block table
0x09 – Get SCET before load
0x0A – Init sysflash
0x0B – Load image
0x0C – Compute load time
0x0D – Verify checksum
0x0E – Handover to boot image

For example:

• 0x0000000E indicates a successful boot of updated image copy #3.

• 0x30000005 indicates a failed boot of safe image copy #3, where an error occurred

during the read of the bad block table.

5.3.3. Usage description

5.3.3.1. RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.3.2. And, if desired, the access can be closed when not needed.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 42 of 222

Figure 5-3 - RTEMS driver usage description

Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be

subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

This queue emits messages upon single correctable errors.

A subscriber must inspect the message according to the following table to determine

whether to take action or not. Multiple subscribers are allowed, and all subscribers will be

notified upon a message.

Message Description

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER Multiple EDAC errors that are not critical have been
detected

5.3.3.2. RTEMS application example

To use the error manager driver in the RTEMS environment, the following code structure is

suggested:

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 43 of 222

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager_rtems.h> is required for accessing error manager

device name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialised at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <stdio.h>

#include <bsp/error_manager_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_MAXIMUM_DRIVERS 10

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument ignored)

{

 int fd;

 uint32_t status_register;

 fd = open(RTEMS_ERRMAN_DEVICE_NAME, O_RDONLY);

 /* Get the status register */

 ioctl(fd, ERRMAN_GET_SR_IOCTL, &status_register);

 /* Previous watch dog timer reset detected? */

 if (status_register & ERRMAN_WDTFLAG) {

 printf("Watchdog barked.\n");

 }

 else {

 printf("Watchdog did not bark.\n");

 }

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 44 of 222

5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing due to

the lack of mechanisms of injecting errors in this release.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 45 of 222

5.4. SCET

5.4.1. Description

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of timestamps. The SCET has also been enhanced with General purpose

triggers and PPS signaling.

The SCET counts in seconds and subseconds, with a subsecond being 2-16th of a second,

roughly equivalent to 15.3 µs.

5.4.2. General purpose triggers

To be able to provide more accurate time stamping on external events, the SCET has a

number of general-purpose triggers. When a trigger fires, the SCET will sample a subset (24

bits) of the current clock for later software readout, matching the external event to the SCET

time regardless of current software state. The exact functionality connected to each general-

purpose trigger and the number available is dependent on the system mapping of the SCET,

e.g. in a System-On-Chip (SoC). See detailed description in [RD18].

5.4.3. Pulse-Per-Second (PPS) signals

5.4.3.1. Description

The SCET block is designed to be included in several different units in a system and for time

synchronization between these SCETs; each SCET can receive and/or transmit PPS signals

using two PPS signals which is intended for off-chip use. The first signal, pps0, is an input

only and intended to be used with a time-aware component such as a GPS device for

synchronizing the SCET counter to real time. The second signal, pps1, is bidirectional and

intended for use in a multi-drop PPS network. One unit in a system can act as master on the

multi-drop PPS network with the other units as slaves, with the ability to switch master

depending on the redundancy concept used.

When the SCET synchronizes the time counter with a PPS signal, it will also monitor this

PPS signal to make sure it arrives as expected within a user set timeframe (PPS threshold).

If input PPS is lost, it requires software interaction to resynchronize to the incoming PPS

pulse. This is to minimize the risk for sudden glitches in the SCET counter depending on the

incoming PPS accuracy and availability. The PPS monitoring will issue interrupts in bare-

metal or messages on the SCET message queue in RTEMS to notify the application if the

PPS has arrived, been lost or been found.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 46 of 222

Exp PPS

OK PPS Missed PPSMissed PPS

Configured
threshold

(N + 1) s (N + 2) s

Time

Figure 5-4 PPS Threshold configuration

To differentiate between the uses of the PPS signal synchronization methods, the SCET can

be said to operate in a few different modes: Free-running, Master, Master with time

synchronization and Slave. Please see the explanations below and 5.4.5.1 for an

implementation description.

5.4.3.2. Free-running mode

In this mode, the SCET doesn't use any PPS signals at all. It simply counts the current time

since power on without correlation with anyone else.

5.4.3.3. Master mode

In this mode, the SCET is still counting on its own, but now it also emits a pulse on pps1 for

every second tick, acting as a master on the bidirectional multi-drop PPS network.

5.4.3.4. Master mode with time synchronization

This mode is the same as the previous master mode, with the addition of also synchronizing

the time counter with the incoming pps0 signal. Should the PPS signal on pps0 disappear

for some reason, it will revert back to normal master mode and continue issuing PPS signals

on pps1.

5.4.3.5. Slave mode

In this mode, the SCET will synchronize the time counter with pps1, using the bidirectional

multi-drop PPS network as an input. Should the PPS pulse disappear for some reason, it will

revert to free running mode.

5.4.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

SCET counter accesses can be done by reading or writing to the device file, modifying the

second and subsecond counter values.

The SCET RTEMS driver also supports a number of different IOCTLs for other operations

which are not specifically affecting the SCET counter registers.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 47 of 222

For event signaling, the SCET driver uses message queues, allowing the application to act

upon different events.

5.4.4.1. Function int open(…)

Opens access to the driver. The device driver allows multiple readers but only one writer at

a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. SCET device is defined as

RTEMS_SCET_DEVICE_NAME.

oflags int in Specifies one of the access modes in the

following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

>0 A file descriptor for the

device on success

-1 see errno values

errno values

EALREADY Device already opened for

writing

EIO Internal RTEMS error

5.4.4.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.4.4.3. Function ssize_t read(…)

Reads the current SCET value, consisting of second and subsecond counters. Both counter

values are guaranteed to be sampled at the same moment.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 48 of 222

buf void * in Pointer to a 6-byte buffer where the
timestamp will be stored. The first four bytes
are the seconds and the last two bytes are the
subseconds.

count size_t in Number of bytes to read, must be set to 6.

Return value Description

>=0 Number of bytes that were

read.

-1 See errno values

errno values

EBADF File descriptor not opened

for reading

EINVAL Number of bytes to read,

count, is not 6

5.4.4.4. Function ssize_t write(…)

Offsets the SCET by an offset specified by buf.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void * in Pointer to a 6-byte buffer where the offsets
are stored. The first four bytes are the offset
for the seconds and the last two bytes are the
offset for the subseconds. In two’s
complement.

count size_t in Number of bytes to write, must be set to 6.

Return value Description

>=0 Number of bytes that were

written.

-1 See errno values

errno values

EBADF File descriptor not opened

for writing

EINVAL Number of bytes to write,

count, is not 6

5.4.4.5. Function int ioctl(…)

Ioctl allows for any other SCET-related operation which is not specifically aimed at reading

and/or writing the SCET time value.

Note: Please note that the number of available PPS inputs and outputs depend on the

hardware configuration.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 49 of 222

Argument
name

Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val uint32_t in Data according to the specific

command.

Command table Description

SCET_SET_PPS_SOURCE_IOCTL Input value sets the PPS source.
0 = External PPS source
1 = Internal PPS source (default)

SCET_GET_PPS_SOURCE_IOCTL Returns the current PPS source
0 = External PPS source
1 = Internal PPS source (default)

SCET_SET_PPS_OUTPUT_PORT_IOCTL Input bit field configures which PPS output drivers to enable.
Bit 0 is the output driver of PPS0.
Bit N is the output driver of PPSN.
Bit 7 is the output driver of PPS7.
Bit value 0 = The output driver is disabled
Bit value 1 = The output driver is enabled
(0 is default value of the bit field, all drivers disabled)

SCET_GET_PPS_OUTPUT_PORT_IOCTL Returns the currently enabled PPS output drivers as a bit
field.
Bit 0 is the output driver of PPS0.
Bit N is the output driver of PPSN.
Bit 7 is the output driver of PPS7.
Bit value 0 = The output driver is disabled
Bit value 1 = The output driver is enabled

SCET_SET_PPS_INPUT_PORT_IOCTL Argument value sets the PPS input port.
0 is PPS0
N is PPSN
7 is PPS7
(1 is default value, PPS1 is default input)

SCET_GET_PPS_INPUT_PORT_IOCTL Returns the currently used PPS input port.
0 is PPS0
N is PPSN
7 is PPS7

SCET_SET_PPS_THRESHOLD_IOCTL Input value configures the PPS threshold window where the
PPS pulse is allowed to arrive without being deemed lost.
Defined in number of subseconds, [0,65535].
(0 is default)

SCET_GET_PPS_THRESHOLD_IOCTL Returns the currently configured PPS threshold window in
subseconds.
(0 is default)

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL Returns 24 bits of the SCET time sampled when PPS arrived.
Bit 23:16 contains lower 8 bits of second
Bit 15:0 contains subseconds

SCET_SET_GP_TRIGGER_LEVEL_IOCTL Input bit field configures the trigger level of each trigger:
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.
Bit value 0 = trigger activates on 0 to 1 transition (rising edge)
Bit value 1 = trigger activates on 1 to 0 transition (falling
edge).
(0 is default).

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 50 of 222

SCET_GET_GP_TRIGGER_LEVEL_IOCTL Returns the currently configured level of the all GP triggers
as a bit field:
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.
Bit value 0 = trigger activates on 0 to 1 transition (rising edge)
Bit value 1 = trigger activates on 1 to 0 transition (falling
edge).
(0 is default).

SCET_SET_GP_TRIGGER_ENABLE_IOCTL Input bit field selects which GP trigger(s) to enable:
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.
All triggers are disabled by default (0)

SCET_GET_GP_TRIGGER_ENABLE_IOCTL Returns which GP triggers that are enabled.
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.

SCET_GET_GP_TRIGGER_COUNTER_IOCTL Input value selects which GP trigger SCET counter sample to
read [0,7].
Returns 24 bits of the SCET counter sampled when the GP
trigger became active.
Bit 23:16 contains lower 8 bits of second
Bit 15:0 contains subseconds

5.4.4.1. Alternative PPS input/output control

The ioctl-commands SCET_SET_PPS_O_EN_IOCTL and SCET_GET_PPS_O_EN_IOCTL

are deprecated but still functional and kept for backwards compatibility. Issuing the

command SCET_SET_PPS_O_EN_IOCTL with the argument 1 is equivalent to issuing the

commands SCET_SET_PPS_OUTPUT_PORT_IOCTL and

SCET_SET_PPS_INPUT_PORT_IOCTL with the arguments 2 and 0 respectively.

If a PPS input/output configuration other than the one described in the table below (PPS0

input/output, PPS1 input/output) is used, trying to read out the current PPS configuration

with SCET_GET_PPS_O_EN_IOCTL will fail and return ENOTTY.

Command table Description

SCET_SET_PPS_O_EN_IOCTL Input value configures if pps0 or pps1 is input and if pps1 is
input or output.
0 = pps1 is input, no output ports are activated, (default)
1 = pps0 is input, pps1 is output

SCET_GET_PPS_O_EN_IOCTL Returns whether the pps0 or pps1 signal is input and if pps1
is input or output.
0 = pps1 is input, no output ports are activated, (default)
1 = pps0 is input, pps1 is output

Return value Description

>=0 Data returned from get
commands, or 0 for success
in other cases

-1 See errno values

errno values

EBADF File descriptor not opened
for writing

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 51 of 222

EINVAL Invalid value for command,
or invalid command.

ENOTTY Inappropriate I/O control
operation, the command
SCET_GET_PPS_O_EN_IO
CTL was issued though a
PPS input/output
configuration, different than
what can be reported by this
command, is used.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 52 of 222

5.4.5. Usage description

5.4.5.1. PPS

The four described PPS modes can be obtained by setting the PPS output enable and PPS

source according to Table 5-1.

Table 5-1 Mapping between PPS modes and PPS settings

PPS mode PPS source PPS output enable
Free-running (default) Internal Input

Master Internal Output

Master with time
synchronization

External Output

Slave External Input

When PPS source is set to external and then lost, it will revert to internal setting.

Slave mode will fall back to Free-running mode and Master mode with time synchronization

will revert back to Master mode.

When PPS source is set to internal: If an incoming PPS is detected the PPS found interrupt

is asserted. Typically a number of these PPS found interrupts should be investigated by the

application and once the PPS is deemed stable enough the PPS source should be set to

external (if external synchronization is sought after).

It is up to the application to decide and enforce if and when the external PPS source is to be

used again.

5.4.5.2. PPS Threshold

The PPS threshold has a 16 bit resolution and is used to define the subsecond range within

which incoming PPS that are deemed acceptable.

The range of acceptability is calculated as >= (65535 – threshold) to <= (65535 + 1 +

threshold) subseconds after the previous PPS.

If the PPS threshold is configured to 0 (min value) only incoming PPS that arrive within >=

subsecond 65535 of the current second to < subsecond 1 of the next second will be deemed

acceptable, (>= 0.65535 to <= 1.0).

If the PPS threshold is configured to 65535 (max value) all incoming PPS are deemed

acceptable. Lost events will not be detected at all.

5.4.5.3. Event callback via message queue

The SCET driver exposes message queues for event messaging from the driver to the

application. The queues use broadcast, so multiple subscribers are possible, but a

subscriber has to be waiting for the message to receive it (see RD14 section 14.4.6.and

14.4.7, polling with RTEMS_NO_WAIT is not possible).

Broadcasting in rtems means that the message will only be copied to listeners if:

• Their task is blocked waiting on the message queue at the time of broadcast.

• There is no other pending message in the message queue.

• Their task has not been made ready by a previous send or broadcast on the queue.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 53 of 222

Otherwise, the broadcast message will be discarded and _not_ queued.

For example, if one task is blocked waiting on the message queue, and another task

broadcasts two messages without any intervening cpu yield, the receiving task would only

see the first message, and the second message would be discarded.

This can also occur more generally based on task priority configuration. If a task, A, was

configured with higher priority than the timestamp message listener task, B. It could

potentially perform multiple tasks A whilst starving the task B (potentially needing another

unrelated high priority task as well), resulting in only seeing the timestamp for the first of

many measurements.

The use of broadcast also forces the use of separate tasks for timestamp handling. If using

only normal queues, and assuming only one listener, it would be possible to handle the

timestamp in the same task as the "generator".

The Scet PPS Perioc task, ‘S’, ‘P’, ‘P’, ‘S’, handles PPS related messages in Table 5-2.

Table 5-2 Driver message queue message types

Event name Description

SCET_INTERRUPT_STATUS_PPS_ARRIVED An external PPS signal has arrived

SCET_INTERRUPT_STATUS_PPS_LOST The external PPS signal is lost

SCET_INTERRUPT_STATUS_PPS_FOUND The external PPS signal was found

The SCET General purpose Task N, ‘S’, ‘G’, ‘T’, ‘n’, handles messages sent from the

general purpose trigger n, with the number n ranging from 0 to up to the maximum defined

for the particular SoC configuration, Table 5-3.

Table 5-3 General purpose trigger n message queue

Event name Description

SCET_INTERRUPT_STATUS_TRIGGERn Trigger n was triggered

5.4.5.4. RTEMS application example

To use the SCET driver in the RTEMS environment, the following code structure is

suggested:

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 54 of 222

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

#include <assert.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_MAXIMUM_DRIVERS 10

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static const int32_t secs_to_adjust = -10;

static const int16_t subsecs_to_adjust = 1000;

/* Adjust SCET time 10 seconds backwards and 1000

 * subseconds forwards */

rtems_task Init (rtems_task_argument ignored)

{

 int result;

 int scet_fd;

 uint32_t old_seconds;

 uint16_t old_subseconds;

 uint32_t new_seconds;

 uint16_t new_subseconds;

 uint8_t read_buffer[6];

 uint8_t write_buffer[6];

 scet_fd = open(RTEMS_SCET_DEVICE_NAME, O_RDWR);

 assert(scet_fd >= 0);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

memcpy(&old_seconds, read_buffer, sizeof(uint32_t));

memcpy(&old_subseconds, read_buffer + sizeof(uint32_t),

 sizeof(uint16_t));

 printf("\nOld SCET time is %lu.%u\n",

 old_seconds, old_subseconds);

 printf("Adjusting seconds with %ld, subseconds with %d\n",

 secs_to_adjust, subsecs_to_adjust);

 secs_to_adjust, subsecs_to_adjust);

 memcpy(write_buffer, &secs_to_adjust, sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t), &subsecs_to_adjust,

sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

 assert(result == 6);

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 55 of 222

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing SCET device name

RTEMS_SCET_DEVICE_NAME as well as other defines.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the SCET

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

5.4.6. Limitations

None

 memcpy(write_buffer, &secs_to_adjust, sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t), &subsecs_to_adjust,

 sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

 assert(result == 6);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

 memcpy(&new_seconds, read_buffer, sizeof(uint32_t));

 memcpy(&new_subseconds, read_buffer + sizeof(uint32_t),

 sizeof(uint16_t));

 printf("New SCET time is %lu.%u\n",

 new_seconds, new_subseconds);

 result = close(scet_fd);

 assert(result == 0);

 rtems_task_delete(RTEMS_SELF);

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 56 of 222

5.5. UART

5.5.1. Description

This device is based on the interface for a 16550D UART given in [RD4] and as such has an

8-bit interface, but has been expanded to provide a faster and more delay-tolerant

implementation.

5.5.1.1. RX/TX buffer depth

The RX and TX FIFOs have been expanded to 128 characters compared to the original

specification of 16 characters. To be backwards compatible as well as being able to utilize

the larger depth of the FIFOs, a new parameter has been brought in called buffer depth. The

set buffer depth decides how much of the FIFOs real depth it should base its calculations

on. Buffer depth affects both RX and TX FIFOs handling in the RTEMS driver.

5.5.1.2. Trigger levels

To be able to utilize the larger FIFOs, the meaning of the trigger levels has been changed. In

the specification in [RD4], it defines the trigger levels as 1 character, 4 characters, 8

characters and 14 characters. This has now been changed to instead mean 1 character, 1/4

of the FIFO is full, 1/2 of the FIFO is full and the FIFO is 2 characters from the given buffer

depth top. This results in the IP being backwards compatible, since a buffer depth of 16

characters would yield the same trigger levels as those given in [RD4].

5.5.1.3. Modes

The UARTs (0-5) can be set to operate in different modes using the ioctl call

UART_IOCTL_MODE_SELECT, as given in section 5.5.2.5.

When in RS-485 mode the UART IP will automatically disable the line driver (put it in a high

impedance state) and only enable it while transmitting. When the UART does not have

anything to transmit it will wait for 800 ns to allow the last bits to propagate through the

circuit, then it will disable the driver. According to the data sheet the driver disable time is

100 ns, so within 1000 ns of the last bit being transmitted the driver should be in a high

impedance state and the UART should be ready to receive.

RS-422 mode is the default mode. In this mode the transmitter and receiver are both

enabled.

In LOOPBACK-mode TX and RX are connected internally in the UART IP.

5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

The driver allows one reader per UART and one writer per UART.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 57 of 222

5.5.2.1. Function int open(…)

Opens access to the requested UART. Only blocking mode is supported.

Upon each successful open call the device interface is reset to 115200 bps and its default

mode according to the table below. See [RD18] for the current SoC configuration, including

device name and characteristics for each UART device.

Argument name Type Direction Description

pathname const char * in The absolute path to the file that is to be

opened, see [RD18].

flags Int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

fd A file descriptor for the

device on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

EIO Failed to obtain internal

resource

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 58 of 222

5.5.2.2. Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function ssize_t read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO

unless UART read timeout is enabled. UART read timeout can be enabled with the ioctl

UART_IOCTL_READ_TIMEOUT_ENABLE. The duration of the timeout can be set with the

ioctl UART_IOCTL_READ_TIMEOUT_DURATION_SET. When UART timeout is enabled

and read() has not received any data before the timer fires, read() will return minus one and

set the status code ETIME.

Please note that the read call may return less data than requested.

Argument
name

Type Direction Description

fd int in File descriptor received at open

buf void * in Pointer to character buffer to write data to

count size_t in Number of characters to read

Return value Description

> 0 Number of characters that

were read.

0 A parity / framing / overrun
error occurred. The RX data
path has been flushed. Data
was lost.

- 1 see errno values

errno values

EIO Failed to get internal resource

ETIME The read operation timed out
and no packet was received.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 59 of 222

5.5.2.4. Function ssize_t write(…)

Write data to the UART. The write call is blocking until all data has been transmitted unless

UART write timeout is enabled.

UART write timeout can be enabled with the ioctl command

UART_IOCTL_WRITE_TIMEOUT_ENABLE. The duration of the timeout can be set with the

ioctl UART_IOCTL_WRITE_TIMEOUT_DURATION_SET. When write timeout is enabled, if

UART write() does not get an interrupt saying that the transmission was successful before

the timer fires, write() will return minus one and set the status code ETIME.

Argument
name

Type Direction Description

fd int in File descriptor received at open

buf const void * in Pointer to character buffer to read data from

count size_t in Number of characters to write

Return value Description

>= 0 Number of characters that

were written.

- 1 see errno values

errno values

EIO Failed to get internal resource

ETIME The write operation timed out.

5.5.2.5. Function int ioctl(…)

Note! Since the granularity of the system is 10ms, values not divisible by 10 ms will be

truncated to the nearest multiple if 10ms. Setting a timeout less than 10 ms will result in a

timeout of 0 ms.

The timeout configuration applies to all open file descriptors. If more than one UART device

is opened, it is not possible to control the timeout configuration for a specific file descriptor.

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 mode selection is not applicable for UART6 and UART7.

Argument
name

Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Value to write or a pointer to a buffer

where data will be written.

Command table Type Direction Description

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 60 of 222

UART_IOCTL_SET_BITRATE uint32_t in Set the bitrate of the line interface.
Possible values:
UART_B375000
UART_B347200
UART_B153600
UART_B115200 (default)
UART_B76800
UART_B57600
UART_B38400
UART_B19200
UART_B9600
UART_B4800
UART_B2400
UART_B1200

UART_IOCTL_MODE_SELECT uint32_t in Set the mode of the interface.
Possible values:
UART_RTEMS_MODE_RS422
(default)
UART_RTEMS_MODE_RS485
UART_RTEMS_MODE_LOOPBACK
(TX connected to RX internally)

UART_IOCTL_RX_FLUSH uint32_t in Flushes the RX software FIFO

UART_IOCTL_SET_PARITY uint32_t in Set parity. Possible values:
UART_PARITY_NONE (default)
UART_PARITY_ODD
UART_PARITY_EVEN

UART_IOCTL_SET_BUFFER_DEPTH uint32_t in Set the FIFO buffer depth. Possible

values:

UART_BUFFER_DEPTH_16

(default)

UART_BUFFER_DEPTH_32

UART_BUFFER_DEPTH_64

UART_BUFFER_DEPTH_128

UART_IOCTL_GET_BUFFER_DEPTH uint32_t* out Get the current buffer depth.

UART_IOCTL_SET_TRIGGER_LEVEL uint32_t in Set the RX FIFO trigger level.

Possible values:

UART_TRIGGER_LEVEL_1 = 1

character

UART_TRIGGER_LEVEL_4 = 1/4

full

UART_TRIGGER_LEVEL_8 = 1/2

full

UART_TRIGGER_LEVEL_14 =

buffer_depth - 2 (default)

UART_IOCTL_GET_TRIGGER_LEVEL uint32_t* out Get the current trigger level

UART_IOCTL_READ_TIMEOUT_ENABLE uint32_t in 1 = Enables UART read
timeout
0 = Disables UART read timeout
(default)

UART_IOCTL_READ_TIMEOUT_DURATION_SET uint32_t in Sets the duration of the timeout in
milliseconds. Default is 1000 ms.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 61 of 222

UART_IOCTL_WRITE_TIMEOUT_ENABLE uint32_t in 1 = Enables UART write
timeout
0 = Disables UART write timeout
(default)

UART_IOCTL_WRITE_TIMEOUT_DURATION_SET uint32_t in Sets the duration of the timeout in
milliseconds. Default is 1000 ms.

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EBADF Bad file descriptor for intended operation

EINVAL Invalid value supplied to IOCTL

5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

5.5.3.1. RTEMS application example

To use the uart driver in the RTEMS environment, the following incomplete code structure is

suggested (see Board Support Package for a complete example program):

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored){}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 62 of 222

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the internal

RX queue is flushed.

5.5.4. Limitations

8 data bits only.

1 stop bit only.

No hardware flow control support.

5.6. Mass memory

5.6.1. Description

This section describes the mass memory driver’s design and usability.

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of usage. In case

of failure on a function call, errno value is set for determining the cause.

5.6.2. Data Structures

5.6.2.1. Struct massmem_cid_t

This struct is used as the target for reading the mass memory chip IDs.

Type Name Purpose

Array of 5 uint8_t edac Byte array for EDAC chip ID

Array of 5 uint8_t chip0 Byte array for chip 0 ID

Array of 5 uint8_t chip1 Byte array for chip 1 ID

Array of 5 uint8_t chip2 Byte array for chip 2 ID

Array of 5 uint8_t chip3 Byte array for chip 3 ID

5.6.2.2. Struct massmem_error_injection_t

This struct is used as a specification when manually injecting errors when writing to the the

mass memory.

Type Name Purpose

uint8_t edac_error_injection Bits to be XORed with generated EDAC byte

uint32_t data_error_injection Bits to be XORed with supplied data

5.6.2.3. Struct massmem_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading from spare area and data

simultaneously.

Type Name Purpose

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 63 of 222

uint32_t page_num What page to read/write

uint32_t offset Byte offset into spare area to read or write. Must be 32 word (of 4

bytes) aligned.

uint8_t * data_buf Pointer to buffer in which the data is to be stored, or to the data that is

to be written.

uint8_t * edac_buf Deprecated; this parameter will not be accessed.

uint32_t size Size to read/write in bytes. Must be 32 word (of 4 bytes) aligned.

5.6.2.4. Struct massmem_ioctl_error_injection_args_t

This structure is used by the RTEMS API in order to perform a special write call to inject

errors into the mass memory.

Type Name Purpose

uint32_t page_num What page to write

uint8_t * data_buf Pointer to data to write

uint32_t size Size of data to write in bytes

massmem_error_injection_t * error_injection Pointer to error injection struct. See 5.6.2.2 for definition

5.6.3. RTEMS API

5.6.3.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. Mass memory device is defined as

MASSMEM_DEVICE_NAME.

oflags int in Specifies one of the access modes in the

following table.

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 64 of 222

Return value Description

>0 A file descriptor for the

device.

- 1 see errno values

errno values

EBADF The file descriptor fd is not

an open file descriptor

ENOENT Invalid filename

EEXIST Device already opened.

5.6.3.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not

an open file descriptor

5.6.3.3. off_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Directio
n

Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

ESPIPE fd is associated with a pipe,

socket or FIFO.

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would

overflow off_t.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 65 of 222

5.6.3.4. ssize_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Note! The character buffer location handed to read must be 32-bit aligned.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

Return value Description

>0 Number of bytes that were

read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is

out of range or nbytes is too

large and reaches a page that

is out of range.

EBUSY Device is busy with previous

read/write operation.

5.6.3.5. ssize_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from.

nbytes ssize_t in Number of bytes to write from buf.

Return value Description

>0 Number of bytes that were

written.

- 1 see errno values

errno values

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 66 of 222

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is out

of range or nbytes is too large

and reaches a page that is out

of range.

EAGAIN Driver failed to write data. Try
again.

EIO Failed to write data. Block

should be marked as a bad

block.

5.6.3.6. int ioctl(…)

5.6.3.6.1. Description
Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

cmd ioctl_command_t in Command specifier.

(varies) (varies) (varies) Command-specific argument.

The following return and errno values are common for all commands except Bad block

check.

Return value Description

0 Operation successful (or block
is marked ok in case of bad
block check)

-EBUSY Device is busy with previous

read/write operation.

-1 See errno values

errno values

ENODEV Internal RTEMS error

EIO Internal RTEMS error

5.6.3.6.2. Reset mass memory device
Resets the mass memory device.

Command Value type Direction Description

MASSMEM_IO_RESET n/a n/a n/a

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 67 of 222

5.6.3.6.3. Read status data
Reads the status register value.

5.6.3.6.4. Read control status data
Reads the control status register value.

5.6.3.6.5. Read EDAC register data
Reads the EDAC register value.

5.6.3.6.6. Read ID
 Reads the chip IDs

5.6.3.6.7. Erase block
Erases a block

Return value Description

-EINVAL The block number is out of

range

-EIO Failed to erase block. Block

should be marked as a bad

block

Command Value
type

Direction Description

MASSMEM_IO_READ_DATA_STATUS uint32_t* out Pointer to variable in which status data is to be
stored.

Command Value
type

Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out Pointer to variable in which control status data is to

be stored.

Command Value
type

Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out Pointer to variable in which control status data is

to be stored.

Command Value type Direction Description

MASSMEM_IO_READ_ID massmem_cid_t.* out Pointer to struct in which ID is to be stored, see

5.6.2.1.

Command Value type Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 68 of 222

5.6.3.6.8. Read spare area
Reads the spare area.

Return value Description

-EINVAL Indicates one or more of:

• The page number is out

of range

• Size is 0

• Size is larger than page

size

• Size is not a multiple of 4

• The data or EDAC buffer

is NULL

The data or EDAC buffer is

not 4-byte aligned

-EIO Reading timed out or read

status indicated failure.

Command Value type Direction Description

MASSMEM_IO_READ_SPARE_AREA massmem_ioctl_spare_area_args_t* in/out Pointer to struct with input

page number specifier, and

destination buffers where

spare area data is to be

stored, see 5.6.2.3

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 69 of 222

5.6.3.6.9. Write spare area
Writes the given data to the spare area.

Return value Description

-EINVAL Indicates one or more of:

• The page number is out

of range

• Size is 0

• Size + offset is larger than

spare area size

• Size is not a multiple of 4

• The data buffer is NULL

• The data buffer is not 4-

byte aligned

-EIO Failed to write data. Block

should be marked as a bad

block.

Command Value type Direction Description

MASSMEM_IO_WRITE_SPARE_AREA massmem_ioctl_spare_area_args_t* in/out Pointer to struct with page

number specifier, byte offset

and pointer to data to be

written, see 5.6.2.3

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 70 of 222

5.6.3.6.10. Bad block check
Reads the factory bad block status from a block.

Note that this only gives information about factory bad blocks; subsequent bad block status

is not included in this information.

Return value Description

0 Block is marked ok.

1 Block is marked as bad.

-EINVAL The page number is out of

range, buffers are NULL or not

4-byte aligned.

5.6.3.6.11. Error Injection
Injects errors in page write command call. The purpose is to test error corrections (EDAC).

Return value Description

-EINVAL Indicates one or more of:

• The page number is out

of range

• Size is 0

• Size is larger than page

size

• Size is not a multiple of 4

• The data or EDAC buffer

is NULL

The data buffer is not 4-byte

aligned

-EIO The mass memory write

operation failed, the block

should be marked as a bad

block

5.6.3.6.12. Get page bytes
Get the available page size in bytes.

• If the BSP is compiled without BSP_AAC_MASSMEM_ENABLE_32GB defined,

the value will always be equal to the static define MASSMEM_PAGE_BYTES

regardless of the chip type in use.

Command Value type Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

Command Value type Direction Description

MASSMEM_IO_ERROR_INJECTION massmem_ioctl_error_injection_args_t* in Pointer to struct with

program page arguments

as defined in 5.6.2.4

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 71 of 222

• If the BSP is compiled with BSP_AAC_MASSMEM_ENABLE_32GB defined, the

value will differ based on the chip type in use, but will always be less or equal to the

static define MASSMEM_PAGE_BYTES_MAX.

This is provided in order to support the runtime-determined size usage mode, see 5.6.4.5.

5.6.3.6.13. Get spare area bytes
Get the available spare area size in bytes.

• If the BSP is compiled without BSP_AAC_MASSMEM_ENABLE_32GB defined,

the value will always be equal to the static define

MASSMEM_SPARE_AREA_BYTES regardless of the chip type in use.

• If the BSP is compiled with BSP_AAC_MASSMEM_ENABLE_32GB defined, the

value will differ based on the chip type in use, but will always be less or equal to the

static define MASSMEM_SPARE_AREA_BYTES_MAX.

This is provided in order to support the runtime-determined size usage mode, see 5.6.4.5.

5.6.4. Usage description

5.6.4.1. General

The driver supports a number of independent operations on the mass memory. Logically the

mass memory is divided into blocks and pages. There are MASSMEM_BLOCKS blocks

starting from block number 0 and MASSMEM_PAGES_PER_BLOCK pages within each

block starting from page 0.

5.6.4.2. Overview

The RTEMS driver accesses the mass memory by the reference a page number.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

Command Value type Direction Description

MASSMEM_IO_GET_PAGE_BYTES uint32_t* out Pointer to variable in which the available page

size in bytes is to be stored.

Command Value

type

Direction Description

MASSMEM_IO_GET_SPARE_AREA_BYTES uint32_t* out Pointer to variable in which the available

spare area size in bytes is to be stored.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 72 of 222

5.6.4.3. Usage

The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapter 5.5.2.

And, if desired, the access can be closed when not needed.

Note! All calls to RTEMS driver are blocking calls.

In order to support different chip types with different size characteristics, two separate

modes of usage are available for determining the page size:

5.6.4.4. Same-size usage mode

This usage mode is backwards-compatible, and exposes 16GB of available space

regardless of the chip type, it defines MASSMEM_PAGE_BYTES and

MASSMEM_SPARE_AREA_BYTES for use by the application at compile-time.

This usage mode is only available if the RTEMS BSP is compiled without the

BSP_AAC_MASSMEM_ENABLE_32GB define set.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 73 of 222

To use the mass memory flash driver in the RTEMS environment with the same-size usage

mode, the following incomplete code structure is suggested:

5.6.4.5. Runtime-determined size usage mode

This usage mode allows support for differing page sizes at runtime, and defines

MASSMEM_PAGE_BYTES_MAX and MASSMEM_SPARE_AREA_BYTES_MAX for use at

compile time, when the sizes are not yet known. At runtime, the available page and spare

area sizes will be accessible via the MASSMEM_IO_GET_PAGE_BYTES and

MASSMEM_IO_GET_SPARE_AREA_BYTES ioctl() commands.

This usage mode is available both with and without the

BSP_AAC_MASSMEM_ENABLE_32GB define set:

• If the driver is compiled without the BSP_AAC_MASSMEM_ENABLE_32GB

define set, the mass memory (and corresponding available page and spare area

size) will always be exposed as 16GB regardless of the chip type at runtime.

This can be useful for migrating applications to the runtime-determined size usage

mode without removing support for the same-size usage mode.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static uint8_t buf[MASSMEM_PAGE_BYTES];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

 off = lseek(fd, page_number, SEEK_SET);

 .

 sz = write(fd, buf, MASSMEM_PAGE_BYTES);

 .

 off = lseek(fd, page_number, SEEK_SET)

 .

 sz = read(fd, buf, MASSMEM_PAGE_BYTES);

 .

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 74 of 222

• If the driver is compiled with the BSP_AAC_MASSMEM_ENABLE_32GB define

set, the mass memory (and corresponding available page and spare area size) will

vary between exposing 16GB and 32GB depending on the chip type at runtime.

Please note that this disables support for the same-size usage mode.

BSP_AAC_MASSMEM_ENABLE_32GB can be set as an environment or Makefile variable

when compiling the RTEMS BSP.

To use the mass memory flash driver in the RTEMS environment with the runtime-

determined size usage mode, the following incomplete code structure is suggested:

5.6.4.6. Defines and includes

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write to access the mass memory bare metal driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for mass memory flash related

definitions.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static uint8_t buf[MASSMEM_PAGE_BYTES_MAX];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

 s = ioctl(fd, MASSMEM_IO_GET_PAGE_BYTES, &page_bytes)

 .

 off = lseek(fd, page_number, SEEK_SET);

 .

 sz = write(fd, buf, page_bytes);

 .

 off = lseek(fd, page_number, SEEK_SET)

 .

 sz = read(fd, buf, page_bytes);

 .

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 75 of 222

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the mass memory driver. This will automatically initialise the driver at boot up.

5.6.5. Error injection

Error injection is used to verify the EDAC capabilities of the IP.

The IP always writes/reads 8 32-bit data words. If less or an uneven amount of data is

requested from the application the drivers pads this internally.

To ensure that the memory can withstand a full byte corruption of data, the 8 words of data

are interleaved over the mass memory chips. This is done transparently from the user

perspective except when writing the error injection vector.

Looking at the massmem_error_injection_t struct defined in 5.6.2.2:

the data_error_injection member is an uint32_t.

Bit 0 of byte 0, 1, 2, 3 affects the first data word.

Bit 1 of byte 0, 1, 2, 3 affects the second data word.

…

Bit 7 of byte 0, 1, 2, 3 affects the eight data word.

To inject a correctible error in the third data word flip either bit 2, 10, 18 or 26.

To inject an uncorrectible in the third data word flip two bits of either 2, 10, 18, 26.

5.6.6. Limitations

The mass memory flash driver may only have one open file descriptor at a time.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 76 of 222

5.7. Spacewire

5.7.1. Description

This section describes the SpaceWire driver’s design and usability.

5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.7.2.5.

5.7.2.1. int open(…)

Opens a file descriptor associated with the named device, and, for normal operation, open()

registers with the corresponding logic address. It is also possible to open a SpaceWire

device in promiscuous mode, where only one reader task is needed for reading on all of the

logical addresses. Each unique device may only be opened once for read-only and once for

write-only at the same time, or alternatively opened only once for read-write at the same

time. If a SpaceWire device is opened in promiscuous mode, it is not possible to open a

device with a specific logical address. If a device is opened for a specific logical address, it

is not possible to open another device in promiscuous mode.

The device name must be set as described in the usage description in subchapter 5.7.3.

Argument name Type Direction Description

filename char * in Device name to register to for data

transaction.

oflags int in Device must be opened by exactly one of the

symbols defined in Table 5-4.

Return value Description

>0 A file descriptor for the

device.

- 1 see errno values

errno values

EIO Internal RTEMS resource
error.

EALREADY Device already opened for

the requested access mode

(read or write).

ENOENT Invalid filename.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 77 of 222

Table 5-4 Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.7.2.2. int close(…)

Deregisters the device name from data transactions.

Note! Closing a file descriptor that has ongoing read, write or ioctl processes is not

supported. The application must guarantee that all accesses has completed (returned)

before closing the descriptor.

Argument name Type Direction Description

fd int in File descriptor received at open.

0 Device name deregistered
successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not

and open file descriptor.

5.7.2.3. ssize_t read(…)

Reads a packet when available.

Note! This call is blocked until a packet is received, unless Spacewire read timeout is

enabled. In addition, only one task must access one file descriptor at a time. Multiple task

accessing the same file descriptor is not allowed.

Spacewire read timeout can be enabled with the ioctl

SPWN_IOCTL_READ_TIMEOUT_ENABLE. The duration of the timeout can be set by the

ioctl SPWN_IOCTL_READ_TIMEOUT_DURATION_SET. If Spacewire read timeout is

enabled, and read() has not received any data before the timer fires, read() will return minus

one and set the status code ETIME. If the reception of a packet has been started, the

configurable timeout has no effect anymore. Though there is no risk of blocking indefinitely if

the whole packet is not received as there is a fixed timeout of 1 second implemented in the

SpaceWire router. If the rest of the packet does not arrive within 1 second, read() will return

minus one and set the status code ETIMEDOUT.

If a packet with an EEP (Error End of Packet) is received, read() will return minus one and

set the status code ETIMEDOUT. If a SpW packet is terminated by an EEP character, this

means that the packet has been truncated somewhere along its path due to SpW link failure.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 78 of 222

Note! Argument buf must be a 32-bit aligned address.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0 Received size of the actual

packet. Can be less than

nbytes.

0 Packet size is 0, or buffer size

was lower than received

packet size, with errno value

is set to EOVERFLOW.

-1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor.

EINVAL Packet size is larger than

SPWN_MAX_PACKET_SIZE,

or buffer is NULL.

EIO Internal RTEMS resource
error.

EBUSY Receive descriptor not

currently available.

EOVERFLOW Packet size overflow occurred
on reception.

ETIMEDOUT EEP received. Received
packet is incomplete.

ETIME The read operation timed out
and no packet was received.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 79 of 222

5.7.2.4. ssize_t write(…)

Transmits a packet.

Note! This call is blocked until the packet is transmitted, unless write timeout is enabled.

Spacewire write timeout can be enabled with the ioctl command

SPWN_IOCTL_WRITE_TIMEOUT_ENABLE. The duration of the timeout can be set by the

ioctl SPWN_IOCTL_WRITE_TIMEOUT_DURATION_SET. If write timeout is enabled, and

the user application tries to write on Spacewire, if the Spacewire driver does not get an

interrupt saying that the transmission was successful before the timer fires, write() will return

minus one and set the status code ETIME. If a timeout occurs during an ongoing

transmission of a packet, the packet will be truncated, terminated by an EEP and sent.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>=0 Number of bytes that were

transmitted.

<0 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor.

EINVAL Packet size is larger than

SPWN_MAX_PACKET_SIZE.

EBUSY Transmission already in
progress.

EIO Internal RTEMS resource

error, or internal transmission

error.

ETIME The write operation timed out.

5.7.2.5. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.7.2.6

value void * in The value relating to command operation as
defined in subchapter 5.7.2.6.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 80 of 222

5.7.2.6. Mode setting

Sets the device into the given mode.

Note! The mode setting affects the SpaceWire device and therefore all file descriptors

registered to it.

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor.

EINVAL Invalid command, or invalid

mode value.

5.7.2.7. Spacewire Timeout

Note! Since the granularity of the system is 10ms, values not divisible by 10 ms will be

truncated to the nearest multiple if 10ms. Setting a timeout less than 10 ms will result in a

timeout of 0 ms.

The timeout configuration applies to all open file descriptors. If more than one Spacewire device

is opened, it is not possible to control the timeout configuration for a specific file descriptor.

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor.

Command Value type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in Modes available:

• SPWN_IOCTL_MODE_OFF: Turns off the
node.

• SPWN_IOCTL_MODE_LOOPBACK: Internal
loopback mode

• SPWN_IOCTL_MODE_NORMAL: Normal
mode.

Command Value
type

Direction Description

SPWN_IOCTL_READ_TIMEOUT_ENABLE uint32_t in 1 = Enables SpW read timeout
0 = Disables SpW read timeout (default)

SPWN_IOCTL_READ_TIMEOUT_DURATION_SET uint32_t in Sets the duration of the read timeout in
milliseconds. Default is 1000 ms.

SPWN_IOCTL_WRITE_TIMEOUT_ENABLE uint32_t in 1 = Enables SpW write timeout
0 = Disables SpW write timeout (default)

SPWN_IOCTL_WRITE_TIMEOUT_DURATION_SET uint32_t in Sets the duration of the write timeout in
milliseconds. Default is 1000 ms.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 81 of 222

EINVAL Invalid command, or invalid

mode value.

5.7.2.8. Timing Mode and Timecodes

Return value Description

0 Success

- 1 Failure, see errno values

errno values

EBADF The file descriptor fd is not an
open file descriptor.

EINVAL Invalid command, or invalid
timing mode.

5.7.3. Usage description

5.7.3.1. RTEMS

The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register for

operation in normal or promiscuous mode.

5.7.3.1.1. Normal operation
Registration to a logical address is performed by calling open with a device name consisting

of the predefined string SPWN_DEVICE_0_NAME_PREFIX concatenated with a string

corresponding to the chosen logical address number.

Deregistration is performed via close.

Multiple logic addresses may be registered at the same time. But each individual logic

address may only be registered for read and write once at the same time.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard [RD1] and cannot be registered to.

5.7.3.1.2. Promiscuous Mode
In promiscuous mode only one reader task is needed for reading on all of the logical

addresses. All the received SpaceWire packets are passed to the calling application,

allowing the application to handle the received packets and perform additional routing if

Command Value type Direction Description

SPWN_IOCTL_TIMING_MODE_SET spwn_timing_mode_t In Sets the timing mode. Encoded as:
0 – Timing mode disabled
1 – Timing mode Master
2 – Timing mode Slave

SPWN_IOCTL_TIMING_MODE_GET spwn_timing_mode_t Out Gets the current timing mode. Encoded as:
0 – Timing mode disabled
1 – Timing mode Master
2 – Timing mode Slave

SPWN_IOCTL_TIMECODE_GET uint8_t Out Gets the current time code.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 82 of 222

required. The write operation is unchanged; it has the same functionality as in normal

operation.

For opening a spacewire device in promiscuous mode, open shall be called with the device

name SPWN_PROMISCUOUS_DEVICE_NAME.

Deregistration is performed via close

Note! A reception packet buffer must be aligned to 4 bytes in order to handle the packet’s

reception correctly. It is therefore recommended to assign the reception buffer in the

following way:

uint8_t __attribute__ ((aligned (4)) buf_rx[PACKET_SIZE];

5.7.3.2. Usage

The RTEMS driver must be opened before it can be used to access the SpaceWire device.

Once opened, all provided RTEMS API operations can be used as described subchapter

5.7.2. And, if desired, the access can be closed when not needed.

Figure 5-5 – RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls unless stated otherwise.

Note! The data rate depends on the packet size and the transmission rate of the SpaceWire

IP core. The larger the packet size, the higher the data rate.

5.7.3.3. RTEMS application example

To use the driver in the RTEMS environment, the following incomplete code structure is

suggested (see Board Support Package for complete example programs):

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 83 of 222

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

The reception buffer buf_rx, is aligned to a 4-byte boundary in order to correctly handle

the DMA access when receiving SpaceWire packets.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

.

.

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

.

.

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t __attribute__ ((aligned (4))) buf_rx[SPWN_MAX_PACKET_SIZE];

uint8_t buf_tx[SPWN_MAX_PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 84 of 222

5.8. GPIO

5.8.1. Description

This driver software for the GPIO IP handles the setting and reading of general-purpose

input/output pins. It implements the standard set of device file operations according to [RD6].

The GPIO IP has, apart from logical pin and input/output operations, also a number of other

features.

5.8.1.1. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the driver

software by the means of an interrupt.

5.8.1.2. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample the

current timer when a rising or falling edge is detected on a pin. Reading the time of the

timestamp requires interaction with the SCET and exact register address depends on the

current board configuration. One SCET sample register is shared by all GPIOs.

5.8.1.3. RTEMS differential mode

In RTEMS, a GPIO pin can also be set to operate in differential mode on output only. This

requires two pins working in tandem and if this functionality is enabled, the driver will

automatically adjust the setting of the paired pin to output mode as well. The pins are paired

in logical sequence, which means that pin 0 and 1 are paired as are pin 2 and 3 etc. Thus, in

differential mode it is recommended to operate on the lower numbered pin only to avoid

confusion. Pins can be set in differential mode on specific pair only, i.e. both normal single

ended and differential mode pins can operate simultaneously (though not on the same pins

obviously).

5.8.1.4. Operating on pins with pull-up or pull-down

For scenarios when one or multiple pins are connected to a pull-up or pull-down (for e.g.

open-drain operation), it's recommended that the output value of such a pin should always

be set to 1 for pull-down or 0 for pull-up mode. The actual pin value should then be selected

by switching between input or output mode on the pin to comply with the external pull

feature.

5.8.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.8.2.1. Function int open(...)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead

retains the settings from any previous access.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 85 of 222

Argument name Type Direction Description

pathname const char * in The absolute path to the GPIO pin to be
opened. All possible paths are given by
"/dev/gpioX" where X matches 0-31. The
actual number of devices available depends
on the current hardware configuration.

flags int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

Fildes A file descriptor for the device on
success

-1 See errno values

errno values

EALREADY Device is already open

EINVAL Invalid options

5.8.2.2. Function int close(...)

Closes access to the GPIO pin.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 86 of 222

5.8.2.3. Function ssize_t read(...)

Reads the current value of the specified GPIO pin. If no edge detection has been enabled,

this call will return immediately. With edge detection enabled, this call will block with a

timeout until the pin changes status such that it triggers the edge detection. The timeout can

be adjusted using an ioctl command, but defaults to zero - blocking indefinitely, see also

5.8.2.5.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to put the read
data in.

count size_t in Number of bytes to read, must be set to 1.

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for the edge
detection to trigger

5.8.2.4. Function ssize_t write(...)

Sets the output value of the specified GPIO pin. If the pin is in input mode, the write is

allowed, but its value will not be reflected on the pin until it is set in output mode.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to character buffer to get the write
data from.

count size_t in Number of bytes to write, must be set to 1.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

5.8.2.5. Function int ioctl(...)

The input/output control function can be used to configure the GPIO pin as a complement to

the simple data settings using the read/write file operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val void * in/out Data according to the specific command.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 87 of 222

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECTION uint32_t out Get input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_SET_DIRECTION uint32_t in Set input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_GET_FALL_EDGE_DETECTION uint32_t out Get falling edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_FALL_EDGE_DETECTION uint32_t in Set falling edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_RISE_EDGE_DETECTION uint32_t out Get rising edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_RISE_EDGE_DETECTION uint32_t in Set rising edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_TIMESTAMP_ENABLE uint32_t out Get timestamp enable status of the
pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_SET_TIMESTAMP_ENABLE uint32_t in Set timestamp enable configuration
of the pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_GET_DIFF_MODE uint32_t out Get differential mode status of the
pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_SET_DIFF_MODE uint32_t in Set differential mode configuration
of the pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_GET_EDGE_TIMEOUT uint32_t out Get the edge trigger timeout value
in ticks. Defaults to zero which
means wait indefinitely.

GPIO_IOCTL_SET_EDGE_TIMEOUT uint32_t in Set the edge trigger timeout value
in ticks. Zero means wait
indefinitely.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 88 of 222

5.8.3. Usage description

5.8.3.1. RTEMS application example

The following #define needs to be set by the user application to be able to use the GPIO:

CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, read, write and ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM

#define CONFIGURE_MAXIMUM_DRIVERS 15

#define CONFIGURE_MAXIMUM_SEMAPHORES 20

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int gpio_fd;

 uint32_t buffer;

 uint32_t config;

 ssize_t size;

 gpio_fd = open("/dev/gpio0", O_RDWR);

 config = GPIO_DIRECTION_IN;

 status = ioctl(gpio_fd, GPIO_IOCTL_SET_DIRECTION,

 &config);

 size = read(gpio_fd, &buffer, 1);

 status = close(gpio_fd);

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 89 of 222

Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

See the Board Support Package for a more detailed example.

5.8.4. Limitations

Differential mode works on output only.

5.9. CCSDS

5.9.1. Description

This section describes the driver as a utility for accessing the CCSDS IP.

On the telemetry, the frames are encoded with Reed Solomon encoding that conforms to the

CCSDS standard with an RS(255,223) encoder implementation and an interleaving depth of

5. That makes a total frame length of 1115 bytes. The standard RS polynomial is used.

On the telecommands the BCH decoder (63,56) supports the error correcting mode. The

BCH decoder cannot be disabled.

The driver can be configured to handle all available interrupts from the CCSDS IP:

• Pulse commands (CPDU)

• Timestamping of telemetry, see [RD18] for details.

• DMA transfer finished.

• Telemetry transfer frame error.

• Telecommand rejection due to error in the incoming telecommand.

• Telecommand frame buffer errors.

• Telecommand frame buffer overflow.

• Telecommand successfully received.

Telemetry is sent as blocks of TM Space packets of maximum block size of 217 bytes. When

using the RTEMS driver, Telemetry is sent by writing to a writable device. The device can be

opened in non-blocking or blocking mode described chapters below. Up to 8 virtual channels

for telemetry are supported by the CCSDS IP and driver. For telecommands, 64 virtual

channels are supported.

The actual allocation and availability of virtual channels is described in [RD18].

5.9.2. Non-blocking

In non-blocking mode for the RTEMS driver, a write access is done without waiting for a

response from the IP before returning from the write-call. During non-blocking transfer of a

chunk of data with a maximum size of four times the maximum descriptor length, the

sequence below is executed:

1. The address DMA transfer of next available descriptor is set.

2. DESC LENGTH, TM PRESENT, IRQ EN, WRAP is set of next available descriptor.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 90 of 222

3. If the data to send needs several descriptors, steps 1 and 2 are repeated until all

data in the data-chunk has been transferred.

4. When a DMA transfer is finished, an interrupt is generated, and the interrupt status

indicates which VC’s that were involved in the DMA transfers.

5. The TM Status of the actual VC is read, which will get the last descriptor for the last

DMA transfer of that VC. When the TM Status is read, the interrupt is cleared.

6. The driver reads status of the descriptor transfers since the last DMA transfers on

the actual virtual channel and prepares messages of the type described in 5.9.5.3

and sent to a message queue, named “CCSQ”, provided by the driver. The user-

application of the ccsds-driver must implement a listener of the message queue

and take actions if an error occurred during transfer.

7. . Steps 4 to 6 are repeated for all VC’s signaling an interrupt.

5.9.3. Blocking

In blocking mode for the RTEMS driver, a DMA finished interrupt must occur before the write

call is returned. The user of the driver does not need to prepare any transfer list or

implement a listener of the message queue.

5.9.4. Buffer data containing TM Space packets

TM Space packets can be packed within the same buffer, but a TM Space packet must not

be split over two different buffers. The first byte of the buffer must always start with a TM

Space packet. Data can be padded at the end, with padding byte value of 0xF5. The

padding data will not be sent to ground.

5.9.5. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, errno value is set for determining the cause.

5.9.5.1. Device-file names

Access to the CCSDS-driver from an application is provided by different device-files

(depending on the used SoC configuration [RD18], some devices might not be available):

• “/dev/ccsds” that is used for configuration and status for common TM and TC

functionality in the IP. Is defined as CCSDS_NAME in RTEMS driver interface file.

• “/dev/ccsds-tm” that is used for configuration and status of the TM path common for all

virtual channels. Is defined as CCSDS_NAME_TM in RTEMS driver interface file.

• “/dev/ccsds-tmN”, where N is to be replaced by the VC number in the range [0..6] (if

supported according to the SoC configuration [RD18]). Used for sending telemetry on

virtual channel N. The names are defined as CCSDS_NAME_TM_VCN in the RTEMS

driver interface file. (TM VC7 is reserved for idle frames generated in hardware.)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 91 of 222

• “/dev/ccsds-tc” is used for configuration and status of the TC path common for all virtual

channels. It is also used for reading on all TC virtual channels. Is defined as

CCSDS_NAME_TC.

• “/dev/ccsds-tc0” and CCSDS_NAME_TC_VC0 are deprecated aliases for "/dev/ccsds-tc", they

may be removed in future releases.

5.9.5.2. Default configuration

The default configuration of the TM downlink is:

• FECF is included in TM transfer frames.

• Master Channel Frame counter is enabled for telemetry.

• Generation of Idle frames is enabled.

• Pseudo randomization of telemetry is disabled.

• Reed Solomon encoding of telemetry is enabled.

• Convolutional encoding of telemetry is disabled.

• The divisor of the TM clock is set to 25 (giving a bitrate of 1 Mb/s).

• All available interrupts from the CCSDS IP are enabled.

• Generation of OCF/CLCW in TM Transfer frames is enabled.

• TM is disabled.

The default configuration of the TC uplink is:

• Derandomization of telecommands is disabled.

 All available interrupts are enabled.

5.9.5.3. Data type dma_transfer_cb_t

For TM-devices operated in non-blocking mode (see 5.9.2) a message with the contents

below is sent to the message queue “CCSQ” for reporting of transfer status.

Element Type Description

adress uint32_t The start address in SDRAM that is
fetched during transfer

length uint16_t The length of the transfer. Can be
maximum 65535.

vc uint8_t The virtual channel of the transfer.

status uint_8 Status of transfer
0 – Not send
1 – Send finished
2 – Send error

5.9.5.4. Data type tm_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below. Note: Changing bitrate (clk_divisor) and other settings that affect the TM

bitstream requires that TM is first disabled, then reenabled after the change.

Element Type Description

clk_divisor uint16_t The divisor of the clock

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 92 of 222

tm_enabled uint8_t Enable/disable of telemetry
0 – Disable
1 – Enable

ocf_clcw_enabled uint8_t Enable/disable of OCF/CLCW in TM
Transfer frames
0 – Disable
1 – Enable

fecf_enabled uint8_t Enable/disable of FECF
0 – Disable
1 – Enable

mc_cnt_enabled uint8_t Enable/Disable of master channel
frame counter
0 – Disable
1 – Enable

idle_frame_enabled uint8_t Enable/disable of generation of Idle
frames
0 – Disable
1 – Enable

tm_conv_bypassed uint8_t Bypassing of the TM convolutional
encoder
0 - No bypass
1 - Bypass

tm_pseudo_rand_bypassed uint8_t Bypassing of the TM pseudo
randomizer encoder
0 - No bypass
1 - Bypass

tm_rs_bypassed uint8_T Bypassing of the TM Reed Solomon
encoder
0 - No bypass
1 - Bypass

5.9.5.5. Data type tc_config_t

This datatype is a struct for configuration of the TC path. The elements of the struct are

described below:

Element Type Description

tc_derandomizer_bypassed uint8_t Bypassing of TC derandomizer.
0 - No bypass
1 - Bypass

5.9.5.6. Data type tm_status_t

This datatype is a struct to store status parameters of the TM. The elements of the struct are

described below:

Element Type Description

dma_desc_addr uint8_t The LSB of the descriptor address
giving the DMA Finished interrupt

tm_fifo_err uint8_t Reports if a FIFO error occurred
during transmission of data
0 - No Error
1 - FIFO Error

tm_busy uint8_t Reserved

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 93 of 222

5.9.5.7. Data type tm_error_cnt_t

This datatype is a struct to store error counters of the TM path. The elements of the struct

are described below:

Element Type Description

tm_par_err_cnt uint8_t Indicates number of CRC errors in
TC path. The counter will wrap
around after 2^8-1.

5.9.5.8. Data type tc_status_t

This datatype is a struct to store status parameters of the TC path. The elements of the

struct are described below:

Element Type Description

tc_frame_cnt uint8_t Number of received TC frames. The
counter will wrap around after 255.

tc_buffer_cnt uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

cpdu_line_status uint16_t Bits 0-11 show if the corresponding
pulse command line was activated by
the last command.

cpdu_bypass_cnt uint8_t Indicates the number of accepted
commands. Wraps at 15.

5.9.5.9. Data type tc_error_cnt_t

This datatype is a struct to store error counters of the TC path. The elements of the struct

are described below:

Element Type Description

tc_overflow_cnt uint8_t Indicates number of missed TC
frames due to overflow in TC
Buffers.The counter will wrap around
after 255.

tc_cpdu_rej_cnt uint8_t Indicates number of rejected CPDU
commands. The counter will wrap
around after 255.

tc_buf_rej_cnt uint8_t Indicates number of rejected TC
commands. The counter will wrap
around after 255.

tc_par_err_cnt uint8_t Indicates number of CRC errors in
TC path. The counter will wrap
around after 255.

5.9.5.10. Data type radio_status_t

This datatype is a struct to hold radio status. The elements of the struct are described below:

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 94 of 222

Element Type Description

tc_sub_carrier uint8_t See RD8 section 4.2.1.8.3

tc_carrier uint8_t See RD8 section 4.2.1.8.2

5.9.5.11. int open(…)

Opens the devices provided by the CCSDS RTEMS driver. Only one instance of every

device can be opened.

Note! Since “/dev/ccsds-tc0” is an alias of “/dev/ccsds-tc” they cannot be opened at the

same time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. The name of the descriptor is
described in 5.9.5.1.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field in the following table.

mode int in A bitwise 'or' separated list of values that
determine the mode of the opened device. If
the flag LIBIO_FLAGS_NO_DELAY is set, the
device is opened in non-blocking mode.
Otherwise, it is opened in blocking mode. For
further info see 5.9.3. Applies only to devices
“/dev/ccsds-tmN”.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

≥0 A file descriptor for the
device on success

- 1 see errno values

errno values

EBUSY If device already opened

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 95 of 222

5.9.5.12. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.9.5.13. ssize_t write(…)

To send data on a virtual channel N, the device descriptor described in 5.9.5.1 (“/dev/ccsds-

tmN”) shall be used. TM needs to be enabled to successfully send telemetry. If the device is

opened in blocking mode, the write operation will wait until all data has been transferred

before returning.

For devices opened in blocking mode, if data has not been transferred within 1500 ms the

write call is aborted and an error is reported. This limits the amount of data that can be

written at low bitrates.

For devices opened in non-blocking mode, the write call returns immediately, and the status

of the transfer is returned by a message available in a message queue of the driver. See

5.9.2

Argument
name

Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes (0-65535) to write to the

device.

Return value Description

0 or greater number of bytes that were

written.

- 1 see errno values

errno values

EIO Device not ready for write or

write operation is not

supported on device

ETIMEDOUT A write to a device in blocking

mode did not get a response

from IP within expected time.

ENOSYS TM is not enabled

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 96 of 222

5.9.5.14. ssize_t read(…)

To read a Telecommand Transfer frame a read-operation on device “/dev/ccsds-tc” (see

section 5.9.5.1) shall be used. This call is blocking until a Telecommand Transfer Frame is

received.

Argument
name

Type Direction Description

fd int in File descriptor received at open

buf void * in Character buffer where read data is returned.
The max TC frame size, 1024 byte, must be
able to fit in the buffer.

nbytes size_t in Maximum number of bytes to read, must be at
least 1024 bytes

Return value Description

0 or greater number of bytes that were
read.

- 1 see errno values

errno values

EINVAL Invalid value of nbytes

EIO A read operation is not
supported on the device.

5.9.5.15. int ioctl(…)

The devices provided by the CCSDS driver support different IOCTL’s.

Argument
name

Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val void * in The parameter to pass is depended on
which IOCTL is called. Is described in table
below.

Command table Device Parameter type Description
CCSDS_SET_TM_CONFIG /dev/ccsds-tm tm_config_t * Sets a configuration of the TM

path.

CCSDS_GET_TM_CONFIG /dev/ccsds-tm tm_config_t * Returns the configuration of the
TM path.

CCSDS_SET_TC_CONFIG /dev/ccsds-tc tc_config_t * Sets a configuration of the TC
path.

CCSDS_GET_TC_CONFIG /dev/ccsds-tc tc_config_t * Returns the configuration of the
TC path.

CCSDS_GET_RADIO_STATUS /dev/ccsds radio_status_t * Gets radio status.

CCSDS_GET_TM_STATUS /dev/ccsds-tm tm_status_t * Gets status of TM path.

CCSDS_GET_TM_ERR_CNT /dev/ccsds-tm tm_error_cnt_t * Gets the TM error counter.

CCSDS_GET_TC_ERR_CNT /dev/ccsds-tc tc_error_cnt_t * Gets the TC error counter.

CCSDS_GET_TC_STATUS /dev/ccsds-tc tc_status_t * Gets status of TC path.

CCSDS_SET_TC_FRAME_CTRL /dev/ccsds-tc uint32_t Set the TC frame control
register.

Bit 2-31 unused.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 97 of 222

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

EIO Unknown IOCTL for device.

EINVAL Invalid input value.

Bit 1:
0 – No effect
1 – Set to signal the CCSDS IP
that a telecommand frame has
been read.

Bit 0:
0 – No effect
1 – Reset the buffer function in
the CCSDS IP.

CCSDS_ENABLE_TM /dev/ccsds-tm N.A Enable TM

CCSDS_DISABLE_TM /dev/ccsds-tm N.A Disable TM.

CCSDS_INIT /dev/ccsds N.A. Sets a default configuration of
CCSDS IP. See 5.9.1

CCSDS_SET_CLCW /dev/ccsds-tm uint32_t Set the CLCW. See RD8.

CCSDS_GET_CLCW /dev/ccsds-tm uint32_t * Get the CLCW. See RD8.

CCSDS_SET_TM_TIMESTAMP /dev/ccsds-tm uint32_t Set time stamp generation rate.
The period of the generation is
the power of two with the input
as exponent. Allowed Values
range from 0 to 8.

0x00 – Take a time stamp every
time frame sent
0x01 – Take a time stamp every
2nd time frame sent
0x02 – Take a time stamp every
4th time frame sent
…
0x08 – Take a time stamp every
256th time frame sent

CCSDS_GET_TM_TIMESTAMP /dev/ccsds-tm uint32_t * Get period of timestamp
generation.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 98 of 222

5.9.6. Usage description

5.9.6.1. RTEMS – Send Telemetry

1. Open the devices “/dev/ccsds-tmN” (with N=VC), “/dev/ccsds-tm” and “/dev/ccsds”. Set

up the TM path by ioctl-call CCSDS_SET_TM_CONFIG on device “/dev/ccsds-tm” or

ioctl CCSDS_INIT on device “/dev/ccsds”.

2. Prepare the content in SDRAM that will be fetched by DMA-transfer.

3. Write the SDRAM content to the device for the virtual channel to use.

5.9.6.2. RTEMS – Receive Telecommands

1. Open the device “/dev/ccsds-tc” and “/dev/ccsds”. Set up the TC path by ioctl-call

CCSDS_SET_TC_CONFIG on device “/dev/ccsds-tc” or ioctl CCSDS_INIT on device

“/dev/ccsds”.

2. Do a read from “/dev/ccsds-tc”, this call will block until a new TC has been received.

5.9.6.3. RTEMS – Application configuration

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions open(),

close(), read(), write() and ioctl() to access the CCSDS device.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/ccsds_rtems.h> is required for datatypes, definitions of IOCTL of device

CCSDS.

The define CONFIGURE_APPLICATION_NEEDS_CCSDS_DRIVER must be defined to

use the CCSDS driver from the application.

See the Board Support Package for example code.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 99 of 222

5.10. ADC

5.10.1. Description

This section describes the driver for accessing the ADC device.

The following ADC channels are available for the Sirius OBC:

Parameter Abbreviation ADC channel

Analog input ADC in 0 0

Analog input ADC in 1 1

Analog input ADC in 2 2

Analog input ADC in 3 3

Analog input ADC in 4 4

Analog input ADC in 5 5

Analog input ADC in 6 6

Analog input ADC in 7 7

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The following ADC channels are available for the Sirius TCM:

Parameter Abbreviation ADC channel

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The TCM board does not contain any input ADC channels.

When data is read from a channel, the lower 8 bits contains the channel status information,

and the upper 24 bits contains the raw ADC data.

To convert the ADC value into mV, mA or m°C, the formulas specified in the table below

shall be used. Note that this assumes a 24-bit ADC value which is what the ADC IP returns

on read. Should the raw bit value be truncated or scaled down, the scale factor (2^24 -1) in

the equations need to be adjusted as well. Note also that the temperature equation requires

the 3V3 [mV] value.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 100 of 222

HK channel Formula

Temp [m°C] Temp_mV = (ADC_value*2500)/(2^24 – 1)
Temp_mC = (1000*(3V3_mV - Temp_mV) - Temp_mV*1210) /
0.00385*(Temp_mV - 3300)

Iin [mA] Iin_mA = (ADC_value*5000)/(2^24 - 1)

Vin [mV] Vin_mV = (ADC_value*20575)/(2^24 - 1)

3V3 [mV] 3V3_mV = (ADC_value*5000)/(2^24 - 1)

2V5 [mV] 2V5_mV = (ADC_value*5000)/(2^24 - 1)

1V2 [mV] 1V2_mV =(ADC_value*2525)/(2^24 - 1)

Analog input0 –
Analog input 7 [mV]

(ADC_value*2500)/(2^24 – 1)

5.10.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.10.2.1. Enum adc_ioctl_sample_rate_e

Enumerator for the ADC sample rate.

Enumerator Description

ADC_IOCTL_SPS_31250 SPS 31250

ADC_IOCTL_SPS_15625 SPS 15625

ADC_IOCTL_SPS_10417 SPS 10417

ADC_IOCTL_SPS_5208 SPS 5208

ADC_IOCTL_SPS_2597 SPS 2597

ADC_IOCTL_SPS_1007 SPS 1007

ADC_IOCTL_SPS_503_8 SPS 503.8

ADC_IOCTL_SPS_381 SPS 381

ADC_IOCTL_SPS_200_3 SPS 200.3

ADC_IOCTL_SPS_100_5 SPS 100.5

ADC_IOCTL_SPS_59_52 SPS 59.52

ADC_IOCTL_SPS_49_68 SPS 49.68

ADC_IOCTL_SPS_20_01 SPS 20.01

ADC_IOCTL_SPS_16_63 SPS 16.63

ADC_IOCTL_SPS_10 SPS 10

ADC_IOCTL_SPS_5 SPS 5

ADC_IOCTL_SPS_2_5 SPS 2.5

ADC_IOCTL_SPS_1_25 SPS 1.25

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 101 of 222

5.10.2.2. Function int open(…)

Opens access to the ADC. Only one instance can be open at any time, only read access is

allowed and only blocking mode is supported.

Argument name Type Direction Description

Pathname const char * in The absolute path to the ADC to be opened.
ADC device is defined as
ADC_DEVICE_NAME.

Flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

Fd A file descriptor for the
device on success

-1 See errno values

errno values

EEXISTS Device not opened

EALREADY Device is already open

EINVAL Invalid options

5.10.2.3. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EFAULT Device not opened

5.10.2.4. Function ssize_t read(…)

This is a blocking call to read data from the ADC.

Note! The size of the given buffer must be a multiple of 32 bits.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to buffer to write data into.

count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 102 of 222

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

ADC data buffer bit definition Description
31:8 ADC value

7:4 ADC status

3:0 Channel number

The ADC status field holds error flags from the ADC chip that can be used to determine the

validity of the conversion.

Bit Name Description
3 RDY The RDY flag goes low when a conversion is finished and is set high when a

conversion is started or the data register is read.

2 ADC_ERROR The ADC_ERROR bit in the status register flags any errors that occur during the
conversion process. The flag is set when an overrange or underrange occurs at the
output of the ADC. When an underrange or overrange occurs, the ADC also outputs all
0s or all
1s, respectively. This flag is reset only when the underrange or overrange is removed.
It is not reset by a read of the data register.

1 CRC_ERROR If the CRC value that accompanies a write operation does not correspond with the
information sent, the CRC_ERROR flag is set. The flag is reset as soon as the status
register is explicitly read.

0 REG_ERROR The ADC chip calculates a checksum of the on-chip registers. If one of the register
values has changed, the REG_ERROR bit is set.

5.10.2.5. Function int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode, clock

divisor etc.

Argument
name

Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val uint32_t / uint32_t* in/out Value to write or a pointer to a buffer
where data will be written.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 103 of 222

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC chip,
see [RD5].

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC
chip, see [RD5].

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock
used for communication with the
ADC chip. Minimum 4 and maximum
255.
Default is 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Get the clock divisor of the clock
used for communication with the
ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel number to
be included when sampling.
Minimum 0 and maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel number to
be included when sampling.
Minimum 0 and maximum 15.

Return value Description

0 Command executed
successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to
IOCTL

5.10.3. Usage description

The following #define needs to be set by the user application to be able to use the ADC:

CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.10.3.1. RTEMS application example

To use the ADC driver in the RTEMS environment, the following incomplete code structure

is suggested to be used:

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 104 of 222

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

5.10.4. Limitations

Only one ADC channel can be enabled at a time. To switch channels, disabling the old and

enabling the new channel is required.

Setting the clk divisor to something else than the default (255) might yield that some ADC

reads returns 0.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 ssize_t size;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);

 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);

 size = read(read_fd, &buffer, 4);

 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 105 of 222

5.11. NVRAM

The NVRAM on the OBC and TCM is a 262,144-bit magnetoresistive random access

memory (MRAM) device organized as 32,768 bytes of 8 bits. EDAC is implemented on a

byte basis meaning that half the address space is filled with checksums for correction. It is a

strong correction which corrects 1 or 2 bit errors on a byte and detects multiple. The table

below presents the address space defined as words (16,384 bytes can be used). The

address space is divided into two subgroups as product- and user address space.

5.11.1. Description

This driver software for the SPI RAM IP, handles the initialization, configuration and access

of the NVRAM.

The SPI RAM is divided into an in-flight protected “safe” area and an in-flight programmable

“update” area.

The in-flight protected area must be unlocked by physically connecting the debugger unit

before writing.

5.11.2. EDAC mode

When in EDAC mode, which is the normal mode of operation, all write and read transactions

are protected by EDAC algorithms. All NVRAM addresses containing EDAC are hidden by

the IP. The address space is given by the table below:

Area Range start Range end

Safe 0x0000 0x0FFF

Update 0x1000 0x3FFF

5.11.3. Non-EDAC mode

Non-EDAC mode is a debug mode that allows the user to examine the EDAC bytes.

The purpose of this mode is to be able to insert errors into the memory for testing of the

EDAC algorithm.

When in Non-EDAC mode net data and EDAC data is interleaved on an 8 bit basis.

I.e. when reading a 32 bit word byte, 0, 2 contains the net data and byte 1, 3 contains EDAC

data. The address space is doubled when compared to EDAC mode, as is shown with the

table below:

Area Range start Range end

Safe 0x0000 0x1FFF

Update 0x2000 0x7FFF

5.11.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.11.4.1. Enum rtems_spi_ram_edac_e

Enumerator for the error correction and detection of the SPI RAM.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 106 of 222

Enumerator Description

SPI_RAM_IOCTL_EDAC_ENABLE Error Correction and Detection
enabled.

SPI_RAM_IOCTL_EDAC_DISABLE Error Correction and Detection
disabled.

5.11.4.2. Function int open(...)

Opens access to the requested SPI RAM.

Argument name Type Direction Description

pathname const char * in The absolute path to the SPI RAM to be
opened. SPI RAM device is defined as
SPI_RAM_DEVICE_NAME.

flags int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

fd A file descriptor for the
device on success

-1 See errno values in [RD12]

5.11.4.3. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values in [RD12]

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 107 of 222

5.11.4.4. Function ssize_t read(...)

Read data from the SPI RAM. The call block until all data has been received from the SPI

RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Must be a multiple
of 4.

Return value Description

>=0 Number of bytes that were
read. May also set errno
EIO.

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource
error.

EIO and >= 0 return
value

Read was successful and a
single or double-bit error was
corrected using EDAC.
The corrected value has

NOT been re-written.

EIO and -1 return
value

Multi-bit uncorrectable read
error.

5.11.4.5. Function ssize_t write(...)

Write data into the SPI RAM. The call block until all data has been written into the SPI RAM.

Argument name Type Direction Description

fd Int in File descriptor received at open.

buf void* in Pointer to character buffer to read data from.

count size_t in Number of bytes to write. Must be a multiple
of 4.

Return value Description

>=0 Number of bytes that were
written.

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource
error.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 108 of 222

5.11.4.6. Function int lseek(...)

Set the address for the read/write operations.

Argument name Type Direction Description

fd Int in File descriptor received at open.

offset void* in SPI RAM read/write byte offset. Must be a
multiple of 4.

whence Int in SEEK_SET and SEEK_CUR are supported.

Return value Description

>=0 Byte offset

-1 See errno values in [RD12]

5.11.4.7. Function int ioctl(...)

Input/output control for SPI RAM.

Argument name Type Direction Description

fd Int in File descriptor received at open.

cmd uint32_t / uint32_t* in Command to send.

val Int in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

SPI_RAM_SET_EDAC_IOCTL uint32_t in Configures the error correction and
detection for the SPI RAM, see
[5.11.4.1.]

SPI_RAM_SET_DIVISOR_IOCTL uint32_t in Configures the serial clock divisor.

SPI_RAM_GET_EDAC_STATUS_IOCTL uint32_t* out Get EDAC status for previous read
operations.

SPI_RAM_GET_DEBUG_DETECT_IOCTL uint32_t* out Get Debug detect status.

EDAC Status Description

SPI_RAM_EDAC_STATUS_MULT_ERROR Multiple errors
detected.

SPI_RAM_EDAC_STATUS_DOUBLE_ERROR Double error
corrected.

SPI_RAM_EDAC_STATUS_SINGLE_ERROR Single error
corrected.

Debug Detect Status Description

SPI_RAM_DEBUG_DETECT_TRUE Debugger detected.

SPI_RAM_DEBUG_DETECT_FALSE Debugger not
detected.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 109 of 222

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource error.

5.11.5. Usage description

5.11.5.1. General

The following #define needs to be set by the user application to be able to use the SPI RAM:

CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

The SPI RAM RTEMS driver supports multiple file descriptors opened simultaneously.

EDAC error information is reported via errors in the read operation, which is the

recommended way to obtain this information.

The SPI_RAM_GET_EDAC_STATUS_IOCTL command is deprecated and may be

removed in future versions.

5.11.5.2. RTEMS application example

To use the SPI RAM driver in RTEMS the following incomplete code structure is suggested

to be used (see Board Support Package for a full example):

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 110 of 222

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spi_ram_rtems.h> is required for accessing the SPI_RAM.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spi_ram_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument){

 rtems_status_code status;

 int dsc;

 uint8_t buf[8];

 ssize_t cnt;

 off_t offset;

 dsc = open(SPI_RAM_DEVICE_NAME, O_RDWR);

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = write(dsc, &buf[0], sizeof(buf));

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = read(dsc, &buf[0], sizeof(buf));

 status = close(dsc);

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 111 of 222

5.12. System flash

5.12.1. Description

The System flash holds the software images for the system as described in section 9. This

section details the RTEMS interface to the System flash driver.

5.12.2. Data structure types

5.12.2.1. Type sysflash_cid_t

This struct type holds the result of reading the system flash chip ID.

Type Name Purpose

Array of 2 uint32_t chip0 Byte array for chip 0 ID

5.12.2.2. Type sysflash_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading or writing the spare area.

Type Name Purpose

uint32_t page_num What page to read/write.
Values: [0 - (SYSFLASH_MAX_NO_PAGES-1)]

uint32_t raw Ignored when writing (programming is always done with EDAC and
interleaving active).
On read, set to 0 to do deinterleaving and EDAC checking, set to 1 to
read raw interleaved data without EDAC checking.

uint8_t * data_buf Pointer to buffer in which the data is to be stored or to the data that is
to be written.

uint32_t size Size to read/write in bytes.
Values: [1 - SYSFLASH_PAGE_SPARE_AREA_SIZE]

5.12.3. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver. The driver functionality is accessed through RTEMS POSIX API for ease of use. In

case of failure on a function call, the errno value is set for determining the cause. NOTE:

This manual only lists the most likely errno values and those that have special meaning for

this driver. For an exhaustive list please see the Open Group POSIX specification

documentation.

5.12.3.1. Function int open(…)

Opens access to the driver. The device can only be opened by one user at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be opened.
System flash device is defined as
SYSFLASH_DEVICE_NAME.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 112 of 222

oflags int in Specifies one of the access modes in the following
table.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

EBUSY Device already opened

ENODEV Internal driver error

5.12.3.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor.

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 113 of 222

5.12.3.3. Function off_t lseek(…)

Sets page offset for read/ write operations.

NOTE: The interface is not strictly POSIX, as the offset argument is expected to be given in

pages and not bytes.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number. (NOTE: Not bytes!)

whence int in Must be set to SEEK_SET for the System flash.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would overflow off_t.

5.12.3.4. Function ssize_t read(…)

Reads requested size of bytes from the device starting from the offset set using lseek.

NOTE: For iterative read operations, lseek must be called to set page offset before each

read operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data (should be
32-bit aligned for most efficient read).

nbytes size_t in Number of bytes to read into buf (should be a
multiple of 4 for most efficient read).

Return value Description

>0 Number of bytes that were read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL Page offset set in lseek is out of range or nbytes is

too large and reaches a page that is out of range.

ENODEV Internal driver error.

EBUSY Flash controller busy.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 114 of 222

5.12.3.5. Function ssize_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

NOTE: For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to write data from (should be 32-bit
aligned for most efficient write).

nbytes size_t in Number of bytes to write from buf (should be a
multiple of 4 for most efficient write).

Return value Description

>0 Number of bytes that were written.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL Page offset set in lseek is out of range or nbytes is
too large and reaches a page that is out of range.

ENODEV Internal driver error.

EBUSY Flash controller busy.

EIO Program failed at chip level, block should be
considered bad (double check chip status FAIL flag
using SYSFLASH_IO_READ_CHIP_STATUS).

5.12.3.6. Function int ioctl(…)

5.12.3.6.1. Description
Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

cmd ioctl_command_t in Command specifier

value void * in/out The value relating to command operation
as defined in 5.12.3.6.2 to 5.12.3.6.9.

The following return and errno values are common for all operations.

Return value Description

0 Operation successful.

-1 See errno values

errno values

EBADF The file descriptor fd is not an open file descriptor.

EINVAL Invalid command or parameter.

EBUSY Flash controller busy.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 115 of 222

ENODEV Internal driver error.

5.12.3.6.2. Reset System flash
Resets the system flash chip.

5.12.3.6.3. Read chip status
Reads the chip status register.

5.12.3.6.4. Read controller status
Reads the controller status register.

5.12.3.6.5. Read ID
Reads the flash chip ID.

5.12.3.6.6. Erase block
Erases a block.

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EIO Erase failed on chip level; block should be
considered bad.

Command Value type Direction Description

SYSFLASH_IO_RESET n/a n/a n/a

Command Value type Direction Description

SYSFLASH_IO_READ_CHIP_STATUS uint8_t * out Pointer to variable in which status data is to be
stored.

Command Value type Direction Description

SYSFLASH_IO_READ_CTRL_STATUS uint16_t * out Pointer to variable in which controller status
data is to be stored.

Command Value type Direction Description

SYSFLASH_IO_READ_ID sysflash_cid_t * out Pointer to struct in which ID is to be stored, see
5.12.2.1.

Command Value type Direction Description

SYSFLASH_IO_ERASE_BLOCK uint32_t in Block number to erase.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 116 of 222

5.12.3.6.7. Read spare area
Reads the spare area for a given page.

5.12.3.6.8. Write spare area
Writes the data to the given page spare area.

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EIO Program failed on chip level; block should be
considered bad.

5.12.3.6.9. Factory bad block check
Reads the factory bad block marker from a block and reports status.

NOTE: This only gives information about factory marked bad blocks. Bad blocks that arise

during use need to be handled by the application software.

Return value Description

SYSFLASH_
FACTORY_BAD_
BLOCK_CLEARED

Block is OK.

SYSFLASH_
FACTORY_BAD_
BLOCK_MARKED

Block is marked bad.

errno values

ETIMEDOUT Polled read of spare area timed out.

Command Value type Direction Description

SYSFLASH_IO_READ_
SPARE_AREA

sysflash_ioctl_spare_area_args_t * in Pointer to struct with page number
specifier, and destination buffers where
spare area data is to be stored, see
5.12.2.2.

Command Value type Direction Description

SYSFLASH_IO_WRITE
_SPARE_AREA

sysflash_ioctl_spare_area_args_t * in Pointer to struct with page number
specifier, and source buffer with data to
be written, see 5.12.2.2.

Command Value type Direction Description

SYSFLASH_IO_BAD_BLOCK_CHECK uint32_t in Block number.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 117 of 222

5.12.4. Usage description

5.12.4.1. Overview

In NAND flash the memory area is divided into pages that have a data area and a spare

area. The pages are grouped into blocks. Before data can be programmed to a page it must

be erased (all bytes are 0xFF). The smallest area to erase is a block consisting of a number

of pages, so if the block contains any data that needs to be preserved this must first be read

out. The driver defines some constants for the application software to use when handling

blocks and pages. There are SYSFLASH_BLOCKS blocks starting from block number 0 and

SYSFLASH_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page data area is SYSFLASH_PAGE_SIZE bytes. Each page also has a spare area that is

SYSFLASH_PAGE_SPARE_AREA_SIZE bytes. Partial pages can be read/programmed,

but reading/programming always starts at the beginning of the page (or spare area). Pages

(including spare area) must be programmed in sequence within a block.

With NAND flash memory technology some blocks will be bad from the factory, and more

bad blocks will appear due to wear. The driver itself does not manage bad blocks, but it will

supply the information needed for the application software to implement a system to keep

track of them. A common use for the page spare area is to hold ECC information. However,

this system has a more comprehensive EDAC solution, so the main use for the spare area is

to hold the factory bad block markers (first byte of the first page spare area is 0x00). Bad

blocks should never be erased or programmed.

5.12.4.2. Usage

The RTEMS driver provides the application software with a POSIX file interface for

accessing the functionality of the bare-metal driver. However, unlike the POSIX calls where

the offset is given in bytes, the Sysflash driver expects the offset to be in pages. The read

and write calls provide an abstraction to the page-by-page access in the bare-metal driver,

so multiple pages can be read/written with one call, but the application will still need to make

sure that pages are erased before they are written.

In RTEMS the device file must be opened to grant access to the system flash device. Once

opened, all provided operations can be used as described in section 5.12.3. And, if desired,

the access can be closed when not needed.

NOTE: All calls to the RTEMS driver are blocking calls, though the driver uses interrupts

internally to ease processor load.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 118 of 222

Figure 5-6 - RTEMS driver usage description

5.12.4.3. RTEMS application example

To use the system flash driver in the RTEMS environment, the following incomplete code

structure is suggested (see Board Support Package for a full example):

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read, write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/system_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/system_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SYSFLASH_DEVICE_NAME, O_RDWR);

 .

}

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 119 of 222

CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

5.12.5. Debug detect

Erasing blocks/programming pages to the first half of the flash memory (lower addresses)

only works when the debug detect signal is high (indicating debugger is connected). If

erase/program operations to that area are attempted when the debug detect signal is low,

they will appear to succeed from a software perspective but the controller will not pass them

on to the flash chip.

5.12.6. Limitations

The system flash driver may only have one open file descriptor at a time.

The POSIX interface is modified to use an offset in pages instead of bytes.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 120 of 222

6. SpaceWire router

In both Sirius OBC and Sirius TCM products, a small router is integrated in the SoCs. The

routers use path addressing (see [RD1]) and given the topology illustrated in Figure 6-1, the

routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In the topology above, sending a package from the OBC to the TCM or vice versa, the

routing address will be 1-3.

Each end node, Sirius OBC or Sirius TCM, also has one or more logical address(es) to help

distinguish between different applications or services running on the same node. The logical

address complements the path address and must be included in a SpaceWire packet.

Example: If a packet is to be sent from Sirius OBC to the Sirius TCM it needs to be

prepended with 0x01 0x03 XX.

0x01 routes the packet to port 1 of the Sirius OBC router.

0x03 routes the packet to port 3 of the Sirius TCM router.

XX is the logical address (0x20 – 0xFE) of the recipient application/service on the Sirius

TCM.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 121 of 222

7. Sirius TCM

7.1. Description

The Sirius TCM handles receiving Telecommands (TCs) and sending Telemetry (TM) as

well as Spacewire communication using the RMAP protocol.

TC, received from ground, can be of two command types: a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin according to the pulse command parameters. All other commands are

handled by the Sirius TCM software. Any command not addressing the Sirius TCM will be

routed to other nodes on the SpaceWire network according to the current Sirius TCM

configuration.

TM is received from other nodes on the SpaceWire network. The Sirius TCM supports both

live TM transmissions directly to ground as well as storage of TM to the Mass Memory for

later retrieval or download to ground during ground passes.

The Sirius TCM is highly configurable to be adaptable to different customer needs and

missions and currently supports SpaceWire (SpW) using the Read Memory Access Protocol

(RMAP), UART interfaces, pulse commands as well as Telecommand and Telemetry using

CCSDS frame encodings and ECSS PUS packets.

The default configuration of the TM downlink is:

• FECF is included in TM transfer frames.

• Master Channel Frame counter is enabled for telemetry.

• Generation of Idle frames is enabled.

• Pseudo randomization of telemetry is disabled.

• Reed Solomon encoding of telemetry is enabled.

• Convolutional encoding of telemetry is disabled.

• The divisor of the TM clock is set to 250 (giving a bitrate of 100kb/s).

• All available interrupts from the CCSDS IP are enabled.

• Generation of OCF/CLCW in TM Transfer frames is enabled.

• TM is enabled.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 122 of 222

The default configuration of the TC uplink is:

• Derandomization of telecommands is disabled.

• Telecommands must include a segment header, see 4.1.3.2.2 in [RD8]

7.2. Block diagram

 TCM-S

S
P
A
C
E
W
I
R
E

SpaceWire

Router

0303

0101

0202

UARTs

RS422

/

RS485

RS422

/

RS485

UmbilicalUmbilical

RS422RS422

LVDSLVDS

RS422RS422

C
C
S
D
S

TRX

TRX

Mass memory NVRAM Watchdog

W
a
t
c
h
d
o
g

A
D
C

S
C
E
T

TCM core application

Error managerRAMSystem flash

Pulse commandsPulse commands
RS422RS422

1212

Figure 7-1 – Sirius TCM functionality layout with the external ports depicted

7.3. TCM application overview

The TCM application is partitioned into several software modules; each module handles a

specific functional part. An overview of the software architecture of the TCM is presented in

Figure 7-2. A main design driver of the TCM software architecture is the ability to pass along

data between the different handlers without copying, since that would quickly decrease the

performance and throughput of the system. To help with the no-copy policy, each peripheral

handling larger amounts of data has DMA functionality, off-loading the CPU from mere data

shuffling tasks while at the same time increasing performance by at least an order of

magnitude. Data coming in on the SpaceWire interface intended for the mass memory will

thus be stored in RAM only once - in the handoff between the SpaceWire and mass memory

handlers.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 123 of 222

TM Handler

CCSDS

TC Handler

CCSDS

SF Handler

System Flash

MM Handler

Mass Memory

UART Handler

UART

SpW Handler

Spacewire

NVRAM Handler

NVRAM

HK Handler

Error Mgr

ADC

SCET

Driver Access
Function
Module

Helper
Module

Message

Router

Figure 7-2 TCM software application overview

7.4. Configuration

The TCM can be configured for specific missions by parameters in NVRAM described in

chapter 7.4.1. The parameters from NVRAM are read during initialization of the TCM

application. Chapter 7.4.2 describes how to write an example configuration to the NVRAM of

an actual unit. If reading from NVRAM fails during initialization, a set of fallback parameters

are used instead. The fallback parameters are described in chapter 7.4.3.

7.4.1. Configuration parameters

The description and format of the different configuration parameters are detailed in the

following tables.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 124 of 222

Partition configuration of mass memory is specified in Table 7-1 below.

Table 7-1 PARTITION_CFG

Data Type Description

0 UINT32 Starting block number of the partition.

4 UINT32 Ending block number of the partition (exclusive).

8 UINT8

Partition mode.
0 – Direct
1 – Continuous
2 – Circular
3 – Auto-padded Continuous
4 – Auto-padded Circular

9 UINT8

Specifies type of data stored on the partition.
0 – Packets
1 – Raw Data (not supported for download)
2 – TC Storage

10 UINT8
Specifies which virtual channel to be used for
downloading of the data in the partition. See
[RD18] for VC allocation.

11 UINT8

Segment size for the partition.
1 - 16 kbyte
2 - 32 kbyte
3 - N/A
4 - 64 kbyte

12 UINT32

The data source identifier for the partition. Can
be used to set a custom identifier of a data
producer to a partition. Setting of this value is not
required to successfully configure a partition.

Data from different sources can be routed to the SpW-network. Routing info is set by format

specified in Table 7-2

Table 7-2 UART_ROUTING

Data Type Description

uart UINT8

Source of message
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

address UINT32 The RMAP-address UART info is routed to

ext address UINT8
The extended RMAP-address UART info is
routed to.

Path UINT16
The index of the SpW-path for the routing. See
Table 7-5.

Backup SpW path UINT16
The index of the backup SpW-path for UART
config. See Table 7-5.

Backup SpW reply
path

UINT16
The index of the SpW write reply path for UART
config. See Table 7-6.

Configuration of UART-devices is done by Table 7-3 below.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 125 of 222

Table 7-3 UART_CONFIG

Data Type Description

uart UINT8

The UART device.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

Bitrate UINT8

UART bitrate:
11 = 375000 baud
10 = 347200 baud
9 = 153600 baud
8 = 115200 baud (default)
7 = 75600 baud
6 = 57600 baud
5 = 38400 baud
4 = 19200 baud
3 = 9600 baud
2 = 4800 baud
1 = 2400 baud
0 = 1200 baud

Mode UINT8

UART mode:
0 = RS422 mode
1 = RS485 mode
2 = Loopback

UART extended
configuration

UINT8
Configuration of UART parity and PUS access
block, see Table 7-4 for details

Table 7-4 describes the detailed bit layout of the UART extended configuration.

Table 7-4 - UART extended configuration

Data Bits Description

Parity 0-1
0 - no parity
1 - odd parity
2 - even parity

Reserved 2-6 reserved

PUS access blocked 7
0 - no (allowed)
1 - yes (blocked, PUS services cannot access UART)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 126 of 222

Paths on SpW-network are specified by table Table 7-5 below. This table can fit 20 different

SpW paths, each path can fit 8 bytes.

Note! All SpW paths must contain a terminating null character.

Table 7-5 NVRAM SpW path storage

Data Type Description

Path 0 Array of UINT8
A path on SpW network including the logic
address of the receiving node.

Path 1 Array of UINT8
A path on SpW network including the logic
address of the receiving node.

Path N Array of UINT8
A path on SpW network including the logic
address of the receiving node.

Backup reply paths on the SpW-network are specified by Table 7-6 below. When the TCM

SW is requesting a write-reply from an external SpW node, the TCM SW must provide the

path for the write reply. Since it is not possible to determine the reply path from the

corresponding backup path, the user must also provide one write-reply path for every

defined SpW path. This table can fit 20 different paths, each path can fit 8 bytes.

Note! All SpW paths must contain a terminating null character.

Table 7-6 NVRAM SpW Backup Reply Paths

Data Type Description

Reply path 0 Array of UINT8
A write-reply path from an external SpW node to
the TCM SW.

Reply path 1 Array of UINT8
A write-reply path from an external SpW node to
the TCM SW.

Reply path N Array of UINT8
A write-reply path from an external SpW node to
the TCM SW.

Enabling and timeout of the backup SpW paths are specified by Table 7-7 below.

Note! Since the granularity of the system is 10ms, values not divisible by 10 ms will be

truncated to the nearest multiple if 10ms. Setting a timeout less than 10 ms will result in a

timeout of 0 ms.

Table 7-7 NVRAM Backup SpW Configuration Storage

Data Type Description

SpW backup routing
config

UINT32

Bit 0:15 – Sets the timeout in milliseconds.
Bit 16 – Enable SpW backup routing.
1 = ENABLE
0 = DISABLE
Bit 17:31 - Reserved

 RIRP can be enabled/disabled as specified in Table 7-8 below

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 127 of 222

Table 7-8 RIRP Config

Data Type Description

RIRP Config UINT32
Enabling/Disabling of RIRP
0 = DISABLE
1 = ENABLE

Telecommands can be routed to nodes on the SpW by APID as specified in Table 7-9 and

Table 7-10 below.

Table 7-9 NVRAM APID Routing

Byte Type Description

0-1

UINT16 APID or lower APID in APID range
Bit15 0 = Single APID Routing, 1 = APID range
Bit14:13 Routing destination type
Bit12:11 Not used
Bit10:0 APID

2-3

UINT16 Upper APID in APID range
Bit15 0 = Single APID Routing, 1 = APID range
Bit14:13 Routing destination type
Bit12:11 Not used
Bit10:0 APID

4-5
UINT16 The index of the primary SpW-path of the APID.

See Table 7-5.

6-7
UINT16 The index of the backup SpW-path of the APID.

See Table 7-7.

8-9
UINT16 The index of the SpW write reply path of the APID.

See Table 7-6.

10 – 11 - Reserved for future use

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 128 of 222

Table 7-10 Routing destination type - mapping

Bit 14:13 Bit 14 Bit 13 Description

0 0 0 Routing via SPW

1 0 1 Reserved

2 1 0 TCM APID

3 1 1 Routing to TC queue

NOTE: If the Routing destination path is set to TCM APID. Then bit 15 should be set to 0, Single

APID Routing. This is because the TCM will only handle the APID that it is assigned to from

NVRAM configuration and that is a single APID.

Configuration of the TM path is described in Table 7-11 below. NOTE: Disabling the RS

Encoder will not make the TM frame shorter, the parity bits will still be present in the frame

but set to 0 (zero):

Table 7-11 TM_CONFIG

Data Type Description

TM Clk divisor UINT16
The resulting TM bitrate is determined as described in

7.16.7.9.

TM Config UINT16

Configuration of TM path.

Bit6: 0 – Disable RS Encoder, 1 – Enable RS Encoder

Bit5: 0 – Disable Conv. Encoder, 1 - Enable Conv.

Encoder

Bit4: 0 – Disable Randomizer, 1 – Enable Randomizer

Bit3: 0 – Disable Idle Frames, 1 – Enable Idle Frames

Bit2: 0 – Disable MCFC, 1 – Enable MCFC

Bit1: 0 – Disable FECF, 1 – Enable FECF

Bit0: 0 – Disable CLCW, 1 – Enable CLCW

Configuration of the TC path is described in Table 7-12 below:

Table 7-12 TC_CONFIG

Data Type Description

TC Config UINT32

Configuration of TC path.

Bit0: 0 – Disable Derandomizer, 1 – Enable
Derandomizer

Configuration of the TC handler APID described in Table 7-13 below:

Table 7-13 TC_HANDLER_APID

Data Type Description

TC Handler APID UINT32

APID configuration of APID of TC Handler in TCM Core

Application

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 129 of 222

The virtual channel for the TCM to receive telecommands on is configured in NVRAM

according to the format given in Table 7-14.

Table 7-14 TC_VC_CONFIG

Data Type Description

Telecommand Virtual
Channel

UINT32 VC number 0 – 63.

Base configuration of the GPIO pins that can be controlled through the TCM RMAP interface

is described in Table 7-15.

Table 7-15 GPIO Configuration

Data Type Description

GPIO Configuration UINT8

Bit 0 – GPIO Value, 0 = Low, 1 = High
Bit 1 – GPIO Mode, 0 = Normal (Single Ended), 1 =
Differential
Bit 2 – GPIO Direction, 0 = Output, 1 = Input
Bit 3:7 - Reserved

Note! The TCM SW is limited to only use as many GPIO pins as are configured in

NVRAM. Due to the possibility of using 2 GPIOs together for differential mode the amount

of configured GPIOs must be an even number, otherwise the behaviour of the TCM SW is

undefined.

7.4.2. Creating and writing a new configuration

A modified configuration can be created and written to the NVRAM using the nv_config utility

from the TCM BSP.

The recommended way to create a new configuration is:

• Create a copy of the example configuration at

src/nv_config/src/configs/example.h with a different name located it in the

same directory.

• Modify the new file to match the desired configuration. The original example file and the

definitions file at src/nv_config/src/nvram_common.h are useful references for

the format and available parameters.

• Build the nv_config utility by executing the shell command

make

in the src/nv_config/src/ directory. This will compile the nv_config utility for each

configuration file, with each resulting RTEMS executable located at

src/nv_config/src/nv_config_<config name>.exe, where <config name>

is the name of the source configuration file, for example

src/nv_config/src/nv_config_example.exe.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 130 of 222

• Load and run the resulting binary RTEMS application using the debugger unit and GDB.

Success is indicated via the output:

***************** NVRAM programming finished ****************

***************** System can be power cycled ****************

7.4.3. Fallback NVRAM parameters

If reading from NVRAM fails during initialisation of TCM Core Application, a set of fallback-

parameters described in the tables below will be used.

Table 7-16 Fallback Partition Configuration

Partition # Start
Block

End
Bloc
k

Partition
Mode

Data
Type

Virtual
Channel

Segment
Size

Data
Source

0 0 100 0 (Direct) 0 (Packet) 1 32 kbyte 0

1 101 5000 1 (Cont.) 0 (Packet) 1 32 kbyte 0

2 5001 7500 2 (Circ.) 0 (Packet) 1 32 kbyte 0

Table 7-17 Fallback UART Routing

Uart # Adress Extended
Adress

SpW Path
Index

SpW Backup
Path Index

SpW Backup
Reply Path
Index

0 (UART0) 0x00000000 0xFF 0 0 0

1 (UART1) 0x01000001 0xFF 0 0 0

2 (UART2) 0x02000002 0xFF 0 0 0

3 (UART3) 0x03000003 0xFF 0 0 0

4 (UART4) 0x04000004 0xFF 0 0 0

5 (UART 6) 0x05000005 0xFF 0 0 0

6 (UART 7) 0x06000006 0xFF 0 0 0

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 131 of 222

Table 7-18 Fallback UART Config

Uart # Bitrate Mode Extended configuration

0 (UART0) 8 (115200 baud) 0 (RS422) 0 (no parity, pus access unblocked)

1 (UART1) 8 (115200 baud) 0 (RS422) 0 (no parity, pus access unblocked)

2 (UART2) 8 (115200 baud) 0 (RS422) 0 (no parity, pus access unblocked)

3 (UART3) 8 (115200 baud) 0 (RS422) 0 (no parity, pus access unblocked)

4 (UART4) 8 (115200 baud) 0 (RS422) 0 (no parity, pus access unblocked)

5 (PSU Ctrl) 8 (115200 baud) 1 (RS485) 0 (no parity, pus access unblocked)

6 (Safe Bus) 8 (115200 baud) 1 (RS485) 0 (no parity, pus access unblocked)

Table 7-19 Fallback SpW Paths

Path # Path data

0 {0x01, 0x03, 0xFE, ‘\0’}

1 {0x01, 0x01, 0x03, 0xFE, ‘\0’}

2 {0x01, 0x02, 0x03, 0xFE, ‘\0’}

3 {0x02, 0x03, 0xFE, ‘\0’}

4 {0x02, 0x02, 0x03, 0xFE, ‘\0’}

5 {0x02, 0x01, 0x03, 0xFE, ‘\0’}

Table 7-20 Fallback SpW backup reply paths

Reply
Path #

Reply Path data

0 {0x01, 0x03, 0x42, ‘\0’}

1 {0x01, 0x01, 0x03, 0x42, ‘\0’}

2 {0x02, 0x03, 0x42, ‘\0’}

Table 7-21 Fallback SpW backup routing configuration

Parameter Description

SpW backup routing
config

Fallback configuration of SpW backup routing:

• SpW backup routing is disabled

• The RMAP write-reply timeout is 100 ms

Table 7-22 Fallback RIRP Config

Parameter Description

RIRP Config
Fallback configuration of RIRP

• RIRP is disabled

Table 7-23 Fallback APID Routing

APID Routing

Lower
APID

Upper APID SpW Path
Index

SpW
backupPath
Index

SpW write-
reply path
Index

0 0xC00A 0xC150 Internal APID
for TCM

Internal APID
for TCM

Internal APID
for TCM

1 0x8151 0x8300 0 3 0

2 0x8301 0x8450 1 4 1

3 0x8451 0x8600 2 5 2

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 132 of 222

Table 7-24 Fallback TM Configuration

Parameter Value Description

TM Clk divisor 250
The resulting TM bitrate will be 100 kbit/s (since

convolutional encoding is disabled)

TM Config 0x4F

Configuration of TM path:

• RS Encoder Enabled

• Conv. Encoder Disabled

• Randomizer Disabled

• Idle Frames Enabled

• MCFC Enabled

• FECF Enabled

• CLCW Enabled

Table 7-25 Fallback TC Configuration

Parameter Value Description

TC Config 0x02
Configuration of TC path.

• Derandomizer Disabled

Table 7-26 Fallback TC Handler APID

Parameter Value Description

TC Handler APID 0xAF
Fallback APID configuration of APID of TC Handler in

TCM Core Application

Table 7-27 Fallback TC VC Configuration

Parameter Value Description

Telecommand Virtual
Channel

0x00000000 Fallback Telecommand Virtual Channel

Table 7-28: Fallback GPIO configuration

Parameter Value Description

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 133 of 222

GPIO 0
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 1
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 2
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 3
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 4
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 5
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 6
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 7
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 8
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 9
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 10
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

GPIO 11
Configuration

0x04
Direction – Input
Mode – Normal, single ended
Value - 0

7.5. Telemetry

Telemetry is simultaneously sent on all the transceiver interfaces, i.e. the RS422 (TRX1),

the LVDS (TRX2) and umbilical (UMBI) interfaces. See [RD18] for the VC allocation. The

CCSDS IP generates complete TM Transfer Frames from PUS packets. If a PUS packet

does not fit in one TM Transfer Frame, the CCSDS module splits the packet into several TM

Transfer Frames. If a PUS packet does not fill the whole TM Transfer Frame, an idle packet

is added as padding to fill the frame. The following telemetry settings are configurable by

RMAP-commands (see 7.16):

• Divisor of TM Clock

• Inclusion of CLCW of TM Transfer Frames

• Inclusion of Frame Error Control Field of TM Transfer Frames

• Updating of Master Channel Frame Counter

• Idle frame generation

• Convolutional encoding

• Pseudo randomization

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 134 of 222

The TCM supports the format of TM Transfer Frames described in [RD7].

7.6. Telecommands

7.6.1. Description

Telecommands can be received on the RS422 (TRX1), the LVDS (TRX2) or the umbilical

(UMBI) interface.

The TCM actively searches for Command Link Transmission Units (CLTU), i.e.

telecommands, on all three inputs simultaneously (as long as they are enabled). When a

telecommand start sequence is detected, the other inputs are ignored during telecommand

reception. The search will restart once the entire telecommand is either received or a

reception error is detected. In short, the telecommand reception uses the following reception

logic, also illustrated in Figure 7-3:

• All incoming signals on the inputs are synchronized to the system clock domain.

• The BCH decoder is configured in error-correcting mode.

• When the CLTU receptor has detected and decoded a start pattern, it sets an enable

signal for the active path, indicating that this CLTU receptor is now active. If one or

more bit-errors occur in the start pattern, the CLTU will be rejected, which is not

compliant to handling of one-bit errors described in [RD13] since one-bit errors shall be

corrected when BCH decoder is configured in error-correcting mode.

• The telecommand path activated is set until the reception status changes, i.e. the

current telecommand is finished and a new start pattern is detected correctly on a

different CLTU path.

• The selected telecommand clock, data and enable signals are now forwarded through

the mux to the BCH decoder, rejecting data and clock on inactive data paths.

• When BCH has decoded the tail in the CLTU, all CLTU receptors are set in search

mode again, scanning for the start pattern ready to receive a new telecommand. If one

or more bit-errors occur in the tail sequence of the CLTU, the CLTU will be rejected.

• The BCH interface does not “see” the data/clock until the start pattern is decoded

correctly and the enable signal is set.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 135 of 222

Figure 7-3 – Telecommand Input Multiplexer

Derandomization of TC can be enabled/disabled by RMAP command (see 7.16).

Telecommands sent to the TCM must include a segment header, see 4.1.3.2.2 in [RD8]

The TCM supports the format of TC Transfer Frames described in [RD8].

7.6.2. Pulse commands

The CCSDS IP in the TCM has a built-in Command Pulse Distribution Unit (CPDU)

execution functionality with the possibility to execute up to twelve CPDUs without interaction

from software. A pulse command is decoded directly in hardware, and it sets an output pin

according to the pulse command parameters. The CPDU_DURATION_UNIT is defined to

12.5 ms and the output is hence a multiple of this signal length.

The CPDU function can for example be used to reset modules in a spacecraft and choose

which software image to boot, an updated version or the safe image. The last executed

pulse command can be read from the telecommand status data field.

For details about the format of pulse commands, see 7.14.3

7.6.3. COP-1

The CCSDS COP-1 functionality on the spacecraft is implemented mainly in software where

the command link control word (CLCW) is generated based on telecommand status. The

CLCW is inserted when the OCF_CLCW flag is set in the control register, otherwise user

data will be inserted instead. It will insert four bytes, and the CLCW is also included in the

CRC calculation for the master frame on both idle and data frames. The NO RF AVAILABLE

flag and NO BIT LOCK flag are set from external pins and will overwrite the respective bits

in the CLCW word which hence cannot be controlled by software. The flag NO RF

AVAILABLE is set by signal Carrier lock in and the flag NO BIT LOCK is set by signal Sub-

carrier lock in.

7.7. Time Management

7.7.1. Description

The TCM has an internal SCET timer that can be synchronised to an external time source.

For synchronisation to occur, a stable PPS input must first be provided for at least 7

seconds, after which the PPS will be considered “qualified” and the TCM will automatically

sync SCET subseconds to the external PPS arrival time. A received SCETTime write

command can then synchronise the seconds value, see 7.16.7.20.

If the PPS is not stable, the TCM will abort synchronisation to the external source and will

attempt to re-qualify the PPS. When the PPS is not qualified, neither subseconds nor

seconds synchronisation will occur.

The current criteria for stability are set to be extremely generous, and only after a PPS

interval of 2 seconds or more will the PPS be considered unstable by the TCM.

7.7.2. TM time stamps

A timestamp can be generated when a TM Transfer Frame is sent on VC0. The rate of

timestamp generation is configurable through an RMAP command, and the latest timestamp

is readable on the same interface. See 7.16.7.11 and 7.16.7.12 for further info.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 136 of 222

7.8. Error Management and System Supervision

The Error Manager in the TCM provides information about different errors and operational

status of the system such as:

• EDAC single error count

• EDAC multiple error count

• Watchdog trips

• CPU Parity errors.

Error Manager related information and housekeeping data is available by RMAP. See

7.16.7.19

The status of the TM Downlink and TC Uplink are available through RMAP. See 7.16.7.14

and 7.16.7.1

A watchdog is enabled in the TCM that must be kicked by the TCM Application or a reset will

occur. The watchdog is kicked only when all active tasks in the TCM report that they are

alive.

7.9. Mass Memory Handling

7.9.1. Description

The mass memory in the TCM is primarily intended for storage of telemetry data while

awaiting transfer to ground but can also be used for internal data storage. The mass

memory is configurable as described in chapter 7.4

Table 7-29 Mass memory page and block size

Mass Memory size Page size [byte] Block size [byte] Pages per block

16 GB 16 * 1024 2 * 1024 *1024 128

32 GB 32 * 1024 4 * 1024 * 1024 128

The mass memory is accessed through the MM* RMAP commands described in chapter

7.16.7. The mass memory is nandflash-based and that also slightly colours its user

interface, even though the detailed handling has been abstracted away. The total amount of

mass memory available is 16 or 32 GB, depending on hardware and SW configuration. As

shown in Table 7-29 the page size is 16kB and the block size is 2MB for 16 GB of Mass

Memory. For a mass memory of 32 GB, the page size is 32kB and the block size is 4MB.

The number of pages per block is independent of mass memory size.

Due to the flash nature of the mass memory, each new block will require erasing before

accepting writes, but the TCM software will handle this automatically. For each 32-bit word

stored in mass memory, there are 8 bits stored as EDAC to be able to detect double errors

and correct single errors. During erases or writes the operation may fail, and the software

will then mark this block as bad and skip this in all future transactions. The bad block list is

stored in NVRAM and will thus survive a reboot and/or power cycling. This graceful

degradation behaviour of the mass memory implies that partitions may shrink in size and

this phenomenon needs to be considered when planning partition sizes. Another effect of

the bad blocks is that available space on a partition may decrease by more than the actual

data written and this might need tracking by the user.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 137 of 222

To simplify divisions between different types of data with different configurations, the mass

memory is divided into logical partitions where each partition is configured by its mode, type,

segment size and TM virtual channel for downloading. All partitions have an address space

of 4 Gbytes regardless of their physical size and this is also the maximum size of a partition.

Reading and writing to partitions behaves slightly different between different types of

partitions, but when a partition is full, it requires a free operation to allow for further writes.

New space for writing will only become available once a block is completely freed (that is,

when a free operation passes over a block boundary).

Figure 7-4 illustrates this with an example two-block partition, showing in the last picture that

new data cannot be written until free has reached the block boundary. To simplify operations

for the user, free operations can be requested on more data than is available in the mass

memory, see 7.16.7.31 for details.

Data written
to mass memory S Start of data E End of data

E

S

Start First free Second free

E

S

E

S

Ready for
write

E

SBlock boundary

Figure 7-4 Illustration of free behaviour and block boundaries.

7.9.2. Partition configuration

Partitions are configured via the NVRAM configuration tool, according to the format in

7.16.7.28, below follows some detailed information regarding certain configuration items.

7.9.2.1. Partition mode

Each partition can be configured as Continuous, Circular or Direct mode.

In Continuous mode, all write accesses are sequential and can be of any size but will

return with an error when the partition is full. The MM handler internally implements free and

write pointers to keep track of the data in the partition. The write pointer is used as the

address for storing the data and is updated after each successful write. The free pointer is

used as the address when freeing data and is updated after each successful free. Read

access and download of data is available on any arbitrary address within the partition

(between the free and write pointer addresses). Obsoleted data need to be freed to enable

further writes when the partition is full.

Continuous Auto-padded mode operates in the same way as Continuous mode, with

additional automatic segment padding, see 7.9.2.4.

Circular mode operates much in the same way as Continuous mode except that writes will

never fail when the partition is full. Instead, it will automatically free one or more blocks used

for the oldest written data and update the free pointer accordingly. Thus, data never needs

to be freed manually, but the operation is available.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 138 of 222

Circular Auto-padded mode operates in the same way as Circular mode, with additional

automatic segment padding, see 7.9.2.4.

For both Continuous and Circular mode (with or without automatic padding), an internal

cache of one page is used to hold any data that does not fit a page. As soon as the cache is

filled, the data is written to physical memory. Any restarts or power cycling will result in loss

of any data only written into this cache. If loss of cache data is an issue, ensure that all

writes end on a page boundary as this will make sure all data is always written to flash.

In Direct mode, a write access can be to any arbitrary address in the address space

provided that writing starts at a block boundary and is continuously written within this block.

Each access must also be a multiple of the page size and thus keeps no cache of data not

stored in physical memory. To determine the actual page size in use, the current page size

can be read out using the RMAP command MMGetPageSize described in section 7.16.7.34.

Read access and download of data is available from any arbitrary address within a partition,

given that it has valid data (previously written). Obsoleted data or data to overwrite need to

be freed here as well but can be freed on any valid address in the address space.

Please Note: Due to considerably increased initialisation times when using direct partitions,

it is recommended to only allocate a maximum of 200 blocks (400 Mbytes for 16 GB mass

memory or 800 Mbytes for 32 GB mass memory) in total to direct partitions. Increasing the

amount of direct partition blocks significantly above this limit will cause initialisation failure

due to the watchdog timeout being triggered.

The direct partition mode does not utilise free and write pointers.

Direct mode
Continuous/circular

mode

Free
pointer

Write
pointer

4 Gbytes

Unused space Used space

Figure 7-5 Illustration of partition modes and the free/write pointers

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 139 of 222

7.9.2.2. Partition segment size

The segment size is only applicable for downloading and for partitions of type PUS (see

below). The mass memory supports segment sizes of 16, 32, and 64 kbyte.

7.9.2.3. Partition type

Partitions can be of three types, PUS (see[RD3]), raw and TC storage.

Partitions of type PUS require that each segment will begin with a PUS packet and unless

auto-padding is used, it is up to the software writing into the mass memory to maintain this

segmentation. There are no limitations on the number of PUS packets that can be contained

in one segment, but if the written data doesn't fit exactly into the segment size it must be

padded up to the segment boundary. Padding can be achieved either with a PUS idle packet

(which also will be transferred to ground) or with a bit pattern of 0xF5, allowing padding of as

little as one byte. During a download operation when the padding bit pattern is discovered,

download will skip to the next segment (if available).

Packet 1

Packet 1

Packet 2

Packet 3 Packet 4

Packet 5

Packet 2

Packet 3

Packet 4

Idle packet

Packet 1

Packet 2 Packet 3 Packet 4

Packet 5

Packet 6

Padding

Segment 1
No padding required

Segment 2
Padding with idle packet

Segment 3
Padding with bit pattern

Segment boundary

Figure 7-6 Illustration of packet placement inside segments with different padding (marked in grey)

Partitions of type raw can be used to store data on-board if that is needed for the mission

(to be written/read by other units in the system), but only PUS formatted partitions can be

downlinked to ground through the CCSDS block.

Configuring a partition with type TC storage dedicates this partition for use by the TC

storage, see 7.10 for more info. A partition with this type must use the continuous partition

mode (without automatic padding) and no more than one partition may be configured with

this type the same time.

7.9.2.4. Automatic padding

Continuous and circular partitions can be configured with automatic padding of segments,

which automatically pads data written to the partition with a 0xF5 bit pattern, such that

written data never overlaps a segment boundary, and is fit for download.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 140 of 222

Adjusted write

Written Pad

Free space

Written data

Before write Segment
boundary

Segment 1

Segment 2

Result of write
Free space

Requested write

Figure 7-7 Illustration of auto-padding of a requested write.

No examination or validation of data contents are done in the padding process, and if a write

command with data containing multiple packets is received, it will be padded as if it was a

single large packet.

Auto-padding will never split the data in a received write command, and thus writing with

data that is larger than a segment is not supported.

If writing packets to an auto-padded partition, each write should contain data that starts at

the beginning of a packet and ends at the end of a packet, in order to ensure that it is

possible to download the data correctly.

Reads from an auto-padded partition will return padding and data as it was written to the

partition in the auto-padding procedure.

Downloads from an auto-padded partition should consider the additional padding size for

written data when calculating the download size. The free and write pointers can be used to

determine the total current size of all written data including padding.

Automatic padding limits single writes to the segment size, therefore using segments of

16kB together with pages of 32kB makes it impossible to write a full page immediately to the

physical mass memory. In this case some of the data to be written will always be kept in the

SDRAM cache. To be able to write a full page of 32kB immediately to the physical mass

memory when using automatic padding, the segment size must be equal to or larger than

the page size (>=32kB).

7.9.2.5. Partition virtual channel

This specifies which CCSDS virtual channel to be used for downloading of the data in the

partition. See [RD18] for the supported channels.

7.9.3. Recovery

The mass memory handler utilises the NVRAM to store on-going operation data, which is

used in the initialisation step in order to recover consistency after aborted write or free

operations, caused for example by a power failure reset.

If errors or inconsistencies are detected when the stored on-going parameters are read from

NVRAM at initialisation, the recovery associated with the unavailable item will be skipped

and the initialisation will continue.

The initialisation recovery is aggressive and will prioritise a usable system over data

retention; any single block which exhibits metadata inconsistencies that make it impossible

to safely add it to the translation table will be erased and considered free.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 141 of 222

For continuous and circular partitions, further recovery is performed to ensure that the

partition data range is continuous (which is required for the partition to be usable). If a

discontinuity is discovered, the recovery process will erase data blocks from the highest

logical partition address and downwards, until a continuous range of data is left on the

partition. Such discontinuities can for example occur due to corrupt blocks, or if a partition is

configured to include blocks with unknown contents (e.g. changing a direct partition into a

continuous partition).

Recovery does not take into account the format of the stored data and may for example

leave a partition with data that no longer fulfils segmentation requirements for download.

Recovery may cause the free and write pointers of continuous/circular partitions to move.

An empty continuous/circular partition, where the write pointer is located exactly at the start

of a block, will have the free and write pointers reset to address 0 if a reset and subsequent

re-initialisation occurs.

Recovery will cause rediscovery of previously freed data in a block in the following

scenarios:

• If the block was not completely freed.

• If data was freed from the block in a continuous/circular partition and the free did not

move past the block boundary.

• If data was freed from the block in a continuous/circular partition and the write pointer

was located inside the block.

For continuous/circular partitions, this data rediscovery will only occur in the block where the

free pointer was last located. For direct partitions, it will occur in every block which provides

one of the scenarios listed above.

7.10. TC Storage

The TCM provides a ”TC storage“ which consists of a non-persistent storage that can be

written to directly from the ground segment using PUS service request telecommands and

can be read and cleared by the space segment via RMAP.

The TC storage functionality allows burst uploading of data while avoiding directly routing

this data as telecommands over the SpaceWire network, which could be used to defer

certain processing.

The format of the data stored in the TC storage is not defined by the TCM and instead

needs to be coordinated between the ground segment writing into the storage and the space

segment reading from the storage. This is especially important if the space segment needs

to distinguish the boundary between individual data chunks in the TC storage.

If the existing error correction protections of the mass memory are insufficient for the current

mission specification to guarantee that the space segment can always parse the data read

from the TC storage, additional synchronization features could be added to the data format

to allow discarding invalid data, for example a fixed data chunk size, a synchronization

pattern, etc. Such features are the responsibility of the mission-specific ground and space

segment.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 142 of 222

A suggested use case for the TC storage is to provide deferred telecommand processing,

where the data chunks written into the TC storage are in the form of telecommands, which

can be read by the space segment when it is ready to process them. In this case the

telecommands to be stored need to be embedded in the service data unit field of PUS

service request telecommands – one (or more) telecommand(s) wrapped inside another

telecommand.

The TC storage is non-persistent, and the stored data along with the status information will

be cleared if the TCM is reset, despite using a mass memory partition for its storage. This

clear is done in order to eliminate any potential data inconsistency which could occur due to

write cache loss on reset or data recovery during initialization.

To enable the TC storage, a single mass memory partition must be configured with the TC

storage partition type as described in 7.9.2.3.

The PUS service interface for writing into the TC storage from the ground segment is

described in 7.15.2.

The space segment can use the MMData (read only), MMDataRange, MMPartitionConfig

and MMPartitionSpace commands to read data from and information about the TC storage

partition in the same way as from a standard continuous partition.

In addition, the space segment can use the MMTCStorageStatus command to read specific

status information from the TC storage and can use the MMTCStorageClear command to

clear the TC storage.

Writing to, freeing from, or downloading from a TC storage partition by the space segment is

not supported.

See 7.16 for detailed descriptions of the space segment commands.

7.11. TC Queue

The TCM supports a functionality to route received TC packets to a queue, rather than

consuming the TC packets directly, depending on the APID of the TC packet. It also defines

an interface to read a packet from this queue, and to remove a previously read packet from

the queue.

The TC queue stores individual TC packets and the queue size is 50 packets. The maximum

size of TC packets to be stored is 1016 bytes, which represents the maximum size of a

transfer frame data field without the segment header (see 12.6). The queue is implemented

as a circular queue, meaning that the FIFO (first in, first out) principle applies, and upon a

queue overflow, the oldest packet is overwritten.

When a TC packet is added to the TC queue, it is assigned a queue item ID. This is an

incremental counter, which is returned as part of the metadata when reading the packet. It

can be used to check e.g., whether a queue overflow has occurred.

When successfully adding a TC packet to the TC queue, the TCM will not send any

Telecommand Acceptance Success Report. If it fails to add the TC packet to the TC queue

(e.g. due to faulty packet CRC) it will send a Telecommand Acceptance Failure report (1,2)

(see 7.14.1).

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 143 of 222

7.12. Spacewire Backup Routing

The TCM provides a “Spacewire Backup Routing” service, this is a service that will resend a

command packet over an alternative Spacewire path if the first transmission of the

command packet fails.

When SBR is enabled and a command message is redistributed to a SpW node by the TCM

SW, the SpW node must send a reply to the TCM SW if the command message was

received properly. If the TCM SW has not received a valid reply within the user-specified

time period, the TCM SW will switch to using the backup SpW path and try to send the

packet once again. After that TCM SW will send command messages using the original

routing path to avoid switching paths due to temporal errors. If a write-reply arrives after the

user specified time period, or no matching timer is found, the write-reply will be ignored.

When the TCM SW is requesting a write-reply from an external SpW node, the TCM SW

must provide the path for the write reply. Since it is not possible to determine the reply path

from the corresponding backup path, the user must also provide one write-reply path for

every defined SpW path.

Enabling SpW backup routing, setting the primary and backup SpW paths, setting SpW

write-reply paths, and configuration of the duration of the timeout can be done by configuring

NVRAM. This is described in 7.4. These parameters can also be configured or read out by

sending RMAP commands to the TCM, the RMAP commands are described in 7.16.7.35 -

7.16.7.46.These RMAP commands make it possible to configure these parameters during

flight, since a debugger must be connected to the TCM when configuring NVRAM.

Altering the SpW routing configuration via RMAP commands does not trigger any write

actions to NVRAM, the RMAP commands only alter local copies of the NVRAM parameters

in the TCM SW. Upon reboot, all SpW routing configurations (enable/disable, paths and

timeout) set by RMAP commands are lost. After reboot, the TCM SW will use the SpW

routing configurations and paths set by the NVRAM configuration.

(1) 𝑡𝑖𝑚𝑒𝑜𝑢𝑡[𝑠] ∗ 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑎𝑡𝑒 [
𝑛

𝑠
] ≤

max 𝑏𝑢𝑓𝑓𝑒𝑟𝑠

2
[𝑛]

The linear relationship in the equation above should be used as a rule of thumb when

selecting write reply timeout to avoid running out of resources. A maximum of half the

number of available buffers (internal buffers of the TCM SW, here used for holding the data

contents of RMAP commands while waiting for a write reply), 64/2=32 buffers, should be

allowed to be occupied waiting for timeouts or write replies. Different SpW-networks and

different sizes of TC/uart packets require different minimum timeouts therefore care must be

taken so that the timeout is set high enough for the packets to be sent properly.

It is allowed to update backup routing parameters via RMAP during ongoing SBR

transactions, but updating the SpW reply paths, the enable/disable parameter or the timeout

duration parameter will not affect already started transactions. For example if SBR is

enabled and an RMAP command requesting a reply is sent to an external node, and SBR is

disabled before the TCM SW has received a reply or the timer has timed out, then it is

possible that the RMAP command will be resent on its backup path although SBR is

disabled. If SBR is enabled and an RMAP command requesting a reply is sent to an external

node, and the user updates the SpW routing paths before the TCM SW has received a reply

or the timer has fired, the new updated paths will be used for the possible resend of that

RMP command packet.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 144 of 222

7.13. RIRP RMAP Interface

RIRP is an alternative interface for RMAP command access to the TCM.

Specific RMAP addresses for devices and sub-systems are allocated for RIRP-interface

accesses to the TCM, see Table 7-41 for info about addresses.

With RIRP, the reply uses standard RMAP status codes as described in [RD2] and the

specific execution status is not generally returned in the reply, but instead stored in a

transaction status buffer to be read out separately.

The transaction status buffer is not used in the case of acceptance errors, successful reads,

or reads from the transaction status buffer itself.

See 7.16.2 for more information.

7.14. ECSS standard services

The TCM supports a subset of the services described in [RD3]

7.14.1. PUS-1 Telecommand verification service

The TCM performs a verification of APID of the incoming TC. If the verification fails, the

telecommand is rejected and a Telecommand Acceptance Failure - report (1,2) is generated

as described in [RD3]. On successful verification, the command is routed to the receiving

APID. The receiving APID performs further verification of packet length, checksum of

packet, packet type, packet subtype and application data and generates reports accordingly

[(1,1) or (1,2)]. If specified by the mission, the APID shall implement services for

Telecommand Execution Started, Telecommand Execution Progress and Telecommand

Execution Complete. Sending these reports can be enabled or disabled by setting the ACK

flags of the TC accordingly (see Table 12-4).

Table 7-30 Telecommand Acceptance Report – Success (1,1) data

Packet ID Packet Sequence Control

UINT16 UINT16

Table 7-31 Telecommand Acceptance Report – Failure (1,2) data

Packet ID Packet Sequence Control Code

UINT16 UINT16

UINT8.
0 – Illegal APID
1 – Invalid packet length
2 – Incorrect CRC
3 – Illegal packet type
4 – Illegal packet subtype
5 – Illegal application data
6 – Illegal PUS version

7.14.2. PUS-2 Distributing Register Load Command

By PUS service (2,2) it is possible to write data to devices on the TCM by a telecommand.

One register load command per telecommand is supported.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 145 of 222

Using this service if the PUS access to the UART is blocked (see Table 7-4) will result in a

Telecommand execution completed report - failure.

Table 7-32 Distributing Register Load Command

Register Address Register Data

0xFF04000100 – UART0
0xFF04000101 – UART1
0xFF04000102 – UART2
(5 octets)

Array of UINT8

7.14.3. PUS-2 Device Command Distribution Service

The TCM supports the command pulse distribution unit (CPDU) pulse commands in

hardware as defined in 7.2.2 in [RD3]. The CPDU listens for a specific virtual channel –

APID pair, see the configuration document [RD18].

The TCM has 12 controllable (0-11) output lines and can be toggled to supply different pulse

lengths according to the following scheme:

Table 7-33 CPDU Command (2, 3)

Output Line ID Duration

0-11
(1 octet)

0 – 7
(1 octet)

The duration is a multiple of the CPDU_DURATION_UNIT (D), defined to 12.5 ms, as

detailed below.

Table 7-34 CPDU Duration

Duration in bits Duration in time (ms)

000 1 x D = 12.5

001 2 x D = 25

010 4 x D = 50

011 8 x D = 100

100 16 x D = 200

101 32 x D = 400

110 64 x D = 800

111 128 x D = 1600

Note: The APIDs reserved for the CPDU are 1 – 9 for future use.

7.14.4. PUS-2 Distributing Device Command

By PUS service (2,128) it is possible to write a command to devices on the TCM by a

telecommand. One device command per telecommand is supported. UART-devices have a

fixed configuration of 8 data bits and 1 stop bit.

Using this service if the PUS access to the UART is blocked (see Table 7-4) will result in a

Telecommand execution completed report - failure.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 146 of 222

Table 7-35 Distributing Device Command

Device Address Bitrate Mode Parity

0xFF04000100 – UART0
0xFF04000101 – UART1
0xFF04000102 – UART2
(5 octets)

11 = 375000 baud
10 = 347200 baud
9 = 153600 baud
8 = 115200 baud (default)
7 = 75600 baud
6 = 57600 baud
5 = 38400 baud
4 = 19200 baud
3 = 9600 baud
2 = 4800 baud
1 = 2400 baud
0 = 1200 baud
(1 octet)

0 = RS422 mode (default)
1 = RS485 mode
2 = Loopback
(1 octet)

0 = No parity
(default)
1 = Odd parity
2 = Even parity
(1 octet)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 147 of 222

7.15. Custom services

7.15.1. PUS-130 Software upload

During the lifetime of a satellite, the on-board software might need adjustments as bugs are

detected or the mission parameters adjusted. This service solves that by providing a means

for updating the on-board software in orbit. See chapter 10 for further info.

7.15.2. PUS-131 TC Storage

7.15.2.1. Description

The TC storage service provides the capability to store data into the TC storage for later

retrieval by the space segment.

The TC storage service does not provide any capability to read or clear the data stored into

the TC storage, this responsibility is delegated completely to the space segment.

The TC storage service provides a storage area into which data chunks can be appended.

The storage area is configured via the mass memory partition configuration in the NVRAM,

using the special TC storage partition type.

When the TC storage partition becomes full, no more data can be appended into the storage

area and attempted stores will be discarded and an execution failure report sent. The space

segment is responsible for clearing the storage area for re-use.

The amount of data that can be stored in the TC storage before it becomes full depends on

the number of blocks configured for the TC storage partition. The maximum number of data

chunks that can be appended into the TC storage before clearing is 232 − 1, exceeding this

limit is not supported (although it is highly unlikely based on the telecommand uplink speed).

The TC storage service maintains status information about the number of bytes used in the

storage area, the amount of data chunks currently stored in the storage area and the

amount of data chunks which has failed to be stored due to the storage area being full. This

status information is only accessible by the space segment.

Requests to the TC storage must use the default TCM core application APID 175.

The TC storage service defines a single service request named “TC storage store data” with

service type 131 and service subtype 0.

The service data unit associated with the TC storage store data service request is a single

“deduced parameter” in the form of a “fixed-length octet string” which is deduced from the

request telecommand packet length, see [RD3] for details. In other words, the payload is

treated as raw data bytes and will not be parsed in any way.

When the TC storage service receives a TC storage store data service request it will attempt

to append the data in the service data unit of this request into the storage area. The result of

the append action will be provided via an execution failure or execution success report (see

section 7.14.1).

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 148 of 222

7.15.2.2. Telecommand Verification Service

A dedicated telecommand verification service is provided in conjunction with the TC storage

service.

The verification service defines two acceptance verification reports named “TC storage store

data acceptance report - Success” and “TC storage store data acceptance report - Failure”.

The TC storage store data acceptance report – Success contains no custom tailoring

compared to the definition in the PUS standard, see [RD3].

The TC storage store data acceptance report – Failure source data format is described in

Table 7-36.

Table 7-36 TC Storage store data acceptance completed report - Failure source data

Telecommand Packet ID Packet Sequence Control Code

2 octets 2 octets Enumerated, 1 octet (PFC=1).

The possible values for the code field of the TC storage data acceptance report – Failure is

the standard code values defined in the PUS standard (0.5), see [RD3].

The verification service defines two execution verification reports named “TC storage store

data execution completed report - Success” and “TC storage store data execution

completed report - Failure”.

The TC storage store data execution completed report – Success contains no custom

tailoring compared to the definition in the PUS standard, see [RD3].

The TC storage store data execution completed report – Failure source data format is

described in Table 7-37.

Table 7-37 TC storage store data execution completed report – Failure source data

Telecommand Packet ID Packet Sequence Control Code

2 octets 2 octets Enumerated, 1 octet (PFC=1).

The possible values for the code field of the TC storage data execution completed report –

Failure is described in Table 7-38.

Table 7-38 TC storage store data execution completed report – Failure source data code field details

Value Description

1 Unable to append due to data store being full.

2 No TC storage partition is configured.

7.16. Spacewire RMAP

A general description of how the Spacewire RMAP is used by the TCM is given in section

7.16.1. Section 7.16.2 describes the alternative RIRP interface. Section 7.16.3 deals with

the incoming RMAP commands that the TCM application supports. Any RMAP commands

issued by the TCM are described in section 7.16.4. Section 7.16.5 deals with the status

codes returned with the replies to incoming commands, and 7.16.6 explains the use of

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 149 of 222

transaction ID’s to keep track of where replies shall be sent. Finally, sections 7.16.7 and

7.16.8 provide further details about the incoming and outgoing RMAP commands.

7.16.1. Description

According to [RD2], a 40-bits address consisting of an 8-bit Extended Address field and a

32-bit Address field is used in RMAP. This has been utilized in the TCM according to Table

7-41 to separate between configuration commands and mass memory storage of data

(partition handling).

The initiator logic address of output messages from the TCM, and the RMAP key that needs

to be used for input messages and should be expected from output messages, are shown in

Table 7-39.

Table 7-39 RMAP predefined fields

Field Value

Initiator Logical Address 0x42

Key 0x30

In addition, target address and reply address must be added to the RMAP header in

commands targeting the Sirius TCM to compensate for topology external to the Sirius TCM

and the embedded SpaceWire router. As can be seen in Figure 7-1, if the Sirius TCM were

to be addressed from SpaceWire port 1, the example addresses below must be added to the

routing addresses in the RMAP header.

Table 7-40 RMAP predefined fields for routing

Field Value

Target Spw Address 0x01, 0x03

Reply Address 0x01, 0x03

Please note that the size requested in RMAP read commands will be ignored and the

returned data by the reply will be of a fixed size determined by the TCM. Except for the

commands MMData, and RIRPTransactionStatus, where the size requested will be used.

Refer to the respective subsection of 7.16.7 for details about the size returned by the

individual commands.

In the RMAP header Instruction field there is a Verify-Data-Before-Write bit. In the TCM that

is used as follows:

• If an RMAP command is received by the TCM SW with Verify-Data-Before-Write

set, the data integrity is verified before the command is processed, according to the

RMAP standard.

• If an RMAP command is received by the TCM SW with the Verify-Data-Before-

Write bit not set, the data payload integrity is not verified before nor after the

command is processed. This is a deliberate deviation from the RMAP standard to

allow high throughput writing of data where immediate indications of any data

corruption is not critical, and/or will be provided via other means.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 150 of 222

7.16.2. RIRP Interface

Specific addresses have been allocated to be used for the RIRP interface as described in

Table 7-41.

The command for reading from the transaction status buffer is described in 7.16.7.46.

Limitation:

Using both the standard RMAP interface and the RIRP interface in parallel is not supported.

The desired interface must be configured in NVRAM (see Table 7-8) and only the addresses

corresponding to the configured interface may be used.

7.16.2.1. Command Acceptance

If an invalid command is received by the TCM it is discarded without sending a reply.

If a command is received by the TCM which contains an invalid extended address, a reply is

sent with a status set to 1 (General error code). In this case the command is not stored in

the transaction status buffer.

When using RIRP and the RIRP transaction status buffer is full, all incoming RMAP

commands will be rejected. When a RIRP command is rejected for this reason, a reply with

status 1 (General Error) will be sent to the initiator. Reading from the RIRP transaction buffer

must be performed before the TCM-SW can handle new RMAP commands.

Up to 200 transactions can be stored in the transaction status buffer.

7.16.2.2. Write Commands

If a RIRP write command is received and accepted by the TCM, a reply will be sent directly

with a status indicating success, the command is then added to the transaction status buffer

with an “ongoing” status.

When an accepted write command completes execution either successfully or with an error,

the entry in the transaction status buffer is updated with a “finished” status and the specific

execution status. The initiator of the write command is expected to read from the transaction

status buffer to determine the execution status.

7.16.2.3. Read commands

For RIRP read commands, a reply is sent within 100 ms (excluding any delays due to

spacewire network congestion).

Read commands which have been received and accepted will be added to the transaction

status buffer with an “ongoing” operation state.

If a read command has been received and accepted and the read execution finishes within

100ms, a reply will be sent with the read data and a status indicating success. The read

command is no longer stored in the transaction status buffer after success and the initiator is

not expected to read from the transaction status buffer.

If a read command has been received and accepted and the read execution does not finish

within 100ms, a reply will be sent with no read data and a status set to 1 (General error

code). The entry in the transaction status buffer is updated with a “timed out” operation state

(execution status is unspecified in this case). The initiator of the read command is expected

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 151 of 222

to read from the transaction status buffer to determine the timed out status of the read

command.

If a read command has been received and accepted and the read execution completes with

an error, a reply will be sent with a status set to 1 (General error code) which may include

read data, depending on the error. The entry in the transaction status buffer is updated with

a “finished” operation state and the specific execution status. The initiator of the read

command is expected to read from the transaction status buffer to get the specific execution

error.

7.16.2.4. Reading from the Transaction Status Buffer

RIRP read commands which reads from the transaction status buffer is an exception to the

general read command handling:

• Transaction status buffers read commands are never added as transaction status buffer

entries.

• Transaction status buffer reads cannot time out.

• If a transaction status buffer read fails due to the read length being longer than the

transaction status buffer size, a reply will be sent with a status set to 11 (RMW Data

Length error), this is a non-standard use of this RMAP status code.

• No other observable execution failures exist for transaction status buffer reads.

Commands with has completed execution or timed out will be cleared from the transaction

status buffer once the transaction status entry has been fully read.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 152 of 222

7.16.3. Input

The RMAP commands supported by the TCM are specified in table below. See chapter

7.16.7 for details on each specific command.

Table 7-41 RMAP commands TCM

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 153 of 222

Name Ext. Addr Address Cmd Description

TMStatus
0x90 - RIRP

0xFF- No
RIRP

0x00000000 R
Reads latest
telemetry status.

TMConfig
0x90 - RIRP

0xFF- No
RIRP

0x00000200 R
Reads telemetry
configuration.

TMControl
0x90 - RIRP

0xFF- No
RIRP

0x00000300 W
Enable/Disable
telemetry.

TMFEControl
0x90 - RIRP

0xFF- No
RIRP

0x00000400 W

Enable/Disable
Frame Error Control
Field for TM Transfer
Frames.

TMMCFCControl
0x90 - RIRP

0xFF- No
RIRP

0x00000500 W

Enable/Disable
Master Channel
Frame Counter
Control for TM
Transfer Frames.

TMIFControl
0x90 - RIRP

0xFF- No
RIRP

0x00000600 W
Enable/Disable Idle
Frames.

TMPRControl
0x90 - RIRP

0xFF- No
RIRP

0x00000700 W

Enable/Disable
Pseudo
Randomization for
telemetry.

TMCEControl
0x90 - RIRP

0xFF- No
RIRP

0x00000800 W

Enable/Disable
Convolutional
Encoding for
telemetry.

TMBRControl
0x90 - RIRP

0xFF- No
RIRP

0x00000900 W
Sets telemetry clock
frequency divisor
(bitrate)

TMOCFControl
0x90 - RIRP

0xFF- No
RIRP

0x00000A00 W

Enable/Disable
inclusion of
Operational Control
field in TM Transfer
Frames.

TMTSControl
0x90 - RIRP

0xFF- No
RIRP

0x00000B00 R/W
Configures
Timestamp of
telemetry.

TMTSStatus
0x90 - RIRP

0xFF- No
RIRP

0x00000C00 R
Latest timestamp of
telemetry on virtual
channel 0.

TMSend
0x90 - RIRP

0xFF- No
RIRP

0x0000100N W

Sends telemetry on
virtual channel N.See
[RD18] for allowed
VCs.

TCStatus
0x90 - RIRP

0xFF- No
RIRP

0x01000000 R
Reads latest
telecommand status.

TCDRControl
0x90 - RIRP

0xFF- No
RIRP

0x01000100 W
Enables/Disables
Derandomizer of
telecommands.

TCQueueQuery 0x90 - RIRP
0xFF- No

RIRP

0x01001000 R Query the oldest
packet from TC
queue.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 154 of 222

TCQueueRemoveAndQuery 0x90 - RIRP
0xFF- No

RIRP

0x01001100 R Remove packet from
TC queue and query
next.

TCQueueClear 0x90 - RIRP
0xFF- No

RIRP

0x01001200 W Clear the queue.

HKData
0x90 - RIRP

0xFF- No
RIRP

0x02000000 R
Reads housekeeping
data.

SCETTime
0x90 - RIRP

0xFF- No
RIRP

0x02000100 R/W
Reads/Sets SCET
time.

HKResetCause
0x90 - RIRP

0xFF- No
RIRP

0x02000500 R
Retrieves the cause
of the last TCM reset

HKLastBootStatus
0x90 - RIRP

0xFF- No
RIRP

0x02000600 R
Reads out the status
of the last failed boot.

HKDeathReports
0x90 - RIRP

0xFF- No
RIRP

0x02000700 R
Reads out death
reports to allow
analysis of resets.

HKClearDeathReports
0x90 - RIRP

0xFF- No
RIRP

0x02000800 W
Clears the death
report area on
NVRAM.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 155 of 222

UARTCommand
0x90 - RIRP

0xFF- No RIRP
0x0400010n W

Sends a command to
UART device n.
0 – UART0
1 – UART1
2 – UART2
3 – UART3
4 – UART4
5 – PSU Ctrl
6 – Safe Bus.

MMData

0x80-0x8F-
RIRP

0x00-0x0F - No
RIRP

0xnnnnnnnn R/W

Reads/writes data from/to
a partition.
The extended address
field determine the
partition number. The
address field is used
differently on different
types of partitions, see
command details.

MMDataRange
0x90 - RIRP

0xFF- No RIRP
0x0500010n R

Address ranges of all
stored data in partition n.

MMPartitionConfig
0x90 - RIRP

0xFF- No RIRP
0x0500030n R

Configuration of partition
n.

MMPartitionSpace
0x90 - RIRP

0xFF- No RIRP
0x0500040n R

Space available in
partition n.

MMDownloadPartitionData
0x90 - RIRP

0xFF- No RIRP
0x0500050n W

Downloads partition n
data via telemetry.

MMFree
0x90 - RIRP

0xFF- No RIRP
0x0500060n W

Frees memory from
partition n.

MMDownloadStatus
0x90 - RIRP

0xFF- No RIRP
0x0500070n R

Amount of data
downloaded in partition n.

MMStopDownloadData
0x90 - RIRP

0xFF- No RIRP
0x05000A0n W

Stops download of data
from partition n.

MMGetPageSize
0x90 - RIRP

0xFF- No RIRP
0x05000B00 R

Reads out size of page,
block and spare area

MMTCStorageStatus
0x90 - RIRP

0xFF- No RIRP
0x05000C00 R

TC storage status
information.

MMTCStorageClear
0x90 - RIRP

0xFF- No RIRP
0x05000D00 W Clear the TC storage.

MMBadBlockCount
0x90 - RIRP

0xFF- No RIRP
0x05000E00 R

Read out number of bad
blocks.

SpwBackupRoutingEnableDisableSet
0x90 - RIRP

0xFF- No RIRP
0x07000200 W

Enables/disables backup
SpW routing

SpwBackupRoutingEnableDisableGet
0x90 - RIRP

0xFF- No RIRP
0x07000300 R

Reads out the current
SBR configuration

SpwRoutingPathSet
0x90 - RIRP

0xFF- No RIRP
0x07000400 W Sets the SpW paths

SpwRoutingPathGet
0x90 - RIRP

0xFF- No RIRP
0x07000500 R Reads out the SpW paths

SpwReplyPathSet
0x90 - RIRP

0xFF- No RIRP
0x07000600 W

Sets the SpW write-reply
paths.

SpwReplyPathGet
0x90 - RIRP

0xFF- No RIRP
0x07000700 R

Gets the SpW write-reply
paths.

SpwBackupRoutingTimeoutSet
0x90 - RIRP

0xFF- No RIRP
0x07000800 W

Sets the write reply
timeout of the TCM in
milliseconds

SpwBackupRoutingTimeoutGet
0x90 - RIRP

0xFF- No RIRP
0x07000900 R

Reads out the write reply
timeout of the TCM in
milliseconds

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 156 of 222

RIRPTransactionStatus
0x90 - RIRP

0xFF- No RIRP
0x07000A00 R

Reads out the RIRP
transaction status

GPIOGetConfig
0x90 - RIRP

0xFF- No RIRP
0x090001nn R

Get configuration of
GPIO pin nn

GPIOSetConfig
0x90 - RIRP

0xFF- No RIRP
0x090002nn W

Set configuration for
GPIO pin nn

GPIOGetValue
0x90 - RIRP

0xFF- No RIRP
0x090003nn R Get value of GPIO pin nn

GPIOSetValue
0x90 - RIRP

0xFF- No RIRP
0x090004nn W

Set output value for
GPIO pin nn

7.16.4. Output

The TCM supports routing of data received by some of its interfaces to other Spacewire

nodes, according to the address map below:

Note! All outgoing communication will use the Transaction ID range of 0x0000-0x0FFF.

Table 7-42 Published data from TCM

Name Ext. Addr. Address Cmd Description

TCCommand 0xFF 0x00000000 W Routed Telecommands

UARTData 0xFF 0x0400000x W

Data received on specified UART x.
0 – UART0
1 – UART1
2 – UART2
3 – UART3
4 – UART4
5 – PSU Ctrl
6 – Safe Bus

7.16.5. Status code in reply messages

7.16.5.1. Status field, RIRP Disabled

In the status field of write/read, the values in table below can be returned, this replaces the

standard RMAP status codes described in [RD2]. See individual commands for specific

status code interpretations.

Table 7-43 Status codes, RIRP disabled

Code Numeric value

- 0

EIO 5

EAGAIN 11

ENOMEM 12

EEXIST 17

ENODEV 19

EINVAL 22

ENOSPC 28

ENODATA 61

EBADMSG 77

EALREADY 120

ESTALE 133

ENOTSUP 134

ECANCELED 140

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 157 of 222

7.16.5.2. Status field, RIRP Enabled

In RMAP Write/Read reply messages when using RIRP, the status field of the reply contains

values according to [RD2].

The possible status codes are described in Table 7-44.

Table 7-44 RIRP Status Codes

Numeric
value

Command
type

Meaning

0 read Success.

0 write Success.

1 read One of:

• Invalid extended address.

• Read execution timed out.

• Read execution failed.
RIRP transaction status buffer is full

1 write One of:

• Invalid extended address.

• Write execution failed

11 read Length is greater than the maximum when reading from the
transaction status buffer (non-standard use of RMAP status
code).

If a write command is sent using RIRP without requesting a reply, no reply is returned.

Error code 1 (General error code) can be returned without the RIRP transaction status buffer

being updated. This indicates that the RIRP transaction status buffer was full or that the

extended address was wrong.

When error code 1 (General error code) is returned in a read reply, more details about the

actual error can be obtained by reading from the transaction status buffer, Table 7-45

provides further details of how to distinguish the actual error in this case.

Table 7-45 Determining actual error for read general errors

Actual error Determined by

Invalid extended
address

No command entry with corresponding transaction ID is present in
transaction status buffer.

Read execution timed
out

Command entry with corresponding transaction ID is present in
transaction status buffer and contains a “timed out” operation state.

Read execution failed Command entry with corresponding transaction ID is present in
transaction status buffer and contains a “finished” operation state.

RIRP transaction
status buffer is full

No command entry with corresponding transaction ID is present in
transaction status buffer.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 158 of 222

7.16.6. Transaction ID

The TCM uses the RMAP Transaction ID to separate between outstanding replies to

different units. When several nodes are addressing the TCM, they need to be assigned a

unique transaction id range to ensure correct system behaviour. To allow for similar

transaction identification throughout the system, the TCM uses the Transaction ID range

0x0000-0x0FFF in all outgoing communication. The transaction id range 0x0000-0x0FDF

is used for normal commands, and the range 0x0FDE-0x0FFF is used for resends of

commands.

A single node addressing the TCM also must make sure that transaction IDs used for

commands that can overlap in time are unique, in order to ensure that on-going transactions

cannot be mixed up with new transactions. This also applies for commands without a

requested reply.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 159 of 222

7.16.7. RMAP input address details

The chapters below contain detailed information on the data accesses to the given RMAP

addresses.

7.16.7.1. TMStatus

Reads the latest telemetry status.

Table 7-46 TMStatus data

Byte Type Description

0 UINT8
0x00 – No Error
0x01 – FIFO error.

1 UINT8 Reserved

RMAP reply status:

Table 7-47: TMStatus reply status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized.

EIO I/O error. The TM device cannot be accessed

7.16.7.2. TMConfig

Reads the telemetry configuration.

Table 7-48 TMConfig data

Byte Type Description

0-1 UINT16 Telemetry clock bitrate divisor value, default 250.

2 UINT8
Telemetry Control
0x00 – Disabled
0x01 – Enabled (default)

3 UINT8
OCF Control
0x00 – Disabled
0x01 – Enabled (default)

4 UINT8
Frame Error Counter Field Control
0x00 – Disabled
0x01 – Enabled (default)

5 UINT8
Master Channel Frame Count Control
0x00 – Disabled
0x01 – Enabled (default)

6 UINT8
Idle Frame Control
0x00 – Disabled
0x01 – Enabled (default)

7 UINT8
Convolutional Encoding Control
0x00 – Disabled (default)
0x01 – Enabled

8 UINT8
Pseudo Randomization Control
0x00 – Disabled (default)
0x01 – Enabled

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 160 of 222

RMAP reply status:

Table 7-49 TMConfig reply status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized.
EIO I/O error. The TM device cannot be accessed

7.16.7.3. TMControl

Controls generation of telemetry.

Table 7-50 TMControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-51 TMControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range
EIO I/O error. The TM device cannot be accessed

7.16.7.4. TMFEControl

Controls Frame Error Control Field inclusion for transfer frames.

Table 7-52 TMFEControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-53 TMFEControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range
EIO I/O error. The TM device cannot be accessed

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 161 of 222

7.16.7.5. TMMCFCControl

Controls the Master Channel Frame Counter generation for transfer frames.

Table 7-54 TMMCFCControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-55 TMMCFCControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range
EIO I/O error. The TM device cannot be accessed

7.16.7.6. TMIFControl

Controls the Idle Frame generation for transfer frames.

Table 7-56 TMIFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is a requested):

Table 7-57 TMIFControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.16.7.7. TMPRControl

Controls the Pseudo Randomization for transfer frames.

Table 7-58 TMPRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 162 of 222

RMAP reply status (if a reply is requested):

Table 7-59 TMPRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.16.7.8. TMCEControl

Controls the Convolutional Encoding for transfer frames.

Note! Convolutional encoding doubles both the amount of telemetry data sent and also the

telemetry clock frequency, keeping the same net datarate as without.

Table 7-60 TMCEControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-61 TMCEControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.16.7.9. TMBRControl

Sets the telemetry clock frequency divisor.

The telemetry clock is fed to the radio and determines the TM output rate. The divisor is

defined such that the useful payload bitrate (before possible convolutional encoding) is the

same irrespective of whether convolutional encoding is performed or not. The frequency of

the telemetry clock thus depends on the divisor and whether convolutional encoding is

enabled or disabled according to:

Interface bitrate with convolutional encoding: 𝑇𝑀_𝑐𝑙𝑘 =
50𝑒6

𝑑𝑖𝑣𝑖𝑠𝑜𝑟

Interface bitrate without convolutional encoding: 𝑇𝑀_𝑐𝑙𝑘 =
50𝑒6

2∙𝑑𝑖𝑣𝑖𝑠𝑜𝑟

Payload bitrate irrespective of convolutional encoding: 𝑇𝑀_𝑐𝑙𝑘 =
50𝑒6

2∙𝑑𝑖𝑣𝑖𝑠𝑜𝑟

Note that a 50% duty cycle will not be achieved with an odd divisor and convolutional

encoding enabled.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 163 of 222

The TM stream will be interrupted while the bitrate change takes place, as TM is disabled

before updating the divisor and then reenabled if it was enabled before.

Table 7-62 TMBRControl data

Byte Type Description

0–1 UINT16

Bitrate divisor value (default 25).
Convolutional encoding: 6 ≤ 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 ≤ 12500

No convolutional encoding: 3 ≤ 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 ≤ 6250

RMAP reply status (if a reply is requested):

Table 7-63 TMBRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized.

EIO I/O error. The TM device cannot be accessed

7.16.7.10. TMOCFControl

Controls Operational Control Field inclusion in TM Transfer frames.

Table 7-64 TMOCFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-65 TMOCFControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.16.7.11. TMTSControl

Configures the timestamping for transfer frames.

Table 7-66 TMTSControl data

Byte Type Description

0 UINT8

The period of the generation is the power of two with the input
as exponent.
0x00 – Take a timestamp every time frame sent (default)
0x01 – Take a timestamp every 2nd time frame sent
0x02 – Take a timestamp every 4th time frame sent
…
0x08 – Take a timestamp every 256th time frame sent

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 164 of 222

RMAP reply status (if a reply is requested):

Table 7-67 TMTSControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized or the argument is out of range

EIO I/O error. The TM device cannot be accessed.

7.16.7.12. TMTSStatus

The latest timestamp of telemetry sent on virtual channel 0.

Table 7-68 TMTSStatus data

Byte Type Description

0 UINT32 Seconds counter sampled when the frame event triggered

4 UINT16 Subseconds counter sampled when the frame event triggered

RMAP reply status:

Table 7-69 TMTSStatus status codes

Status code Description

0 Success.
EINVAL Insufficient command length.

EIO I/O error. The TM device cannot be accessed

7.16.7.13. TMSend

Sends telemetry to the TM path on virtual channel N. See [RD18] for VC allocation. If RIRP

is enabled and Live TM is sent to the TCM at a higher rate than the TCM can push it to the

radio, it is indicated by the RMAP reply with status code 1 (General error). The payload of

the TMSend command will be rejected. Reading RIRPTransactionStatus gets detailed

information about the error that occurred in the TMSend command.

If TMSend commands provide data at a rate higher than the TM downlink can handle

(depending on current bitrate configuration and any other ongoing downlink), it will result in

the TM live buffer becoming full. If additional TMSend commands are received when the TM

live buffer is full, these commands will be rejected with execution status 12 (“ENOMEM”).

The manner in which this execution status is presented depends on which API is used:

• When not using the RIRP API, this execution status will be provided in the error code

field of the RMAP reply.

• When using the RIRP API, the RMAP reply error code will be 1 (“general error”) and the

execution status will be provided in the RIRP transaction status buffer accessible via the

RIRPTransactionStatus command.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 165 of 222

Note! The data must contain at least one telemetry PUS Packet.

Table 7-70 TMSend data

Byte Type Description

0 – nn Array of UINT8 Data containing PUS packet(s).

RMAP reply status (if a reply is requested):

Table 7-71 TMSend status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized.

EIO I/O error. The TM device cannot be accessed

ENOMEM TM live buffer is full

7.16.7.14. TCStatus

Reads current telecommand status.

Table 7-72 TCStatus data

Byte Type Description

0 UINT32 CLCW word of the last received telecommand.

4 UINT8
Number of missed TC frames due to overflow. Wraps after
0xFF.

5 UINT8 Number of rejected CPDU commands. Wraps after 0xFF.

6 UINT8 Number of rejected telecommands. Wraps after 0xFF.

7 UINT8
Number of parity errors generated by checksums in the
telecommand path. Wraps after 0xFF.

8 UINT8
Number of received telecommands. Both TC and CPDU are
counted. Wraps after 0xFF.

9 UINT16

Last CPDU pulse command. Logic 1 indicates the last activated
line.
Bit 15:12 – Unused
Bit 11:0 – Line 11:0

11 UINT8 Number of accepted CPDU commands. Wraps after 0x0F.

12 UINT8
Derandomizer setting
0x00 – Disabled.
0x01 – Enabled.

13 UINT16 Length of the last received TC frame

RMAP reply status:

Table 7-73 TCStatus status codes

Status code Description

0 Success.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 166 of 222

EINVAL The driver for the TC device has not been
initialized.

EIO I/O error. The TC device cannot be accessed

7.16.7.15. TCDRControl

Configures derandomization for telecommand frames.

Table 7-74 TCDRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-75 TCDRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TC device has not been

initialized.

EIO I/O error. The TC device cannot be accessed

7.16.7.16. TCQueueQuery

Reads the oldest packet from the TC queue and some metadata.

Table 7-76 TCQueueQuery data

Byte Type Description

0 UINT8 Number of packets in queue

1 UINT8 Queue item ID of current TC packet, [1,255]

2 UINT16 Size of TC packet (maximum 1016)

4 to ... Array TC packet

RMAP reply status:

Table 7-77 TCQueueQuery status code

Status code Description

0 Success

EAGAIN TC queue is empty (no data returned)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 167 of 222

7.16.7.17. TCQueueRemoveAndQuery

Remove the oldest packet from the TC queue (supposedly one that was read before) and read the

next packet in the queue. Data returned by this command is the same as in Table 7-76.

RMAP reply status:

Table 7-78 TCQueueRemoveAndQuery status code

Status code Description

0 Success

EAGAIN
Removal succeeded, but there is no available

TC packet in the queue to query (no data
returned)

ENODATA
No packet to remove in the queue, queue is

empty

7.16.7.18. TCQueueClear

This command clears the entire TC queue. This command does not require or provide any

data.

RMAP reply status:

Table 7-79 TCQueueClear status code

Status code Description

0 Success

7.16.7.19. HKData

Reads the housekeeping data.

Table 7-80 HKData data

Byte Type Description

0 UINT32 SCET Seconds

4 UINT16 SCET Subseconds

6 UINT16 Input voltage [mV]

8 UINT16 Regulated 3V3 voltage [mV]

10 UINT16 Regulated 2V5 voltage [mV]

12 UINT16 Regulated 1V2 voltage [mV]

14 UINT16 Input current [mA]

16 INT32 Temperature [mºC]

20 UINT8 S/W version 0-padding

21 UINT8 S/W major version

22 UINT8 S/W minor version

23 UINT8 S/W patch version

24 UINT8 CPU Parity Errors

25 UINT8 Watchdog trips

26 UINT8 Critical (CPU) SDRAM EDAC Single Errors

27 UINT8 Other SDRAM EDAC Single Errors

28 UINT8 Critical (CPU) SDRAM EDAC Multiple Errors

29 UINT8 Other SDRAM EDAC Multiple Errors

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 168 of 222

RMAP reply status:

Table 7-81 HKData status codes

Status code Description

0 Success.
EINVAL The driver for the HK device has not been

initialized.

EIO I/O error. The HK device cannot be accessed

7.16.7.20. SCETTime

Reads/sets the SCET time.

Setting the SCET time is only possible when the PPS is considered qualified, see 7.7 for

details. If set, the seconds value will be updated at the next PPS, hence the seconds value

should normally be the current seconds count + 1.

The subseconds value is ignored for write commands.

Table 7-82 SCETTime data

Byte Type Description

0 UINT32 SCETSeconds
4 UINT16 SCETSubSeconds

RMAP reply status (if a reply is requested):

Table 7-83 SCETTime status codes

Status code Description

0 Success.

EINVAL Insufficient command length.

EIO I/O error. Reading from the SCET device failed.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 169 of 222

7.16.7.21. HKResetCause

Gets the last cause of system reset.

Table 7-84 HKResetCause data

Byte Type Description

0 UINT32
SCET seconds when latest reset was triggered. Zero following a
hard reset or power-up.

4 UINT16
SCET subseconds when latest reset was triggered. Zero
following a hard reset or power-up.

6 UINT8

Last cause of reset encoded as:
0x0 – Power-Up
0x1 – Watchdog
0x2 – Manual (SW initiated)
0x3 – CPDU (safe image)
0x4 – CPDU (default image)
0x5 – CPU multi-bit error (Uncorrectable)
0x6 – CPU parity error

7 UINT8 RESERVED

RMAP reply status:

Table 7-85 HKData status codes

Status code Description

0 Success.

7.16.7.22. HKLastBootStatus

Gets status of last failed boot, if any. Otherwise get status of latest successful boot.

Table 7-86: HKLastBootStatus data

Byte Type Description

0 UINT8

Steps defined:
1 – Init
2 – Init timer
3 – Init UART
4 – Read SoC info
5 – Wait for scrubber
6 – Read bad-block table
7 – Set image
8 – Check bad-block table
9 – Get SCET before load
10 – Init sysflash
11 – Load image
12 – Compute load time
13 – Verify checksum
14 – Handover to boot image

0x0E thus indicates boot successful

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 170 of 222

0x06 indicates an error occurred during read of the bad block
table

1 UINT8 The SW image in error (0 to 5)

RMAP reply status (if a reply is requested):

Table 7-87: HKLastBootStatus status codes

Status code Description

0 Success.

7.16.7.23. HKDeathReports

Gets context of up to 5 anomalous events (A to E) that have led to an unhandled exception.

The Trap Type parameter is detailed in Table 7-144.

Table 7-88: HKDeathReports data

Byte Type Description Trap category

0 UINT32 Number of death reports currently in table -

4 UINT32 A: SCET Seconds All

8 UINT32 A: SCET Subseconds All

12 UINT32 A: Processor Status Register (PSR) All

16 UINT32 A: Trap Type All

20 UINT32 A: Program Counter (PC) Direct

24 UINT32 A: next Program Counter (nPC) Direct

28 UINT32 A: Stack Pointer Direct

32 UINT32 A: FPU Control/Status Register (FSR) Floating point

36 UINT32 A: Instruction address (Deferred traps) Floating point

40 UINT32 A: Instruction code (Deferred traps) Floating point

44 UINT32 B: SCET Seconds All

48 UINT32 B: SCET Subseconds All

52 UINT32 B: Processor Status Register (PSR) All

56 UINT32 B: Trap Type All

60 UINT32 B: Program Counter (PC) Direct

64 UINT32 B: next Program Counter (nPC) Direct

68 UINT32 B: Stack Pointer Direct

72 UINT32 B: FPU Control/Status Register (FSR) Floating point

76 UINT32 B: Instruction address Floating point

80 UINT32 B: Instruction code Floating point

84 UINT32 C: SCET Seconds All

88 UINT32 C: SCET Subseconds All

92 UINT32 C: Processor Status Register (PSR) All

96 UINT32 C: Trap Type All

100 UINT32 C: Program Counter (PC) Direct

104 UINT32 C: next Program Counter (nPC) Direct

108 UINT32 C: Stack Pointer Direct

112 UINT32 C: FPU Control/Status Register (FSR) Floating point

116 UINT32 C: Instruction address Floating point

120 UINT32 C: Instruction code Floating point

124 UINT32 D: SCET Seconds All

128 UINT32 D: SCET Subseconds All

132 UINT32 D: Processor Status Register (PSR) All

136 UINT32 D: Trap Type All

140 UINT32 D: Program Counter (PC) Direct

144 UINT32 D: next Program Counter (nPC) Direct

148 UINT32 D: Stack Pointer Direct

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 171 of 222

152 UINT32 D: FPU Control/Status Register (FSR) Floating point

156 UINT32 D: Instruction address Floating point

160 UINT32 D: Instruction code Floating point

164 UINT32 E: SCET Seconds All

158 UINT32 E: SCET Subseconds All

162 UINT32 E: Processor Status Register (PSR) All

166 UINT32 E: Trap Type All

170 UINT32 E: Program Counter (PC) Direct

174 UINT32 E: next Program Counter (nPC) Direct

178 UINT32 E: Stack Pointer Direct

182 UINT32 E: FPU Control/Status Register (FSR) Floating point

186 UINT32 E: Instruction address Floating point

200 UINT32 E: Instruction code Floating point

RMAP reply status (if a reply is requested):

Table 7-89: HKDeathReports status codes

Status code Description

0 Success.
EINVAL The driver for the HK device has not been

initialized

EIO I/O error. The HK device cannot be accessed

7.16.7.24. HKClearDeathReports

Clears the stored death reports.

Table 7-90: HKClearDeathReports data

Byte Type Description

0 UINT8 0x01 – Clear death reports

RMAP reply status (if a reply is requested):

Table 7-91: HKClearDeathReports status codes

Status code Description

0 Success.
EINVAL The driver for the HK device has not been

initialized or the argument is out of range
EIO I/O error. The HK device cannot be accessed

7.16.7.25. UARTCommand

Send a command on the specified UART interface.

Table 7-92 UARTCommand data

Byte Type Description

0 - nn Array of UINT8 UART command data

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 172 of 222

RMAP reply status (if a reply is requested):

Table 7-93 UARTCommand status codes

Status code Description

0 Success.
ENODEV This UART device has not been

configured/initialized.

EINVAL The value for the UART device is invalid.

EIO I/O error. The UARTdevice cannot be accessed

7.16.7.26. MMData

Reads or writes data from/to a partition.

7.16.7.26.1. Read
The address given in the RMAP command defines the starting byte address of the read and

the RMAP data size determines the length of the read in bytes.

If no data is available at the starting address an error will be reported. If less than the

requested data is available, a short read will be returned with an RMAP error status

indication. If read errors occur based on uncorrectable read errors, the data will be returned

along with an RMAP error status indication.

Reads which pass the end of the partition logical address space will automatically wrap.

7.16.7.26.2. Write
Writes to direct partitions needs to specify the starting address and the size via the RMAP

address and RMAP data size, the size needs to be a multiple of the page size (16 Kbytes for

16 GB mass memory, or 32 Kbytes för 32 GB mass memory). If the write would overwrite

existing data or write at an invalid location, an RMAP error status will be reported and no

data will be written.

Writes to continuous or circular partitions needs to specify the size via the RMAP data size

and must indicate use of the write pointer by setting the address to 0.

Writes which pass the end of the partition logical address space will automatically wrap.

For direct and continuous partitions, if bad blocks occur during a write which causes

available blocks to run out, the remainder of the write will be discarded, and a pending copy

operation will be set. In order to avoid data loss, freeing of enough data in order to provide

two new unused blocks should be performed as soon as possible, which will allow the copy

operation to be retried. Confirmation of the success of the copy operation should be done by

verifying that the available space is equal to one block, otherwise the freeing and copy

success confirmation procedure should be repeated. For circular partitions, the copy retrying

is taken care of automatically.

The amount of data that was written and the amount of data that was discarded in case of a

write causing available blocks to run out on direct or continuous partitions can be found by

examining the data ranges.

Writing to a circular mode partition that is being downloaded is not allowed.

Writing to a TC storage partition via RMAP is not allowed.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 173 of 222

The data field of the read/write RMAP message in Table 7-94 contains raw data written to or

read from the partition.

Table 7-94 MMData data

Byte Type Description

0 - nn Array of UINT8 Data

RMAP reply status (if a reply is requested):

Table 7-95 MMData data status codes

Status code Description

0 Success.

ENOSPC Write: Not enough space on partition (may have

been caused by bad blocks, see suggested

handling above).

Read: Not enough data on partition. Note! It's

allowed to ask for more read data than is available

on the partition. Available data will be returned

(stating the length in the RMAP reply packet)

together with this error code.

EINVAL Invalid partition number, or
Attempt to write partial page to direct mode
partition, or
Address is not 0 when writing to continuous or
circular partition, or
Length is greater than INT32_MAX, or
Length is greater than segment size when writing to

an auto-padded partition.

EEXIST Write operation to direct mode partition would

overwrite existing data.

EALREADY Write to circular partition that is being downloaded.

ENOTSUP Write not allowed for TC storage type partition.

7.16.7.27. MMDataRange

This command will return all data address ranges where data is written in this partition, see

Table 7-96. The range information should be interpreted differently for different partition

modes.

Continuous and circular mode - Only one range will be reported, corresponding to the free

and write pointers. Empty and full partitions will show the free and write pointers having the

same value, use the MMPartitionSpace command to get size status.

Direct mode - This is a collection of ranges. Empty partitions will return an empty range table

(RMAP reply data of length 0). The ranges will represent the start and end of each

continuous data segment in the partition.

Ranges will not exactly match the currently unavailable space due to partially freed (but not

yet erased) blocks.

The start address of the range is inclusive, the end address of the range is excusive.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 174 of 222

 Table 7-96 MMDataRange data

Byte Type Description

0-3 UINT32 Start address of first data range.

4-7 UINT32 End address of first data range (exclusive).

8-11 UINT32 Start address of second data range (optional).

12-15 UINT32 End address of second data range (exclusive) (optional).

.

.

.

.

.

.

.

.

.

RMAP reply status:

Table 7-97 MMDataRange status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.16.7.28. MMPartitionConfig

Reads the current partition configuration (see 7.9.2), the RMAP reply message data format

is described in Table 7-98.

The available blocks in the flash mass memory ranges from 0 to 8191.

Table 7-98 MMPartitionConfig data

Byte Type Description

0 UINT32 Starting block number of the partition.

4 UINT32 Ending block number of the partition (inclusive).

8 UINT8

Partition mode.
0 – Direct
1 – Continuous
2 – Circular
3 – Auto-padded Continuous
4 – Auto-padded Circular

9 UINT8

Specifies type of data stored on the partition.
0 – Space Packets
1 – Raw Data (not supported for download)
2 – TC storage

10 UINT8
Specifies which virtual channel to be used for downloading of
the data in the partition. See [RD18] for VC allocation.

11 UINT8

Segment size for the partition.
1 - 16 kbyte
2 - 32 kbyte
3 - N/A
4 - 64 kbyte

12 UINT32
The data source identifier for the partition. Can be used to set a
custom identifier of a data producer to a partition. Setting of this
value is not required to successfully configure a partition.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 175 of 222

RMAP reply status:

Table 7-99 MMPartitionConfig data status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.16.7.29. MMPartitionSpace

Gets the amount of free space in a partition.

Note that due to the nature of the flash memory, as memory is freed, the space will become

free for writing only in leaps as the free operation is used up to a block boundary. This

means that a partition can have a discrepancy between reported free space and expected

free space of maximum one block.

The reported space for direct partitions will correspond to the total space of every available

unused page, minus any freed bytes which belongs to a block which has not yet been fully

freed.

The reported space for continuous and circular partitions will correspond to the total space

of every unused byte, minus the data offset in the initial write block.

For continuous/circular partitions, since the write pointer is never reset it may not be located

at the beginning of a block when the initial write occurs or is about to occur, hence the

amount of free space may not correspond exactly to the amount of available fully freed

blocks. It is possible (but not recommended during normal operation) to re-synchronize the

write pointer by writing exactly the amount needed to end up at the start of a block, and then

erase up to the write pointer. This will cause the free space to be exactly equal to the

amount of available blocks (or the partition maximum logical address space limit).

Table 7-100 MMPartitionSpace data

Byte Type Description

0-7 UINT64 Available size in bytes.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 176 of 222

RMAP reply status:

Table 7-101 MMPartitionSpace status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.16.7.30. MMDownloadPartitionData

Downloads data of the requested length from the partition using the virtual channel set in the

partition configuration (see 7.9.2.5). Download commands will be processed one at a time

and any prioritizations between different partitions must be handled by sending the

download commands in priority order. For direct mode, all download data need to be in a

continuous address area (i.e. same data range) or the download will stop when reaching the

end of a continuous area even though the download ordered is larger.

In case an invalid Space packet length is encountered, or a Space CRC error occurs in a

memory segment during download, the rest of the segment will be downloaded with packet

errors and the download will re-synchronise at the start of the next segment.

If a download is started at the end of a partition that is simultaneously written to and the

amount of data is beyond the current content of the partition from that point, the download

will download only the data available at the time that the download command is issued,

regardless of the data written to the partition during download.

Data will normally be downloaded in chunks equal to the segment size set for the partition.

It's possible to start and end a download on an uneven segment boundary, but then it's the

responsibility of the user to make sure it starts and ends on even PUS packet boundaries.

See also information in chapter 7.9.2.3 on padding of data.

A download will not automatically free any data.

This command is not allowed on TC storage partitions.

The RMAP write command data format is described in Table 7-102.

Table 7-102 MMDownloadPartitionData data.

Byte Type Description

0-3 UINT32 Address of the data to download

4-11 UINT64 Length in bytes to download

The RMAP reply status (if a reply is requested) will be the first error encountered during a

single segment download, i.e. all segment downloads must be sent without fault for Success

to be returned.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 177 of 222

Table 7-103 MMDownloadPartitionData data status codes

Status code Description

0 Success.

ENOSPC Not enough data on partition. Note! It's allowed to

request download of more data than is available on

the partition. This error code will then be returned

and to see the actual amount of data downloaded,

use the MMDownloadStatus command.

EINVAL Invalid partition number.

EIO I/O error. Failed to access storage or NVRAM.

EALREADY A download session is already in progress on this
partition.

EBADMSG Data was not successfully downloaded on downlink.

ENOTSUP Download not allowed for TC storage type partition.

7.16.7.31. MMFree

Frees memory of a partition. The MMFree operation behaves differently depending on the

mode of the partition targeted.

Direct mode - The address and length given in the RMAP command together defines which

memory area should be freed.

Continuous and circular mode - The free pointer position together with the length given in

the RMAP command defines which memory area should be freed and the address field is

ignored. This operation will also move the free pointer forward.

Trying to free more memory than is available is a valid use case and can for example. be

used to empty a partition by issuing an MMFree call with the maximum partition length.

If a free to a direct partition starts inside used data and not at a block boundary, the

operation will free nothing and an RMAP error status will be reported, since such a free

could create an illegal address gap. Freeing the whole partition is a special case and still

allowed from any starting address.

Frees which pass the end of the partition logical address space will automatically wrap.

Frees may start at unused addresses.

See also 7.9 for an illustration of how free affects the actual amount of memory free for

writes.

Note that MMFree on a partition where a download is in progress is not allowed.

This command is not allowed on TC storage partitions.

The RMAP write command data format is described in Table 7-104.

Table 7-104 MMFree data

Byte Type Description

0-3 UINT32 Address of memory to free.

4-11 UINT64 Length of memory to free in bytes.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 178 of 222

RMAP reply status (if a reply is requested):

Table 7-105 MMFree status codes

Status code Description

0 Success.

EINVAL Invalid partition number, or
address is not 0 for continuous/circular partition.

EEXIST Operation could create illegal address gap inside
block.

EALREADY A download is in progress on this partition.

ENOTSUP Freeing not allowed for TC storage type partition.

7.16.7.32. MMDownloadStatus

Returns the amount of data downloaded for this partition during the last completed

download.

This command is not allowed on TC storage partitions.

Table 7-106 MMDownloadStatus data

Byte Type Description

0-7 UINT64 Number of bytes downloaded.

RMAP reply status:

Table 7-107 MMFree status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

EIO I/O error. Failed to access storage or NVRAM.

ENOTSUP Download not allowed for TC storage type partition.

7.16.7.33. MMStopDownloadData

This command can be sent to stop a current download for a partition previously started by

the MMDownloadPartitionData command.

This command is not supported on TC storage partitions.

RMAP reply status (if a reply is requested):

Table 7-108 MMStopDownload status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

ENOTSUP Download not allowed for TC storage type partition.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 179 of 222

7.16.7.34. MMGetPageSize

This command reads out the available page size and block size of the mass memory.

Table 7-109 MMPartitionSpace data

Byte Type Description

0 UINT8
Page size in bytes.
0x00 – 16 * 1024 bytes
0x01 – 32 * 1024 bytes

1 UINT8
Block size in bytes.
0x00 – 2 * 1024 * 1024 bytes
0x01 – 4 * 1024 * 1024 bytes

RMAP reply status:

Table 7-110 MMPartitionSpace status codes

Status code Description

0 Success.

7.16.7.35. MMTCStorageStatus

Reads the current TC storage status information in the format described in Table 7-111.

Table 7-111 TC Storage status information RMAP address details

Byte Type Description

0 UINT8

Bit 7:2 (MSB) – Reserved

Bit 1 – Flag indicating if the number of rejected data chunk

writes due to storage being full has reached 232 and wrapped
since last TCM reset (0 – has not wrapped, 1 – has wrapped).

Bit 0 (LSB) – Flag indicating if a TC storage partition is
configured (0 – is not configured, 1 – is configured).

1 UINT8 Partition index of TC storage partition.

2 – 3 N/A Reserved padding.

4 – 7 UINT32 Number of stored data chunks.

8 – 11 UINT32
Number of rejected data chunk writes due to storage being full
since last TCM reset.

If the byte 0 - bit 0 flag is not set, indicating that a TC storage partition is not configured, the

rest of the status information is invalid/unspecified.

It is not possible to read partial data via this command; the read address must be the base

address without any byte offset and the whole status information will be read regardless of

the read size specified.

The RMAP reply status for reads via this command can be any of the values described in

Table 7-112.

Table 7-112 TC storage status information RMAP read reply status

Status code Description

0 Success.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 180 of 222

7.16.7.36. MMTCStorageClear

Clear all data and the stored data chunk count in the TC storage, the accompanying write

data must use the format described in Table 7-113.

Table 7-113 TC storage clear initiation RMAP write format

Bytes Type Description

0 – 3 UINT32 Range start address of data on partition.

4 – 7 UINT32 Range end address of data on partition (exclusive).

The clear will be rejected if the range does not match the range of data on the TC storage

partition at the point when the clear execution is started. This means that if a new write to

the TC storage has occurred, the clear will be rejected, ensuring that it is not possible to

silently loose data chunks.

If the clear is accepted, all stored data chunks will be discarded.

The intended use is to first read the current TC storage partition range information via the

MMDataRange command, ensure that the range information does not indicate any new data

chunks which should not be cleared, and then use this range when sending the clear

command.

Clearing can only clear the whole TC storage; no partial clearing is supported.

Clearing does not clear the rejected data chunks count nor the rejected data chunks count

wrap flag, these items are only cleared on a TCM reset.

The RMAP reply status for writes via this command can be any of the values described in

Table 7-114.

Table 7-114 TC storage clear RMAP write reply status

Status code Description

0 Success.
19 (ENODEV) Rejected due to no TC storage being configured.

22 (EINVAL) Rejected due to size of write data not being 8 bytes.

133 (ESTALE) Rejected due to range not matching current range of data on partition.

7.16.7.37. MMBadBlockCount

Reads the current number of bad blocks in the Mass Memory.

Table 7-115 - MMBadBlockCount Data

Byte Type Description

0 UINT16 Number of Bad Blocks in the Mass Memory

RMAP reply status (if a reply is requested):

Table 7-116: MMBadBlockCount status codes

Status code Description

0 Success.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 181 of 222

7.16.7.38. SpwBackupRoutingEnableDisableSet

Enables/disables backup SpW routing.

Table 7-117 SpwBackupRoutingEnableDisableSet data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-118 SpwBackupRoutingEnableDisableSet reply status codes

Status code Description

0 Success.

EINVAL The argument is out of bounds

EIO Internal RTEMS error

7.16.7.39. SpwBackupRoutingEnableDisableGet

Reads out the current enable/disable configuration.

Table 7-119 SpwBackupRoutingEnableDisableGet data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-120 SpwBackupRoutingEnableDisableGet reply status codes

Status code Description

0 Success.

EINVAL The argument is out of bounds

EIO Internal RTEMS error

7.16.7.40. SpwRoutingPathSet

Configures the SpW paths. The maximum size of a path is 8 bytes, and the maximum

number of paths is 20. The logic address of the receiving node must be included. It is

allowed to send less data than 160 byte, but if the user tries to specify fewer paths than the

highest SpW path index configured in nvram, the command will be rejected and EINVAL will

be set. The length of the data must be a multiple of 8 bytes, otherwise the command will be

rejected and EINVAL will be set.

Note! All SpW paths must contain a terminating null character, otherwise the command will

be rejected and EINVAL will be set.

Table 7-121 SpwRoutingSet data

Byte Type Description

0 – 7 Array of UINT8 SpW path 0.

8 – 15 Array of UINT8 SpW path 1.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 182 of 222

… … …

152 –159 Array of UINT8 SpW path 19.

RMAP reply status (if a reply is requested):

Table 7-122 SpwRoutingPathSet reply status codes

Status code Description

0 Success.

EINVAL Invalid argument

EIO Internal RTEMS error

7.16.7.41. SpwRoutingPathGet

Reads out the current SpW paths. The size of a path is 8 bytes, and the maximum number

of paths is 20. If a reply is requested, the size of the data returned will always be 160 bytes.

Table 7-123 SpwRoutingPathGet data

Byte Type Description

0 – 7 Array of UINT8 SpW path 0.

8 – 15 Array of UINT8 SpW path 1.

… … …

152 – 159 Array of UINT8 SpW path 19.

RMAP reply status (if a reply is requested):

Table 7-124 SpwRoutingPathGet reply status codes

Status code Description

0 Success.

EIO Internal RTEMS error

7.16.7.42. SpwReplyPathSet

Configures the SpW write-reply paths. The size of a path is 8 bytes, and the maximum

number of paths is 20. The logic address of the receiving node must be included. It is

allowed to send less data than 160 byte, but if the user tries to specify fewer paths than the

highest SpW path index configured in nvram, the command will be rejected and EINVAL will

be set. The length of the data must be a multiple of 8 bytes, otherwise the command will be

rejected and EINVAL will be set.

Note! All SpW paths must contain a terminating null character, otherwise the command will

be rejected and EINVAL will be set.

Table 7-125 SpwReplyPathSet Data

Byte Type Description

0 – 7 Array of UINT8 SpW write-reply path 0.

8 – 15 Array of UINT8 SpW write-reply path 1.

… … …

152 – 159 Array of UINT8 SpW write-reply path 19.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 183 of 222

RMAP reply status (if a reply is requested):

Table 7-126 SpwReplyPathSet Reply Status Codes

Status code Description

0 Success.

EINVAL Invalid argument

EIO Internal RTEMS error

7.16.7.43. SpwReplyPathGet

Reads out the current SpW write-reply paths. The maximum size of a path is 8 bytes, and

the maximum number of paths is 20. If a reply is requested, the size of the data returned will

always be 160 bytes.

Table 7-127 SpwReplyPathGet Data

Byte Type Description

0 – 7 Array of UINT8 SpW write-reply path 0.

8 – 15 Array of UINT8 SpW write-reply path 1.

… … …

152 – 159 Array of UINT8 SpW write-reply path 19.

RMAP reply status (if a reply is requested):

Table 7-128 SpwReplyPathGet Reply Status Codes

Status code Description

0 Success.

EIO Internal RTEMS error

7.16.7.44. SpwBackupRoutingTimeoutSet

Configures the maximum amount of time the TCM SW will wait for a write-reply from an

SpW node. If SpW backup routing is enabled, and an RMAP command has been sent from

the TCM SW to a SpW node, and the write-reply does not arrive to the TCM SW before the

timeout, the TCM will switch to SpW backup routing and try to send this packet once again.

Note! Since the granularity of the system is 10ms, values not divisible by 10 ms will be

truncated to the nearest multiple if 10ms. Setting a timeout less than 10 ms will result in a

timeout of 0 ms.

Table 7-129 SpwBackupRoutingTimeoutSet data

Byte Type Description

0 – 1 UINT16 The timeout in milliseconds, max value 65535.

RMAP reply status (if a reply is requested):

Table 7-130 SpwBackupRoutingTImoutSet reply status codes

Status code Description

0 Success.

EINVAL The argument is out of bounds.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 184 of 222

EIO Internal RTEMS error

7.16.7.45. SpwBackupRoutingTimeoutGet

Reads out the maximum amount of time the TCM SW will wait for a write-reply from an

external SpW node.

Table 7-131 SpwBackupRoutingTimeoutGet data

Byte Type Description

0 – 1 UINT16 The timeout in milliseconds, max value 65535.

RMAP reply status (if a reply is requested):

Table 7-132 SpwBackupRoutingTImoutGet reply status codes

Status code Description

0 Success.

EIO Internal RTEMS error

7.16.7.46. RIRPTransactionStatus

Read the status of ongoing, finished, and timed out commands from the transaction status

buffer.

The RIRPTransactionStatus command will return data in the format described in Table

7-133.

Table 7-133 RIRPTransactionStatus Data

Byte Type Description

0 - 3 UINT32 Number of transaction status entries in buffer.

4 - 7 UINT32
Transaction buffer full status.
0x00 – Buffer not full
0x01 – Buffer full

 8 - 11 - Transaction status entry for first command.

12 - 15 - Transaction status for second command.

..

NN – (NN+3) - Transaction status for last command.

The format of each transaction status entry is described in Table 7-134.

Table 7-134 RIRPTransactionStatus transaction status entry data

Byte Type Description

0 - 1 UINT16 Transaction ID

2 UINT8

Operation state:
0x00 - Ongoing
0x01 – Timed out
0x02 - Finished

3 UINT8
Execution status for finished commands. Will contain the same status as
non-RIRP replies.

Reading the transaction status entry of a finished or timed out command fully will clear it

from the transaction status buffer. When one or more transaction status entries are cleared,

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 185 of 222

the remaining transaction status entries will be shifted towards the beginning of the buffer to

remove any gaps.

7.16.7.47. GPIOGetConfig

Gets the configuration of the addressed GPIO pin.

Table 7-135: GPIOGetConfig data

Byte Type Description

0 UINT8
Direction
0 – Output
1 – Input

1 UINT8
Mode
0 – Single ended
1 – Differential

RMAP reply status (if a reply is requested):

Table 7-136: GPIOGetConfig status codes

Status code Description

0 Success.
ENOSPC The addressed GPIO pin does not exist/is not

configured

EIO I/O error. The GPIO device cannot be accessed

7.16.7.48. GPIOSetConfig

Sets the configuration of the addressed GPIO pin. Differential mode means that a pair of

pins is used together for a differential output signal. The pins are paired in sequence, so

[0|1], [2|3] and so on, and each pair is controlled by setting the lower numbered pin (i.e. if pin

0 is set to differential output, pin 1 will automatically be set to match). Please note that an

RMAP command to change configuration for a lower numbered pin has no effect on the

higher numbered pin when both pins are in differential mode. As differential mode is only

valid for output, a reply with status code EINVAL will be sent to the initiator if Direction is set

to input and Mode to differential.

Note! If a pin pair that shares the same value enters differential mode, the pins will keep

their initial values until the lower pin is explicitly set.

Table 7-137: GPIOSetConfig data

Byte Type Description

0 UINT8
Direction
0 – Output
1 – Input

1 UINT8

Mode
0 – Single ended
1 – Differential [Note: Differential mode is only valid for output
pins]

RMAP reply status (if a reply is requested):

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 186 of 222

Table 7-138: GPIOSetConfig status codes

Status code Description

0 Success.
ENOSPC The addressed GPIO pin does not exist/is not

configured

EINVAL Invalid value or combination of values in
configuration

EIO I/O error. The GPIO device cannot be accessed

7.16.7.49. GPIOGetValue

Gets the value of the addressed GPIO pin. Reading out the value of the higher numbered

pin of a differential pair will show the actual value of that pin.

Table 7-139: GPIOGetValue data

Byte Type Description

0 UINT8
Value
0 – Pin is low
1 – Pin is high

RMAP reply status (if a reply is requested):

Table 7-140: GPIOGetValue status codes

Status code Description

0 Success.
ENOSPC The addressed GPIO pin does not exist/is not

configured

EIO I/O error. The GPIO device cannot be accessed

7.16.7.50. GPIOSetValue

Sets the value of the addressed GPIO pin. In a differential pair it is only valid to set the value

of the lower numbered pin.

Table 7-141: GPIOSetValue data

Byte Type Description

0 UINT8
Value
0 – Set pin low
1 – Set pin high

RMAP reply status (if a reply is requested):

Table 7-142: GPIOSetValue status codes

Status code Description

0 Success.
ENOSPC The addressed GPIO pin does not exist/is not

configured

EINVAL Invalid value
or
Trying to set the higher numbered pin in a
differential pair

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 187 of 222

EIO I/O error. The GPIO device cannot be accessed

7.16.8. RMAP output address details

7.16.8.1. TCCommand

A fully formed PUS packet according to [RD3] containing a TC packet to be routed.

7.16.8.2. UARTData

Routed data from UART.

Table 7-143 UARTData data

Byte Type Description

0 - nn Array of UINT8 Data received on UART

7.17. Death Report Handling

When an unexpected exception, as defined in Table 7-144, occurs a death report consisting

of a SCET timestamp, relevant process registers and further information about the trap is

written to the death report area on persistent NVRAM. When an unexpected trap has

occurred, the watchdog will not be kicked and the TCM will reset. There are five available

death report slots in this NVRAM area. If the table is full and a new trap occurs, the death

reports handler will not add a new report to the table, it is left unchanged.

Death reports for the TCM can be read via RMAP. TCM death reports can also be cleared

via RMAP. FPU traps are disabled in the TCM SW, and thus no death reports will be

generated for them.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 188 of 222

Table 7-144 - Sirius Trap Allocation

Sirius Trap Allocation
Trap tt-value Pri Description Class Comment

reset 00 1 Power-on reset Interrupting Expected trap

data store
error

0x2b 2 Write buffer error during
data store

Interrupting

instruction
access

exception

0x01 3 Error or MMU page fault
during instruction fetch

Precise

privileged
instruction

0x03 4 Execution of privileged
instruction in user mode

Precise

illegal
instruction

0x02 5 UNIMP or other un-
implemented instruction

Precise

fp disabled 0x04 6 FP instruction while FPU
disabled

Precise

cp disabled 0x24 6 CP instruction while Co-
processor disabled

Precise No co-processor
in current
implementation

watchpoint
detected

0x0B 7 Hardware breakpoint
match

Precise Expected trap

window
overflow

0x05 8 SAVE into invalid window Precise

window
underflow

0x06 8 RESTORE into invalid
window

Precise

r register
access error

0x20 9 Register file EDAC error
(LEON3FT only)

Interrupting Not present in
current
implementation

mem
address not

aligned

0x07 10 Memory access to un-
aligned address

Precise

fp exception 0x08 11 FPU Exception Deferred

cp exception 0x28 11 Co-processor exception Deferred No co-processor
in current
implementation

data access
exception

0x09 13 Access error during data
load, MMU page fault

Precise

tag overflow 0x0A 14 Tagged arithmetic overflow Precise

division by
zero

0x2A 15 Divide by zero Precise

Table 1471 in RD15 describes the implemented traps for LEON3FT. Table 7-144 shows the

implementation for Sirius.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 189 of 222

7.18. FPU Traps

Table 7-145 - Sirius Floating Point Trap Types

Floating-point Trap Type (ftt) Field of FSR
ftt Trap Type Comment

0 None

1 IEEE_754_exception

2 unfinished_FPop Not used in GRFPU Lite

3 unimplemented_FPop Not used in GRFPU Lite

4 sequence_error

5 hardware_error Not used in current
implementation

6 invalid_fp_register Not used in GRFPU Lite

7 reserved

There are six subcategories of floating-point exceptions according to Table 4-4 in RD19.

Table 7-145 shows the implementation for Sirius. According to section 49.2.3 in RD15 all

five floating point exceptions defined by the IEEE-754 standard can be detected (ftt=1).

Floating point traps are disabled by default. Information on how to enable FPU traps is

available in section 11.2.

7.19. Limitations

For performance reasons, the current TCM release calculates checksums on neither the

incoming nor the outgoing RMAP/SpaceWire packets.

The mass memory maximum partition size is 4 Gbytes. However, there is no limit on the

number of blocks assigned for a specific partition, allowing a configuration to compensate for

any possible loss in size due to bad blocks.

The mass memory doesn't support download of data from partitions of type raw.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 190 of 222

8. NVRAM areas

This chapter is an extension of the RTEMS NVRAM API in 5.11 to show how the different

areas on NVRAM are used by the Sirius products. The system flash bad block table located

at 0x0E00 – 0x11FF is used by the bootrom, the Software upload library and nandflash

program.

The TCM SW configuration described in 7.4 is stored in two copies, one in the safe area for

the safe SW images to use and one copy in the update area for the update images to use.

The boot procedure is described further in section 9. When configuring NVRAM with the

nv_config library, EDAC mode (described further in 5.11) is used. Therefore Table 8-1 lists

addresses as how they are used when EDAC is enabled.

The mass memory bad block table is used by the TCM SW and it is updated during runtime

when new bad blocks are discovered. The TCM SW has a reserved area for storing

operation markers during runtime.

Table 8-1 NVRAM Areas

Area Area
type

Board
type

Range Description

TCM SW
Configuration

Safe TCM
0x0000 –
0x0DFF

nv_config: Configuration
parameters for TCM SW.

SF_BAD_BLOCKS Safe
OBC and
TCM

0x0E00 –
0x0FFF

Bad-block information for
System Flash

SF_BAD_BLOCKS Update
OBC and
TCM

0x1000 –
0x11FF

Bad-block information for
System Flash.

TCM SW
Configuration

Update TCM
0x1200 –
0x1FFF

nv_config: Configuration
parameters for TCM SW.

MM_BAD_BLOCKS Update TCM
0x2000 –
0x23FF

Bad-block information for
Mass Memory.

TCM SW Parameters Update TCM
0x2400 –
0x25FF

Reserved area for
operation markers of the
TCM SW.

Free space Update
0x2600 –
0x3FFF

Currently unused area.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 191 of 222

9. Boot procedure

9.1. Description

The bootrom is a small piece of software built into a read-only memory inside the SoC. Its

main function is to load a software image from the system flash to RAM and start it by

jumping to the reset vector. To make the system fault tolerant, there are two logical images

of the main software, designated Updated and Safe. Each logical image is stored in three

physical copies distributed over the system flash. By default, the bootrom will first try to load

the Updated image and if that fails fall back to the Safe image. The image to load can also

be selected by setting the Next FW register in the Error Manager and doing a soft reset (see

section 5.3 for more details). Boot order of the logical images and their physical copies is

shown in Figure 9-1.

9.2. Usage description

The locations in the system flash where the bootrom looks for software images are given in

Table 9-1. The first two 32-bit words of the image are expected to be a header with image

size and an XOR checksum, see Table 9-2. If the size falls within the accepted range, the

bootrom loads the image to RAM while verifying the checksum. Both the image size check

and the checksum verification are performed in addition to the EDAC built into the System

Flash. The System Flash EDAC is handled by hardware and calculates one extra byte of

redundancy data for each true data byte written to flash.

The bootrom loads the system flash bad-block table from an NVRAM offset described in

Table 8-1. If a flash block within the range to load from is marked as bad in the table, that

block is assumed to have been skipped when the image was programmed, so the bootrom

continues reading from the next block. If the image could be loaded from flash without error

and its checksum is correct, the bootrom jumps to the reset vector in RAM. If there is a flash

error when loading, if the checksum is incorrect, or if the image has an invalid size, the

bootrom steps to the next image by changing the Next FW field in the Error Manager and

doing a soft reset. If the image being loaded is the last available the bootrom will ignore

errors and attempt to start it anyway, in order to always have a chance of a working system.

To indicate to the software which image and copy is loaded, the Running FW field in the

Error Manager is updated before handing over execution. The boot loader will also update

the Error Manager Latest Boot Status register to indicate where it is in the boot process, so

that more information can be retrieved in case of a failed boot (see 5.3.2.4.7). Reading out

Figure 9-1 Software images in flash

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 192 of 222

that register in orbit requires a subsequent successful boot, so if multiple image copies fail to

boot the register information that is saved will be from the first failed attempt.

9.3. Limitations

If the image size is out of range for Safe image copy #1 (the final fallback image), the

bootrom will not be able to load it and the fallback option of handing execution to a damaged

software image if no other is available cannot be used.

Table 9-1 Software image locations

Image Flash page number

Safe copy #1 0x00000

Safe copy #2 0x20000

Safe copy #3 0x40000

Updated copy #1 0x80000

Updated copy #2 0xA0000

Updated copy #3 0xC0000

Table 9-2 Software image header

Field Size Description

Image size 32 bits

The size in bytes of the software image, not
including the header, stored as a 32-bit
unsigned integer. A software image can be
264 Bytes – 63 MB.

Checksum 32 bits

A cumulative XOR of all 32-bit words in the
image including the size, so that a cumulative
XOR of the whole image and header (including
checksum) shall evaluate to 0.

9.4. Cause of last reset

The Error Manager RTEMS driver supports reading out the last reset cause, see 5.3.2.4 for

details. There is also an RMAP command for reading out the cause of last reset from the

TCM, see 7.16.7.21 for details.

9.5. Pulse commands

The pulse command inputs to the Sirius products can be used to force a board to reboot

from a specific image. Paired with the ability of the Sirius TCM to decode PUS CPDU

telecommands without software interaction and issue pulse commands, this provides a

means to reset malfunctioning boards by direct telecommand from ground as a last resort.

Each board has two pulse command inputs. Input 0 resets the board and loads the updated

image while input 1 resets the board and loads the safe image. Both require an active-high

pulse length between 20 - 40 ms to be valid. If, for some reason, both pulse command

inputs would be active at the same time, the pulse on input 0 takes precedence.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 193 of 222

10. Software upload

10.1. Description

During the lifetime of a satellite, the on-board software might need adjustments as bugs are

detected or the mission parameters adjusted. This module tries to solve that by providing a

means for updating the on-board software in orbit. The OBC and the TCM are both prepared

for this functionality by having two software images, where writing to the first one requires

the debugger to be connected, thus making only the second one available for updates in

orbit.

Updating a flight image entails four types of operations. First the actual data transfer and

commanding from earth, which requires the software upload mechanism to be compliant

with the CCSDS standard for TC and where the principal recipient would be the TCM,

regardless of the end target. The TCM simply acts as a router in this case, routing the PUS

command to the intended source based on the PUS APID and the TCM routing table.

Second would be the mechanism for distributing the image upload data to different

recipients in a data handling system (i.e. also the TCM itself) using the PUS extension of the

CCSDS standard (see [RD3]). Third would be the assembly of all telecommands, with a data

fragment each, into a full or partial image for update with verification. Finally, the fourth

would be the actual update of the physical flash image.

The descriptions in sections 10.3 and 10.4 will cover the two middle operations. The first

(inital CCSDS handling) and the last (flash operations) are covered in 7.6 and 5.12. The

picture in Figure 10-1 shows the intended control flow when commanding the software

update from ground.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 194 of 222

10.2. Block diagram

Figure 10-1 The intended software upload command flow

10.3. CCSDS API – custom PUS service 130

10.3.1. Description

This service is provided to allow updates to the flight software on a node in a data handling

system using Sirius components, but can be used for any type of on-board computer. The

subtypes consist of a set of commands.

All service subtypes will report telecommand acceptance as PUS service (1,1) / (1,2) and

telecommand execution complete as PUS services (1,7) / (1,8) (see [RD3]) if requested in

the telecommand PUS header. See [RD18] for information on the allocated virtual channel

for sending PUS reports. Recommended usage is to always request acceptance and

execution complete reports so that the Ground Segment can keep track of the upload

process.

All checksum parameters in the service are CRC32 with polynomial 0x04C11DB7 and seed

value 0.

The Telecommand Acceptance Report - Failure will use the standard error codes according

to Table 10-1 without any parameters (see [RD3]).

Telecommand Execution Completed Report -Failure values are listed under each subtype

heading. Errors noted as ’critical’ will cause the whole software upload process to be

aborted.

Table 10-1 Telecommand acceptance failure error types

Error code Data type Error description

0 UINT8 Illegal APID (PAC error)

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 195 of 222

1 UINT8 Incomplete or invalid length packet

2 UINT8 Incorrect checksum

3 UINT8 Illegal packet type

4 UINT8 Illegal packet subtype

5 UINT8
Illegal or inconsistent application
data

6 UINT8 Illegal PUS version

The numerical values of error codes returned in execution failure report are shown in Table

10-2 below.
Table 10-2 Error code numerical values

Error code Numeric value

ENOENT 2

EIO 5

EBUSY 16

EINVAL 22

ENOSPC 28

ENODATA 61

EALREADY 120

10.3.2. Subtype 1 – Image transfer start

A telecommand using this subtype must be sent first before sending any image data and will

set up for a new image upload. It can also be used to abort an existing upload transaction

during the data transfer phase, by simply initializing a new one. The data format is specified

in Table 10-3 below.

Minimum image size is currently 272 bytes including header, and maximum image size is 16

Mbyte.

Table 10-3 Image transfer start command data structure

Total number of bytes in image Reserved (zero) Reserved (zero)

UINT32 UINT32 UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 10-4 in case of a failure.

Table 10-4 Image transfer start telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Invalid image size

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 196 of 222

EBUSY UINT8
Unable to open System Flash for
writing

10.3.3. Subtype 2 – Image data

This subtype transports data segments of the actual flight software image. Each segment

can be maximum 1000 bytes long (to avoid splitting packets over several frames), and all

segments except the last shall be of maximum length. The data format is specified in Table

10-5 below, with the data length given in the PUS header.

Table 10-5 Image data command structure

Segment number Segment length Segment data

UINT16 UINT16 UINT8 UINT8 UINT8 …

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 10-6 in case of a failure.

Table 10-6 Image data telecommand execution failure codes

Error code Data type Error description

EALREADY UINT8
This segment number has already
been added

EINVAL UINT8
Segment number or segment
length is out of bounds

EIO UINT8
Read/write error in intermediate
storage area of flash (critical)

ENOSPC UINT8
Out of non-bad blocks in
intermediate storage area of flash
(critical)

ENOENT UINT8 No upload in progress

10.3.4. Subtype 3 – Verify uploaded image

This subtype calculates and compares the checksum of the uploaded software image with

the checksum set in the command’s payload data, see Table 10-7

Table 10-7 Verify uploaded image argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 10-8 in case of a failure.

Table 10-8 Verify uploaded image telecommand execution failure codes

Error code Data type Error description

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 197 of 222

EINVAL UINT8
Checksum argument doesn’t match
image checksum

ENOENT UINT8 No upload in progress

ENODATA UINT8 Segments missing

10.3.5. Subtype 4 – Write uploaded image

To do the updating of the flight image, this command is sent to the service provider which

will then write the image to flash. To safeguard against accidental update commanding, a

correct CRC is required as input argument for this command, see Table 10-9.

Table 10-9 Write image command argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 10-10 in case of a failure.

Table 10-10 Write image telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8
Checksum argument doesn’t match
image checksum

ENOSPC UINT8
Out of non-bad blocks in flash
(critical)

ENOENT UINT8 No upload in progress

EIO UINT8
Read/write error in intermediate
storage area of flash (critical)

10.3.6. Subtype 5 – Calculate CRC in flash

This command allows the CRC calculation of an image copy stored in flash. This can be

used for extra verification after update of an image, or whenever the flight image copies

need verification. The telecommand takes the image copy number as argument (max value

6), see Table 10-11. Image copy numbers 1 – 3 are for the (non-updateable) safe image and

4 – 6 cover the updated image copies.

Table 10-11 Calculate CRC in flash command argument

Image copy number

UINT8

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 10-12 in case of a failure.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 198 of 222

Table 10-12 Calculate flash CRC telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8
Image number too high (maximum
6)

EBUSY UINT8
Unable to open System Flash
device

EIO UINT8
Read/write error in intermediate
storage area of flash (critical)

Furthermore, upon execution completed, a report will be generated using the same type and

subtype as for the telecommand. This report will contain the calculated checksum, see Table

10-13.

Table 10-13 Calculated flash CRC report

Image copy number Checksum

UINT8 UINT32

10.4. Software API

This API depicts the functions available on the level below the PUS API and share many

similarities with these. In many cases, the PUS API simply handle the PUS packaging and

validation and maps almost directly into the software API functions.

10.4.1. int32_t swu_init(…)

This function initializes all internal parameters for a new image upload. Calling init again

while an upload is in progress will cause the existing upload to be aborted. A valid image

must be at least 272 bytes and at most 16777216 bytes including header; but setting the

argument to 0 is also allowed in order to abort an upload without starting a new one.

Argument name Type Direction Decription

Total uint32_t In Total size of the uploaded image

Return value Description

0 Success

-EINVAL Invalid image size

-EBUSY Unable to open System Flash for writing

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 199 of 222

10.4.2. int32_t swu_segment_add(…)

This function is used for putting together data segments into a full image. Use the function

swu check to get current upload status.

Argument name Type Direction Decription

seg_num uint16_t in Number of this data segment

Length uint16_t in Length of this data segment

Data uint8_t * in Data of the added segment

Return value Description

0 Success

-EALREADY This segment has already been added

-EINVAL
Segment number or segment length is invalid, or
data is a NULL pointer

-EIO
Read/write error in intermediate storage area of
flash (critical)

-ENOSPC
Out of non-flash blocks in intermediate storage
area of slash (critical)

-ENOENT No upload in progress

10.4.3. int32_t swu_check(…)

This function can be used to check the status of a current image upload. If all segments

have been added, it will calculate the checksum of the entire image. If all segments have not

been added, it will instead return an error code and an array of the ten first missing

segments (maximum).

Argument name Type Direction Decription

Checksum uint32_t * out Data checksum if the image is complete. 0 otherwise

Mlist uint16_t * out
An array of the first 10 missing segments. If the image is
complete, no data will be entered into this variable. If only
the checksum is of interest this may be a NULL pointer.

Mlength uint16_t * out
The number of elements in the missing segment array. If
only the checksum is of interest this may be a NULL
pointer.

Return value Description

0 Success

-ENODATA Not enough data - some data segments missing

-ENOENT No upload in progress

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 200 of 222

-EINVAL NULL pointer in arguments

10.4.4. int32_t swu_update(…)

This function will perform the actual write of the image to flash. If one or more of the boot

image areas in flash is out of space due to too many bad blocks an error will be returned,

but the copies with enough space will still be written.

Argument name Type Direction Decription

Checksum uint32_t in
Externally calculated checksum (checked against an
internal calculation before update)

Return value Description

0 Success

-EINVAL
Checksum argument doesn’t match image
checksum

-EIO Error when accessing flash

-ENOSPC
Out of non-bad blocks in one or more of the boot
image areas in flash

-ENOENT No upload in progress

10.4.5. int32_t swu_flash_check(…)

This function will calculate the checksum of an image in flash for specific verification

purposes. The maximum image number is 6 and number 1 - 3 maps to the safe image

copies and number 4 - 6 maps to the updated image copies. If the argument is out of

bounds of the number of images, an error return code will be returned instead.

Argument name Type Direction Decription

image_number uint8_t in Image number in flash to calculate the checksum of

Checksum uint32_t * out The calculated checksum.

Return value Description

0 Success

-EINVAL
Image number is too small or large, or checksum
is a NULL pointer

-EIO Read error in image

-EBUSY Unable to open flash device file

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 201 of 222

10.5. Usage description

A user of the software upload module can either let the module handle all PUS commanding

through the PUS API (see section 10.3) or handle all PUS packetizing and reporting

internally and only hook into the functional interface described in section 10.4. A code

example is provided in the directory src\example.

10.6. Limitations

The maximum size of an image for upload is 16 Mbytes.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 202 of 222

11. Death Reports

11.1. Format

There is a death reports library available in the BSP that can be used when writing custom

applications. This library is located under src/death_reports/. When using this library,

the format of death reports saved in the NVRAM is shown in Table 11-1.

Table 11-1: HKDeathReports data

Byte Type Description Trap category

0 UINT32 Number of death reports currently in table -

4 UINT32 A: SCET Seconds All

8 UINT32 A: SCET Subseconds All

12 UINT32 A: Processor Status Register (PSR) All

16 UINT32 A: Trap Type All

20 UINT32 A: Program Counter (PC) Direct

24 UINT32 A: next Program Counter (nPC) Direct

28 UINT32 A: Stack Pointer Direct

32 UINT32 A: FPU Control/Status Register (FSR) Floating point

36 UINT32 A: Instruction address (Deferred traps) Floating point

40 UINT32 A: Instruction code (Deferred traps) Floating point

44 UINT32 B: SCET Seconds All

48 UINT32 B: SCET Subseconds All

52 UINT32 B: Processor Status Register (PSR) All

56 UINT32 B: Trap Type All

60 UINT32 B: Program Counter (PC) Direct

64 UINT32 B: next Program Counter (nPC) Direct

68 UINT32 B: Stack Pointer Direct

72 UINT32 B: FPU Control/Status Register (FSR) Floating point

76 UINT32 B: Instruction address Floating point

80 UINT32 B: Instruction code Floating point

84 UINT32 C: SCET Seconds All

88 UINT32 C: SCET Subseconds All

92 UINT32 C: Processor Status Register (PSR) All

96 UINT32 C: Trap Type All

100 UINT32 C: Program Counter (PC) Direct

104 UINT32 C: next Program Counter (nPC) Direct

108 UINT32 C: Stack Pointer Direct

112 UINT32 C: FPU Control/Status Register (FSR) Floating point

116 UINT32 C: Instruction address Floating point

120 UINT32 C: Instruction code Floating point

124 UINT32 D: SCET Seconds All

128 UINT32 D: SCET Subseconds All

132 UINT32 D: Processor Status Register (PSR) All

136 UINT32 D: Trap Type All

140 UINT32 D: Program Counter (PC) Direct

144 UINT32 D: next Program Counter (nPC) Direct

148 UINT32 D: Stack Pointer Direct

152 UINT32 D: FPU Control/Status Register (FSR) Floating point

156 UINT32 D: Instruction address Floating point

160 UINT32 D: Instruction code Floating point

164 UINT32 E: SCET Seconds All

158 UINT32 E: SCET Subseconds All

162 UINT32 E: Processor Status Register (PSR) All

166 UINT32 E: Trap Type All

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 203 of 222

170 UINT32 E: Program Counter (PC) Direct

174 UINT32 E: next Program Counter (nPC) Direct

178 UINT32 E: Stack Pointer Direct

182 UINT32 E: FPU Control/Status Register (FSR) Floating point

186 UINT32 E: Instruction address Floating point

200 UINT32 E: Instruction code Floating point

When an exception has occurred, the trap type can be determined by reading the Trap

Type-field in the death reports table.

For direct traps the address of the trap inducing instruction can be determined from the

program counter PC. The trap inducing instruction is then PC – 1.

The stack and frame pointers are always 16 registers (64 byte) apart in the frame windows.

When a trap of type floating point has occurred, information about the actual instruction that

triggered the trap can be obtained from the death reports table, see Instruction address and

Instruction code in Table 11-1. The floating-point trap type (ftt) can be obtained by reading

the FSR from the death reports table, detailed information on the contents of the FSR is in

[RD19], section 4.4. When the trap is of the type floating point, the fields for direct traps in

the death reports table are undefined and vice versa.

11.2. Reports for FPU Traps

FPU traps are disabled by default. The helper function

aac_enable_floating_point_traps() via <bsp/trap.h> can be used to enable FP

traps when writing custom applications. See the examples

fp_exception_div_by_zero.c and fp_exception_subnormal_number.c in

bsp/src/death_reports/examples/. If FPU traps are enabled, death reports will also

be generated for this type of traps when using the death reports library.

11.3. NVRAM

The table is located on NVRAM at offset 0x1F34 – 0x1FFF. The table can contain up to five

death reports, and it is updated A -> E. If the table is full and a new trap occurs, the death

reports module will not add a new report to the table, it is left unchanged.

When clearing the table, the counter at offset 0 shall also be updated by the custom

application. The death reports module cannot handle gaps in the table.

11.4. Usage Description

A custom application which wants to generate death reports needs to:

• #include “death_reports.h”

• Link with libdeath_reports.a

• Add the library-provided function in an RTEMS fatal handler registered as a user

extension.

To install the death reports handler into a custom RTEMS application, an RTEMS user

extension fatal handler has to be added to the application. Helper functions for obtaining

LEON3 architecture specific SW trap information are available in <bsp/traps.h>. An

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 204 of 222

example RTEMS application with an installed death reports handler is available in

src/death_reports/examples/exception_handler.c.

An example application for reading out and parsing death reports from NVRAM is available

in src/death_reports/examples/read_nvram_death_report_area.c. An

example application that clears the death reports area on NVRAM is available in

src/death_reports/examples/clear_nvram_death_report_area.c.

Note! Please note that fatal handlers do not support normal use of RTEMS POSIX API,

therefore this library is provided to allow for (otherwise unsupported) use of the AAC bare

metal drivers. Modifying this library (except for the examples) is not recommended nor

supported.

12. TM/TC-structure and COP-1

12.1. SCID

For commanding the spacecraft, a 10-bit Spacecraft Identifier is needed. For every mission,

a mission specific SCID is configured in the TCM.

12.2. APID

The application running on the TCM has a unique identifier, Application Process Identifier,

that is configurable for every mission by a parameter stored in the NVRAM on the TCM.

12.3. Virtual Channel Allocation

See [RD18] for VC allocation.

12.4. Uplink Channel Coding, Randomization and Synchronization

12.4.1. Channel Coding

The Telecommand Code Block is BCH (63, 56) and supports Single Error Correction mode.

12.4.2. Randomization

Derandomization of telecommands can be enabled/disabled by a configuration in NVRAM or

by a RMAP command.

12.4.3. Channel Synchronization

The 2-byte start sequence of Telecommands is 0xEB90. The 8-byte tail sequence of

Telecommands is 0xC5C5C5C5C5C5C579.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 205 of 222

12.5. Downlink Channel Coding, Randomization and Synchronization

12.5.1. Channel Coding

Reed-Solomon encoding by a RS (255, 223) encoder with an interleaving depth of 5,

resulting in a Telemetry Transfer Frame length of 1115 octets. RS encoding can be

enabled/disabled by a configuration in NVRAM.

Convolutional encoding according to [RD17] section 3.3 (code rate 1/2 bit per symbol;

constraint length 7 bits; polynomial generators G1=171 octal and G2=133 octal; inversion on

G2) can be enabled/disabled by a configuration in NVRAM or by a RMAP command.

Figure 12-1 Convolutional Encoder Block Diagram

12.5.2. Randomization

Randomization of Telemetry Transfer Frames can be enabled/disabled by a configuration in

NVRAM or by a RMAP command.

12.5.3. Synchronization

The 4-byte synchronization pattern prepended to the Reed-Solomon code block is

0x1ACFFC1D.

12.6. Telecommand format

This chapter describes the format of the TC Transfer frames and TC Packets the TCM

handles.

12.6.1. Telecommand Transfer Frame

The Telecommand Transfer Frame conforms to the format described in [RD8] and shown

below.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 206 of 222

Figure 12-2 TC Transfer Frame

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 207 of 222

12.6.2. Transfer Frame Header

Table 12-1 Transfer Frame Header

Field Description Comment

VERSION NUMBER Shall be set to ‘00’

BYPASS FLAG
Set to ‘0’ to set Type-A of frame.
Set to ‘1’ to set Type-B of frame.

When this flag is set to ‘0’, the
frame will be subject to Frame
Acceptance Check of the FARM
on TCM.
When this flag is set to ‘1’, the
Frame Acceptance Check will
be bypassed on the TCM.

CONTROL COMMAND FLAG

Set to ‘0’ to indicate the Transfer Frame Data
Field contains a Frame Data Unit (Type-D)
Ser to ‘1’ to indicate the Transfer Frame Data
field contains control information (Type-C)

In conjunction with BYPASS
FLAG, the frame types Type-
AD, Type-BD and Type-BC are
supported by the TCM.

RESERVED SPARE

SPACECRAFT ID
Contains the mission-specific spacecraft
identifier (SCID)

If the SCID of the TC Transfer
Frame is not same as the SCID
configured on the TCM, the TC
Transfer Frame will be rejected.

Virtual Channel ID Virtual channel ID of Telecommand See [RD18] for VC allocation.

FRAME LENGTH
Shall be set to total number of octets in the
TC Transfer Frame - 1

The maximum number of octets
in the TC Transfer Frame is
1024.

FRAME SEQUENCE NUMBER The number of the TC Transfer Frame

The Frame sequence number
enables the FARM to check
sequence of incoming Type-A
transfer frames

Figure 12-3 Transfer Frame Header

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 208 of 222

12.6.3. Transfer Frame Data Field

TC Transfer Frames sent to the TCM are expected to contain the Frame Error Control Field,

which results in a maximum length of 1017 octets of the Transfer Frame Data Field. The

Transfer Frame Data Field shall contain either a Frame Data Unit (for Type-D Transfer

Frame) or a control command (for Type-C Transfer Frames).

For Transfer Frames carrying a Frame Data Unit, a Segment Header follows the Transfer

Frame Primary Header, see Figure 12-4. For Frame Data Units, the user data shall contain

a complete packet, see 12.6.5

Figure 12-4 Segment Header

Table 12-2 Segment Header

Field Description Comment

SEQUENCE FLAGS
Shall be set to ‘11’ since no segmentation
is supported on TCM

MAP ID Shall be set to 0.
Only MAP ID 0 is supported
on TCM

Two control commands are supported by TCM: Unlock and Set V(R). The Unlock Control

Command consists of a single octet containing “all zeroes”. The Set V(R) Control Command

shall consist of three octets with the following values:

10000010 00000000 XXXXXXXX

where XXXXXXXX is the value the FARM shall set the Receiver Frame Sequence Number,

V(R).

12.6.4. Frame Error Control Field

The Frame Error Control holding an error detection code (checksum) shall always be

included in the telecommand transfer frames, which allows the receiving application to verify

the integrity of the telecommand frame data.

The checksum shall be calculated using CRC with polynomial 0x8408, LSB first (reverse of

0x1021, MSB first); and initial value 0xFFFF over the whole TC Transfer Frame except the

two last octets.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 209 of 222

12.6.5. Telecommand Packet

All Telecommand Packets in Frame Data Units shall be Space Packets as used in the ECSS

Packet Utilization Standard [RD3], with the format given in Figure 12-5 below.

Figure 12-5 Telecommand Packet

Table 12-3 Packet Header

Field Description Comment

Version number
Packet structure version number. Shall be set
to 0

Type
Distinguishes telecommand packets and
telemetry packets. For telecommands, the
type shall be set to 1

Data Field Header Flag
With exceptions of CPDU telecommands, all
telecommand packets shall have a data field
header so this bit shall be set to 1

Application Process ID
Sets the destination on-board application for
the telecommand packet.

Sequence Flags
The TCM does only support stand-alone
packets, so this field shall be set to ‘11’

Sequence Count
Identifier provided to be able to track a
specific packet.

Packet Length
Specifies number of octets within the packet
data field. The number shall be number of
octets in packet data field - 1.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 210 of 222

Table 12-4 Data Field Header

Field Description Comment

CCSDS Secondary Header Flag Shall be set to ‘0’

TC PUS Packet PUS Version
Number

Shall be set to ‘001’

Ack

Specifies level of reporting to ground by the
receiving Application Process. The TCM
sends acceptance success report and
execution completion success report based
on the ack flags.

See section 5.3.3 in [RD3].

Service Type
Indicates the service to which the packet
relates

Service Subtype
Indicates the subtype of the service the
packet relates to

Source ID Not used

Spare Not used

Application data holds the data elements of the command.

Spare may be used to do padding of TC to achieve an integral number of words.

The checksum of the packet error control field shall be calculated using CRC with

polynomial 0x8408, LSB first (reverse of 0x1021, MSB first); and initial value 0xFFFF over

the whole TC Packet except the two last octets.

12.6.6. Carrier Lock and Subcarrier Lock

In the radio interface connectors on the TCM there are two input signals called Carrier Lock

and Subcarrier Lock. These need to be active for the TCM to process the incoming

telecommand data. The state of the signals is reflected in the CLCW flags “No RF Available”

and “No Bit Lock”, see 12.7.5.

Figure 12-6 Data Field Header

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 211 of 222

12.7. Telemetry Format

This chapter describes the format of TM Transfer Frames and TM Packets sent from the

TCM to ground.

12.7.1. Telemetry Transfer Frame

Figure 12-7 Telemetry Transfer Frame

12.7.2. Transfer Frame Primary Header

Figure 12-8 Telemetry Transfer Primary Header

Table 12-5 Telemetry Transfer Frame Primary Header

Field Description Comment
TRANSFER FRAME VERSION
NUMBER

Set to ‘00’.

SPACECRAFT ID Mission specific identifier of the spacecraft.

VIRTUAL CHANNEL ID See [RD18] for VC allocation.

OCF FLAG

Indicates presence of Operation Control Field
(OCF) in TM Transfer Frames. It shall be ‘1’ if
the OCF is present. It shall be ‘0’ if the OCF is
not present.

This is configurable by a setting
in NVRAM for the TCM. It can
also be set by a RMAP-
command.

MASTER CHANNEL FRAME
COUNT

An 8-bit sequential binary count (modulo
256).

VIRTUAL CHANNEL FRAME
COUNT

An 8-bit sequential binary count (modulo
256).

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 212 of 222

TRANSFER FRAME DATA
FIELD STATUS

See below

Table 12-6 Transfer Frame Data Field Status

Field Description Comment

TRANSFER FRAME
SECONDARY HEADER FLAG

Shall be ‘1’ if Transfer Frame Secondary
Header is present. Shall be ‘0’ if Transfer
Frame Secondary Header is not present.

In the TCM, the Transfer Frame
Secondary Header is not used,
so this field is always set to ‘0’.

SYNCHRONIZATION FLAG
Indicates type of data inserted in the Transfer
Frame Data Field. It shall be ´0´if octet-
synchronized, ‘1’ otherwise.

In the TCM, data is always
inserted octet-synchronized, so
this field is always set to ‘0’.

PACKET ORDER FLAG Packet Order Flag. Always set to ‘0’ in TCM.

SEGMENT LENGTH ID
Shall be set to ‘11’ if Synchronization Flag is
set to ‘0’.

Set to ‘11’ in TCM.

FIRST HEADER POINTER

If the Synchronization Flag is set to ‘0’, the
First Header Pointer shall contain the position
of the first octet of the first Packet that starts
in the Transfer Frame Data Field. When valid
data exist in frame, but no packet/segment
header is present the First Header Pointer is
set to ‘11111111111’. If the frame contains
only idle data, the First Header Pointer is set
to ‘11111111110’.

12.7.3. Transfer Frame Secondary Header

The Transfer Frame Secondary Header is not used by the TCM.

12.7.4. Transfer Frame Data Field

The Transfer Frame Data Field contains an integral number of octets of data formatted as

TM Packets, see 12.7.7. The length of this field is fixed but can be different for different

configurations depending on inclusion of OCF and FECF. The maximum length of this field

is 1109 octets (1115 – 6), and the minimum length is 1103 octets (1115 – 6 - 4 -2)

12.7.5. Operational control field

The Operational Control Field contains a Communications Link Control Word as described

in RD8 section 4.2.

Figure 12-9 Transfer Frame Data Field Status

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 213 of 222

Figure 12-10 Command Link Control Word

Table 12-7 Command Link Control Word

Field Description Comment

CONTROL WORD TYPE Is set to ‘0’.

CLCW VERSION NUMBER Is set to ‘00’.

STATUS FIELD Can be used for Mission-specific status. No specific setting by TCM.

COP IN EFFECT Set to ‘01’.

VIRTUAL CHANNEL
IDENTIFICATION

Virtual Channel Identifier.

RESERVED SPARE Set to ‘00’.

NO RF AVAIL
Set to ‘0’ if Physical Layer Available.
Set to ‘1’ if Physical Layer is not available.

Controlled by physical input
signal, see 12.6.6.

NO BIT LOCK
Set to ‘0’ when bit lock has been achieved.
Set to ‘1’ when bit lock has not been
achieved.

Controlled by physical input
signal, see 12.6.6.

LOCK-OUT
Shows Lockout status of the FARM.
Set to ‘0’ when FARM is not in Lockout.
Set to ‘1’ when FARM is in Lockout.

WAIT

Set to ‘1’ (Wait) indicates that all further Type-
A Transfer Frames on that virtual channel will
be rejected by FARM until the condition
cleared.
Set to ‘0’ indicates TCM is able to accept and
process incoming Type-A Transfer Frames.

RETRANSMIT

Set to ‘1’ indicates that one or more Type-A
Transfer Frames have been rejected.
Set to ‘0’ indicates no outstanding Type-A
Transfer Frame rejections so far.

FARM-B COUNTER
Contains two least significant bits of FARM-B
Counter.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 214 of 222

RESERVED SPARE Set to ‘0’.

REPORT VALUE
Contains the value of the Next Expected
Frame Sequence Number, N(R).

12.7.6. Frame Error Control Field

If used, the checksum of the Frame Error Control Field shall be calculated using CRC with

polynomial 0x8408, LSB first (reverse of 0x1021, MSB first); and initial value 0xFFFF over

the whole TM Transfer Frame except the two last octets.

12.7.7. Telemetry Packet

Figure 12-11 Telemetry Packet

12.7.8. Telemetry Packet Header

Table 12-8 Telemetry Packet Header

Field Description Comment

Version Number Set to ‘000’.

Type Set to ‘0’.

Data Field Header Flag

Set to ‘1’ to indicate presence of Data Field
Header.
Set to ‘’0’ to indicate absence of Data Field
Header.

All TM Packet generated by
TCM use Data Field Header.

Application Process ID
Indicates application process that is the
source of the packet.

Grouping Flags Set to ‘11’ to indicate “stand-alone” packet.
The TCM generates “stand-
alone” packet only.

Source Sequence Flags Source sequence counter.

Packet Length Number of octets in packet data field - 1.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 215 of 222

12.7.9. Data Field Header

The data field header from the Telemetry and Telecommand packet utilization standard

[RD3], is depicted in Figure 12-12.

Figure 12-12 Data Field Header

Table 12-9 Data Field Header

Field Description Comment

Spare

TM Source Packet PUS Version
Numbers

Set to ‘001’

Spare

Service Type
Indicates the service this source packet
relates to

Service Subtype
Together with Service Type, this field
indicates the subtype this source packet
relates to.

Packet Subcounter
Counter related to a specific service and
subservice

Not used by TCM

Destination ID Can be used for destination of a TM Packet Not used by TCM

Time On-board reference time

On TCM, the time field consist
of CUC Time Seconds (32-bit),
followed by CUC Time
Fractions (16-bit)

Spare Not used by TCM

The format of the Data Field Header used in TCM is shown below:

Figure 12-13 Data Field Header supported by TCM

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 216 of 222

12.7.10. Source Data

The packet source data of the Telemetry Packets sent to ground.

12.7.11. Spare

Spare may be used to pad a packet to an integral number of words if needed.

12.7.12. Packet Error Control

Packet Error Control is used by TCM and the checksum of the Packet Error Control Field

shall be calculated using CRC with polynomial 0x8408, LSB first (reverse of 0x1021, MSB

first); and initial value 0xFFFF over the whole TM Packet except the two last octets.

12.7.13. Idle Data

In the TCM, 0x5A is the data sent for Idle Frames and Idle Packets.

12.8. FARM-parameters

COP-1 is supported on the TCM.

12.8.1. FARM_Sliding_Window_Width(W)

In the TCM, the parameter W is fixed to 128.

12.8.2. FARM_Positive_Window_Width(PW)

In the TCM, the parameter PW is fixed to 64.

12.8.3. FARM_Negative_Window_Width(NW)

In the TCM, the parameter NW is fixed to 64.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 217 of 222

13. Updating the Sirius FPGA

To be able to update the SoC on the Sirius OBC and Sirius TCM you need the following

items.

13.1. Prerequisite hardware

• Microsemi FlashPro5 unit

• 104470 FPGA programming cable assembly

13.2. Prerequisite software

• Microsemi FlashPro Express v11.8 or later

• The updated FPGA firmware

13.3. Generation of encryption key

When AAC Clyde Space is supporting a customer, files with sensitive data to be transferred

between AAC and customers can be encrypted/decrypted by GPG.

1. Generate a key by

gpg –-gen-key

2. Select option “DSA and Elgamal” and a keysize of 2048 bits

3. After successful generation of the key, export the key by

gpg –-export –a –o your_pub.key

4. The generated key, your_pub.key, in example above is to be sent to AAC if

needed.

13.4. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable

assembly to the JTAG-RTL connector in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from AAC should contain at least two files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

4. Start the FlashPro Express application, click “Open…” in the “Job Projects” box

(see Figure 13-1) and select the supplied .pro file.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 218 of 222

Figure 13-1 - Startup view of FlashPro Express

5. Once the file has loaded (warnings might appear), click RUN (see Figure 13-2).

Please note that the connected FlashPro5 programmed ID should be shown.

Figure 13-2 - View of FlashPro Express with project loaded.

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 219 of 222

6. The FPGA should now be loaded with the new firmware, which might take a few

minutes. Once it is finalized the second last message should be “Chain

programming PASSED”, see Figure 13-3.

Figure 13-3 - View of FlashPro Express after program passed.

The Sirius FPGA image is now updated.

14. Mechanical data

Please refer to the Mechanical and Electrical ICDs (RD9, RD10).

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 220 of 222

15. Glossary

ABI Application Binary Interface
ADC Analog Digital Converter
API Application Programming Interface
APID Application Process ID
BCH Bose-Chaudhuri-Hocquenghem code, a type of error correction code
BSP Board Support Package
CCSDS The Consultative Committee for Space Data Systems
CLCW Command Link Control Word, see [RD7] and [RD8]
COP Communications Operation Procedure, see [RD7] and [RD8]
CPDU Command Pulse Distribution Unit
CRC Cyclic Redundancy Check
DMA Direct Memory Access
ECC Error Correction Code
EDAC Error Detection and Correction
EM Engineering model
ESD Electrostatic Discharge
FARM Frame Acceptance and Reporting Mechanism, see [RD8]
FECF Frame Error Control Field, see [RD7] and [RD8]
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
FPGA Field Programmable Gate Array
FW Firmware
GCC GNU Compiler Collection program (type of standard in Unix)
GDB GNU Debugger
GPIO General Purpose Input/Output
Gtkterm A terminal emulator that drives serial ports
I2C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
IP (core) Intellectual property core, reusable functional logic block used e.g. in a FPGA
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
LSB Least significant bit/byte
MCFC Master Channel Frame Counter
Minicom Is a text based modem control and terminal emulation program
MSB Most significant bit/byte
NA Not Applicable
NVRAM Non Volatile Random Access Memory
OBC On Board Computer
OCF Operational Control Field, see [RD7] and [RD8]
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface
PPS Pulse-Per-Second
PSU Power Supply Unit
PUS Packet Utilization Standard
RAM Random Access Memory, however modern DRAM has not random access. It is often

associated with volatile types of memory
RMAP Remote Memory Access Protocol
ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SCID SpaceCraft ID
SDRAM Synchronous Dynamic Random Access Memory
SoC System-on-Chip

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 221 of 222

SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-
wire serial bus.

SpW SpaceWire
SW Software
TC Telecommand
TCL Tool Command Language, a script language
TCM Telemetry, Tracking and Command Control Module
TM Telemetry
TMR Triple Modular Redundancy
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data
VC Virtual Channel
WDT WatchDog Timer

http://www.aac-clyde.space/

 Document number 205065
 Version V
 Issue date 2023-10-16

Sirius OBC and TCM User Manual

 www.aac-clyde.space Page 222 of 222

http://www.aac-clyde.space/

	1. Introduction
	1.1. Applicable releases
	1.2. Intended users
	1.3. Getting support
	1.4. Reference documents

	2. System overview
	2.1. Description
	2.2. OBC/TCM peripherals
	2.3. Fault tolerant design
	2.4. Usage and concept
	2.4.1. Combined setup
	2.4.2. OBC concept
	2.4.3. TCM concept
	2.4.3.1. Description
	2.4.3.2. Use without pre-programmed flight software

	2.5. Manual chapters overview

	3. Setup and operation
	3.1. User prerequisites
	3.2. Connecting cables to the Sirius products
	3.3. Installation of toolchain
	3.3.1. Supported Operating Systems
	3.3.2. Installation Steps

	3.4. Installing the Board Support Package (BSP)
	3.5. Deploying a Sirius application
	3.5.1. Establish a debugger connection to the Sirius products
	3.5.2. JTAG connection
	3.5.3. Setup a serial terminal to the device debug UART
	3.5.4. Using multiple debuggers on the same PC
	3.5.5. Alternative USB library for GRMON
	3.5.6. Loading an application on LEON3
	3.5.7. Debugging software

	3.6. Programming an application (boot image) to system flash
	3.7. Re-initialising the NVRAM

	4. Software development
	4.1. RTEMS step-by-step compilation
	4.1.1. Compiling the BSP and compiling an example
	4.1.2. Compiling the BSP with debug output removed

	4.2. RTEMS floating-point considerations
	4.3. Software disclaimer of warranty

	5. RTEMS
	5.1. Introduction
	5.2. Watchdog
	5.2.1. Description
	5.2.2. RTEMS API
	5.2.2.1. int open(…)
	5.2.2.2. int close(…)
	5.2.2.3. ssize_t write(…)
	5.2.2.4. int ioctl(…)

	5.2.3. Usage description
	5.2.3.1. RTEMS
	5.2.3.2. RTEMS application example

	5.3. Error Manager
	5.3.1. Description
	5.3.2. RTEMS API
	5.3.2.1. Struct errman_latest_reset_info_t
	5.3.2.2. int open(…)
	5.3.2.3. int close(…)
	5.3.2.4. int ioctl(…)
	5.3.2.4.1. Description
	5.3.2.4.2. Commands
	5.3.2.4.3. Status register
	5.3.2.4.4. Carry flag register
	5.3.2.4.5. Single EDAC error register
	5.3.2.4.6. Multiple EDAC error register
	5.3.2.4.7. Latest boot status register

	5.3.3. Usage description
	5.3.3.1. RTEMS
	5.3.3.2. RTEMS application example

	5.3.4. Limitations

	5.4. SCET
	5.4.1. Description
	5.4.2. General purpose triggers
	5.4.3. Pulse-Per-Second (PPS) signals
	5.4.3.1. Description
	5.4.3.2. Free-running mode
	5.4.3.3. Master mode
	5.4.3.4. Master mode with time synchronization
	5.4.3.5. Slave mode

	5.4.4. RTEMS API
	5.4.4.1. Function int open(…)
	5.4.4.2. Function int close(…)
	5.4.4.3. Function ssize_t read(…)
	5.4.4.4. Function ssize_t write(…)
	5.4.4.5. Function int ioctl(…)
	5.4.4.1. Alternative PPS input/output control

	5.4.5. Usage description
	5.4.5.1. PPS
	5.4.5.2. PPS Threshold
	5.4.5.3. Event callback via message queue
	5.4.5.4. RTEMS application example

	5.4.6. Limitations

	5.5. UART
	5.5.1. Description
	5.5.1.1. RX/TX buffer depth
	5.5.1.2. Trigger levels
	5.5.1.3. Modes

	5.5.2. RTEMS API
	5.5.2.1. Function int open(…)
	5.5.2.2. Function int close(...)
	5.5.2.3. Function ssize_t read(…)
	5.5.2.4. Function ssize_t write(…)
	5.5.2.5. Function int ioctl(…)

	5.5.3. Usage description
	5.5.3.1. RTEMS application example
	5.5.3.2. Parity, framing and overrun error notification

	5.5.4. Limitations

	5.6. Mass memory
	5.6.1. Description
	5.6.2. Data Structures
	5.6.2.1. Struct massmem_cid_t
	5.6.2.2. Struct massmem_error_injection_t
	5.6.2.3. Struct massmem_ioctl_spare_area_args_t
	5.6.2.4. Struct massmem_ioctl_error_injection_args_t

	5.6.3. RTEMS API
	5.6.3.1. int open(…)
	5.6.3.2. int close(…)
	5.6.3.3. off_t lseek(…)
	5.6.3.4. ssize_t read(…)
	5.6.3.5. ssize_t write(…)
	5.6.3.6. int ioctl(…)
	5.6.3.6.1. Description
	5.6.3.6.2. Reset mass memory device
	5.6.3.6.3. Read status data
	5.6.3.6.4. Read control status data
	5.6.3.6.5. Read EDAC register data
	5.6.3.6.6. Read ID
	5.6.3.6.7. Erase block
	5.6.3.6.8. Read spare area
	5.6.3.6.9. Write spare area
	5.6.3.6.10. Bad block check
	5.6.3.6.11. Error Injection
	5.6.3.6.12. Get page bytes
	5.6.3.6.13. Get spare area bytes

	5.6.4. Usage description
	5.6.4.1. General
	5.6.4.2. Overview
	5.6.4.3. Usage
	5.6.4.4. Same-size usage mode
	5.6.4.5. Runtime-determined size usage mode
	5.6.4.6. Defines and includes

	5.6.5. Error injection
	5.6.6. Limitations

	5.7. Spacewire
	5.7.1. Description
	5.7.2. RTEMS API
	5.7.2.1. int open(…)
	5.7.2.2. int close(…)
	5.7.2.3. ssize_t read(…)
	5.7.2.4. ssize_t write(…)
	5.7.2.5. int ioctl(…)
	5.7.2.6. Mode setting
	5.7.2.7. Spacewire Timeout
	5.7.2.8. Timing Mode and Timecodes

	5.7.3. Usage description
	5.7.3.1. RTEMS
	5.7.3.1.1. Normal operation
	5.7.3.1.2. Promiscuous Mode

	5.7.3.2. Usage
	5.7.3.3. RTEMS application example

	5.8. GPIO
	5.8.1. Description
	5.8.1.1. Falling and rising edge detection
	5.8.1.2. Time stamping in SCET
	5.8.1.3. RTEMS differential mode
	5.8.1.4. Operating on pins with pull-up or pull-down

	5.8.2. RTEMS API
	5.8.2.1. Function int open(...)
	5.8.2.2. Function int close(...)
	5.8.2.3. Function ssize_t read(...)
	5.8.2.4. Function ssize_t write(...)
	5.8.2.5. Function int ioctl(...)

	5.8.3. Usage description
	5.8.3.1. RTEMS application example

	5.8.4. Limitations

	5.9. CCSDS
	5.9.1. Description
	5.9.2. Non-blocking
	5.9.3. Blocking
	5.9.4. Buffer data containing TM Space packets
	5.9.5. RTEMS API
	5.9.5.1. Device-file names
	5.9.5.2. Default configuration
	5.9.5.3. Data type dma_transfer_cb_t
	5.9.5.4. Data type tm_config_t
	5.9.5.5. Data type tc_config_t
	5.9.5.6. Data type tm_status_t
	5.9.5.7. Data type tm_error_cnt_t
	5.9.5.8. Data type tc_status_t
	5.9.5.9. Data type tc_error_cnt_t
	5.9.5.10. Data type radio_status_t
	5.9.5.11. int open(…)
	5.9.5.12. int close(…)
	5.9.5.13. ssize_t write(…)
	5.9.5.14. ssize_t read(…)
	5.9.5.15. int ioctl(…)

	5.9.6. Usage description
	5.9.6.1. RTEMS – Send Telemetry
	5.9.6.2. RTEMS – Receive Telecommands
	5.9.6.3. RTEMS – Application configuration

	5.10. ADC
	5.10.1. Description
	5.10.2. RTEMS API
	5.10.2.1. Enum adc_ioctl_sample_rate_e
	5.10.2.2. Function int open(…)
	5.10.2.3. Function int close(…)
	5.10.2.4. Function ssize_t read(…)
	5.10.2.5. Function int ioctl(…)

	5.10.3. Usage description
	5.10.3.1. RTEMS application example

	5.10.4. Limitations

	5.11. NVRAM
	5.11.1. Description
	5.11.2. EDAC mode
	5.11.3. Non-EDAC mode
	5.11.4. RTEMS API
	5.11.4.1. Enum rtems_spi_ram_edac_e
	5.11.4.2. Function int open(...)
	5.11.4.3. Function int close(...)
	5.11.4.4. Function ssize_t read(...)
	5.11.4.5. Function ssize_t write(...)
	5.11.4.6. Function int lseek(...)
	5.11.4.7. Function int ioctl(...)

	5.11.5. Usage description
	5.11.5.1. General
	5.11.5.2. RTEMS application example

	5.12. System flash
	5.12.1. Description
	5.12.2. Data structure types
	5.12.2.1. Type sysflash_cid_t
	5.12.2.2. Type sysflash_ioctl_spare_area_args_t

	5.12.3. RTEMS API
	5.12.3.1. Function int open(…)
	5.12.3.2. Function int close(…)
	5.12.3.3. Function off_t lseek(…)
	5.12.3.4. Function ssize_t read(…)
	5.12.3.5. Function ssize_t write(…)
	5.12.3.6. Function int ioctl(…)
	5.12.3.6.1. Description
	5.12.3.6.2. Reset System flash
	5.12.3.6.3. Read chip status
	5.12.3.6.4. Read controller status
	5.12.3.6.5. Read ID
	5.12.3.6.6. Erase block
	5.12.3.6.7. Read spare area
	5.12.3.6.8. Write spare area
	5.12.3.6.9. Factory bad block check

	5.12.4. Usage description
	5.12.4.1. Overview
	5.12.4.2. Usage
	5.12.4.3. RTEMS application example

	5.12.5. Debug detect
	5.12.6. Limitations

	6. SpaceWire router
	7. Sirius TCM
	7.1. Description
	7.2. Block diagram
	7.3. TCM application overview
	7.4. Configuration
	7.4.1. Configuration parameters
	7.4.2. Creating and writing a new configuration
	7.4.3. Fallback NVRAM parameters

	7.5. Telemetry
	7.6. Telecommands
	7.6.1. Description
	7.6.2. Pulse commands
	7.6.3. COP-1

	7.7. Time Management
	7.7.1. Description
	7.7.2. TM time stamps

	7.8. Error Management and System Supervision
	7.9. Mass Memory Handling
	7.9.1. Description
	7.9.2. Partition configuration
	7.9.2.1. Partition mode
	7.9.2.2. Partition segment size
	7.9.2.3. Partition type
	7.9.2.4. Automatic padding
	7.9.2.5. Partition virtual channel

	7.9.3. Recovery

	7.10. TC Storage
	7.11. TC Queue
	7.12. Spacewire Backup Routing
	7.13. RIRP RMAP Interface
	7.14. ECSS standard services
	7.14.1. PUS-1 Telecommand verification service
	7.14.2. PUS-2 Distributing Register Load Command
	7.14.3. PUS-2 Device Command Distribution Service
	7.14.4. PUS-2 Distributing Device Command

	7.15. Custom services
	7.15.1. PUS-130 Software upload
	7.15.2. PUS-131 TC Storage
	7.15.2.1. Description
	7.15.2.2. Telecommand Verification Service

	7.16. Spacewire RMAP
	7.16.1. Description
	7.16.2. RIRP Interface
	7.16.2.1. Command Acceptance
	7.16.2.2. Write Commands
	7.16.2.3. Read commands
	7.16.2.4. Reading from the Transaction Status Buffer

	7.16.3. Input
	7.16.4. Output
	7.16.5. Status code in reply messages
	7.16.5.1. Status field, RIRP Disabled
	7.16.5.2. Status field, RIRP Enabled

	7.16.6. Transaction ID
	7.16.7. RMAP input address details
	7.16.7.1. TMStatus
	7.16.7.2. TMConfig
	7.16.7.3. TMControl
	7.16.7.4. TMFEControl
	7.16.7.5. TMMCFCControl
	7.16.7.6. TMIFControl
	7.16.7.7. TMPRControl
	7.16.7.8. TMCEControl
	7.16.7.9. TMBRControl
	7.16.7.10. TMOCFControl
	7.16.7.11. TMTSControl
	7.16.7.12. TMTSStatus
	7.16.7.13. TMSend
	7.16.7.14. TCStatus
	7.16.7.15. TCDRControl
	7.16.7.16. TCQueueQuery
	7.16.7.17. TCQueueRemoveAndQuery
	7.16.7.18. TCQueueClear
	7.16.7.19. HKData
	7.16.7.20. SCETTime
	7.16.7.21. HKResetCause
	7.16.7.22. HKLastBootStatus
	7.16.7.23. HKDeathReports
	7.16.7.24. HKClearDeathReports
	7.16.7.25. UARTCommand
	7.16.7.26. MMData
	7.16.7.26.1. Read
	7.16.7.26.2. Write

	7.16.7.27. MMDataRange
	7.16.7.28. MMPartitionConfig
	7.16.7.29. MMPartitionSpace
	7.16.7.30. MMDownloadPartitionData
	7.16.7.31. MMFree
	7.16.7.32. MMDownloadStatus
	7.16.7.33. MMStopDownloadData
	7.16.7.34. MMGetPageSize
	7.16.7.35. MMTCStorageStatus
	7.16.7.36. MMTCStorageClear
	7.16.7.37. MMBadBlockCount
	7.16.7.38. SpwBackupRoutingEnableDisableSet
	7.16.7.39. SpwBackupRoutingEnableDisableGet
	7.16.7.40. SpwRoutingPathSet
	7.16.7.41. SpwRoutingPathGet
	7.16.7.42. SpwReplyPathSet
	7.16.7.43. SpwReplyPathGet
	7.16.7.44. SpwBackupRoutingTimeoutSet
	7.16.7.45. SpwBackupRoutingTimeoutGet
	7.16.7.46. RIRPTransactionStatus
	7.16.7.47. GPIOGetConfig
	7.16.7.48. GPIOSetConfig
	7.16.7.49. GPIOGetValue
	7.16.7.50. GPIOSetValue

	7.16.8. RMAP output address details
	7.16.8.1. TCCommand
	7.16.8.2. UARTData

	7.17. Death Report Handling
	7.18. FPU Traps
	7.19. Limitations

	8. NVRAM areas
	9. Boot procedure
	9.1. Description
	9.2. Usage description
	9.3. Limitations
	9.4. Cause of last reset
	9.5. Pulse commands

	10. Software upload
	10.1. Description
	10.2. Block diagram
	10.3. CCSDS API – custom PUS service 130
	10.3.1. Description
	10.3.2. Subtype 1 – Image transfer start
	10.3.3. Subtype 2 – Image data
	10.3.4. Subtype 3 – Verify uploaded image
	10.3.5. Subtype 4 – Write uploaded image
	10.3.6. Subtype 5 – Calculate CRC in flash

	10.4. Software API
	10.4.1. int32_t swu_init(…)
	10.4.2. int32_t swu_segment_add(…)
	10.4.3. int32_t swu_check(…)
	10.4.4. int32_t swu_update(…)
	10.4.5. int32_t swu_flash_check(…)

	10.5. Usage description
	10.6. Limitations

	11. Death Reports
	11.1. Format
	11.2. Reports for FPU Traps
	11.3. NVRAM
	11.4. Usage Description

	12. TM/TC-structure and COP-1
	12.1. SCID
	12.2. APID
	12.3. Virtual Channel Allocation
	12.4. Uplink Channel Coding, Randomization and Synchronization
	12.4.1. Channel Coding
	12.4.2. Randomization
	12.4.3. Channel Synchronization

	12.5. Downlink Channel Coding, Randomization and Synchronization
	12.5.1. Channel Coding
	12.5.2. Randomization
	12.5.3. Synchronization

	12.6. Telecommand format
	12.6.1. Telecommand Transfer Frame
	12.6.2. Transfer Frame Header
	12.6.3. Transfer Frame Data Field
	12.6.4. Frame Error Control Field
	12.6.5. Telecommand Packet
	12.6.6. Carrier Lock and Subcarrier Lock

	12.7. Telemetry Format
	12.7.1. Telemetry Transfer Frame
	12.7.2. Transfer Frame Primary Header
	12.7.3. Transfer Frame Secondary Header
	12.7.4. Transfer Frame Data Field
	12.7.5. Operational control field
	12.7.6. Frame Error Control Field
	12.7.7. Telemetry Packet
	12.7.8. Telemetry Packet Header
	12.7.9. Data Field Header
	12.7.10. Source Data
	12.7.11. Spare
	12.7.12. Packet Error Control
	12.7.13. Idle Data

	12.8. FARM-parameters
	12.8.1. FARM_Sliding_Window_Width(W)
	12.8.2. FARM_Positive_Window_Width(PW)
	12.8.3. FARM_Negative_Window_Width(NW)

	13. Updating the Sirius FPGA
	13.1. Prerequisite hardware
	13.2. Prerequisite software
	13.3. Generation of encryption key
	13.4. Step by step guide

	14. Mechanical data
	15. Glossary

