

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 1 of 156

Sirius OBC and TCM User Manual

Rev. I

© ÅAC Microtec 2016-2018

ÅAC Microtec AB owns the copyright of this document which is supplied in confidence and which shall
not be used for any purpose other than for which it is supplied and shall not in whole or in part be
reproduced, copied, or communicated to any person without written permission from the owner.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 2 of 156

REVISION LOG

Rev Date Change description

A 2016-10-25 First release, drafted from 204911 Sirius Breadboard User Manual
Rev L

B 2016-12-15 Updated after editorial updates
C 2017-01-03 Release with updates to the following sections:

 Massmem (new API with DMA)

 Error manager (IOCTL API)

 ADC (channel table update, channel limitation)

 Sirius TCM (TM/TC defaults, API updates {errno, MMStatus,
TMTSStatus, }, removed limitations)

 Bootrom (extended description)

 SCET (extended description, new API)

 UART32 (removed)

 CCSDS (interrupt API deprecation)

 NVRAM (EDAC/non-EDAC modes described)
D 2017-02-01 Release with updates to the following sections:

 Sirius TCM (Extra info sections, TMBRSet->TMBRControl)

 Mass memory (IOCTL API, error inject info)

 SCET (Clarify threshold)
E 2017-03-01 Release with updates to the following sections:

 ADC (minor updates to clock div limits)

 Setup and operation (find debugger serial, use of multiple
debuggers)

F 2017-04-18 Release with updates to the following sections:

 CCSDS (new API)

 Sirius TCM (new timesync API, NVRAM table updated, new
segment sizing for partitions)

G 2017-10-31 Release with updates to the following sections:

 Fault tolerant design (new section)

 CCSDS (updated API)

 Mass memory (updated API)

 Sirius TCM (new mass memory partition configuration
behaviour & RMAP API)

 System flash (new)
H 2018-03-07 Release with updates to the following sections:

 Introduction

 Equipment information

 Sirius TCM (updated API and formatting)

 NVRAM (updated API)
I 2018-04-16 Release with updates of the following sections:

 Software upload (new)

 NVRAM (updated EDAC error reporting API)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 3 of 156

TABLE OF CONTENT

1. INTRODUCTION ... 7
1.1. Applicable releases .. 7
1.2. Intended users .. 7
1.3. Getting support ... 7
1.4. Reference documents .. 8

2. EQUIPMENT INFORMATION ... 9
2.1. System Overview with peripherals ... 9
2.2. Fault tolerant design .. 10

3. SETUP AND OPERATION ...12
3.1. User prerequisites .. 12
3.2. Connecting cables to the Sirius products .. 13
3.3. Installation of toolchain ... 14

3.3.1. Supported Operating Systems ... 14
3.3.2. Installation Steps .. 14

3.4. Installing the Board Support Package (BSP) ... 15
3.5. Deploying a Sirius application .. 15

3.5.1. Establish a debugger connection to the Sirius products ... 15
3.5.2. Setup a serial terminal to the device debug UART... 16
3.5.3. Loading an application ... 17
3.5.4. Using multiple debuggers on the same PC .. 17

3.6. Programming an application (boot image) to system flash .. 18

4. SOFTWARE DEVELOPMENT ...19
4.1. RTEMS step-by-step compilation .. 19
4.2. Software disclaimer of warranty ... 19

5. RTEMS ...20
5.1. Introduction ... 20
5.2. Watchdog .. 21

5.2.1. Description ... 21
5.2.2. RTEMS API .. 21
5.2.3. Usage ... 22

5.3. Error Manager ... 24
5.3.1. Description ... 24
5.3.2. RTEMS API .. 24
5.3.3. Usage ... 29
5.3.4. Limitations .. 30

5.4. SCET .. 31
5.4.1. Description ... 31
5.4.2. General purpose triggers ... 31
5.4.3. Pulse-Per-Second (PPS) signals ... 31
5.4.4. RTEMS API .. 32
5.4.5. Usage ... 37
5.4.6. PPS .. 37
5.4.7. Event callback via message queue .. 37
5.4.8. RTEMS application example .. 38

5.5. UART .. 41

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 4 of 156

5.5.1. Description ... 41
5.5.2. RTEMS API .. 41
5.5.3. Usage description .. 44
5.5.4. Limitations .. 45

5.6. Mass memory .. 45
5.6.1. Description ... 45
5.6.2. Data Structures .. 46
5.6.3. RTEMS API .. 47
5.6.4. Usage ... 54
5.6.5. Error injection ... 57
5.6.6. Limitations .. 57

5.7. Spacewire .. 58
5.7.1. Description ... 58
5.7.2. RTEMS API .. 58
5.7.3. Usage description .. 61

5.8. GPIO ... 64
5.8.1. Description ... 64
5.8.2. RTEMS API .. 64
5.8.3. Usage description .. 67
5.8.4. Limitations .. 68

5.9. CCSDS ... 69
5.9.1. Description ... 69
5.9.2. Non-blocking .. 69
5.9.3. Blocking ... 70
5.9.4. Buffer data containing TM Space packets .. 70
5.9.5. RTEMS API .. 70
5.9.6. Usage description .. 77

5.10. ADC .. 79
5.10.1. Description ... 79
5.10.2. RTEMS API .. 80
5.10.3. Usage description .. 83
5.10.4. Limitations .. 84

5.11. NVRAM .. 85
5.11.1. Description ... 85
5.11.2. EDAC mode ... 85
5.11.3. Non-EDAC mode ... 85
5.11.4. RTEMS API .. 85
5.11.5. Usage description .. 88

5.12. System flash ... 90
5.12.1. Description ... 90
5.12.2. Data structure types ... 90
5.12.3. RTEMS API .. 90
5.12.4. Usage description .. 95
5.12.5. Debug detect .. 97
5.12.6. Limitations .. 97

6. SPACEWIRE ROUTER ..99

7. SIRIUS TCM... 100
7.1. Description .. 100
7.2. Block diagram ... 101
7.3. TCM-S application overview .. 101

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 5 of 156

7.4. Configuration .. 102
7.5. Telemetry ... 105
7.6. Telecommands ... 105

7.6.1. Pulse commands.. 106
7.6.2. COP-1 .. 106

7.7. Time Management .. 106
7.7.1. TM time stamps.. 107

7.8. Error Management and System Supervision ... 107
7.9. Mass Memory Handling .. 107

7.9.1. Partition configuration .. 108
7.9.2. Recovery .. 110

7.10. ECSS standard services .. 111
7.10.1. PUS-1 Telecommand verification service .. 111
7.10.2. PUS-2 Device Command Distribution Service ... 111

7.11. Custom services ... 112
7.11.1. PUS-130 Software upload .. 112

7.12. Spacewire RMAP .. 112
7.12.1. Input ... 113
7.12.2. Output .. 114
7.12.3. Status code in reply messages .. 114
7.12.4. RMAP input address details ... 114
7.12.5. RMAP output address details ... 129

7.13. Limitations .. 129

8. SYSTEM-ON-CHIP DEFINITIONS ... 130
8.1. Memory mapping .. 130
8.2. Interrupt sources .. 131
8.3. SCET timestamp trigger sources .. 131
8.4. Boot images and boot procedure.. 132

8.4.1. Description ... 132
8.4.2. Block diagram .. 132
8.4.3. Usage description .. 132
8.4.4. Limitations .. 133

8.5. Reset behaviour .. 133
8.6. General synchronize method .. 133
8.7. Pulse command inputs .. 133
8.8. SoC information map ... 134

9. SOFTWARE UPLOAD ... 135
9.1. Description .. 135
9.2. Block diagram ... 135
9.3. CCSDS API – custom PUS service 130 ... 136

9.3.1. Subtype 1 – Image transfer start .. 137
9.3.2. Subtype 2 – Image data ... 137
9.3.3. Subtype 3 – Verify uploaded image ... 138
9.3.4. Subtype 4 – Write uploaded image .. 138
9.3.5. Subtype 5 – Calculate CRC in flash ... 139

9.4. Software API ... 140
9.4.1. int32_t swu_init(…) .. 140
9.4.2. int32_t swu_segment_add(…) ... 140
9.4.3. int32_t swu_check(…) .. 141
9.4.4. int32_t swu_update(…) .. 141

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 6 of 156

9.4.5. int32_t swu_flash_check(…) .. 142
9.5. Usage description... 142
9.6. Limitations .. 142

10. CONNECTOR INTERFACES ... 143
10.1. JTAG-RTL, FPGA-JTAG connector ... 143
10.2. DEBUG-SW .. 143
10.3. PWR – Power .. 144
10.4. SPW1 – Spacewire 1 ... 144
10.5. SPW2 – Spacewire 2 ... 145
10.6. ANALOG, Analog input and 3xGPIO (Sirius OBC only) .. 145
10.7. DIGITAL, PPS input and 12xGPIO ... 146
10.8. UART0-2 - RS422/485 ... 147
10.9. UART3-5 - RS422/485 (Sirius OBC only) ... 147
10.10. TRX1 - RS422 Transceiver interface (Sirius TCM only) ... 149
10.11. TRX2 - LVDS Transceiver interface (Sirius TCM only) .. 149
10.12. UMBI – Baseband Umbilical (Sirius TCM only) .. 150
10.13. Pulse Command Outputs (Sirius TCM only) .. 151

11. UPDATING THE SIRIUS FPGA ... 151
11.1. Prerequisite hardware .. 152
11.2. Prerequisite software ... 152
11.3. Step by step guide .. 152

12. MECHANICAL DATA .. 154

13. GLOSSARY ... 155

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 7 of 156

1. Introduction

This manual describes the functionality and usage of the ÅAC Sirius OBC and Sirius TCM

products. The Sirius OBC or Sirius TCM differ in certain areas such as the SoC, interfaces

etc. but can mostly be described with the same functionality and will throughout this

document be referred to as “the Sirius products” when both products are referred at the

same time.

1.1. Applicable releases

This version of the manual is applicable to the following software releases:

Sirius OBC 1.2.0

Sirius TCM 1.2.0

1.2. Intended users

This manual is written for software engineers using the ÅAC Sirius products. The electrical

and mechanical interface is described in more detail in the electrical and mechanical ICD

documents [RD10] and [RD11].

1.3. Getting support

If you encounter any problem using the Sirius products or another ÅAC product please use

the following address to get help:

Email: support@aacmicrotec.com

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 8 of 156

1.4. Reference documents

RD# Document ref Document name

RD1 https://openrisc.io/architecture OpenRISC 1000 Architecture
Manual

RD2 ECSS-E-ST-50-12C SpaceWire – Links, nodes,
routers and networks

RD3 ECSS-E-ST-50-52C SpaceWire – Remote memory
access protocol

RD4 ECSS-E-70-41C
Ground systems and
operations – Telemetry and
telecommand packet utilization

RD5 SNLS378B

PC16550D Universal
Asynchronous
Receiver/Transmitter with
FIFOs

RD6 AD7173-8, Rev. A
Low Power, 8-/16-Channel,
31.25 kSPS, 24-Bit, Highly
Integrated Sigma-Delta ADC

RD7 Edition 4.11 RTEMS BSP and Device
Driver Development Guide

RD8 CCSDS 132.0-B-2 TM Space Data Link Protocol

RD9 CCSDS 232.0-B-2 TC Space Data Link Protocol

RD10
205088 Sirius OBC electrical and

mechanical ICD

RD11 205089
Sirius TCM electrical and
mechanical ICD

RD12
SS-EN 61340-5-1

Electrostatics - Part 5-1:
Protection of electronic
devices from electrostatic
phenomena - General
requirements

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 9 of 156

2. Equipment information

The Sirius OBC and Sirius TCM products are depicted in Figure 3-1 and Figure 3-2.

In addition to the external interfaces, the Sirius products also include both a debugger

interface for downloading and debugging software applications and a JTAG interface for

programming the FPGA during manufacturing.

The FPGA firmware implements a SoC centered around a 32 bit OpenRISC Fault Tolerant

processor [RD1] running at a system frequency of 50 MHz and with the following key

peripherals:

 Error manager - error handling, tracking and log of e.g. memory error detection.

 SDRAM controller - 64 MB data + 64 MB EDAC running @100MHz

 Spacecraft Elapsed Timer (SCET) - including a PPS (Pulse Per Second) time

synchronization interface for accurate time measurement with a resolution of 15 µs

 SpaceWire - including a three-port SpaceWire router, for communication with

external peripheral units

 UARTs - RS422 and RS485 line drivers on the board with line driver mode set by

software.

 GPIOs

 Watchdog - a fail-safe mechanism to prevent a system lockup

 System flash - 2 GB of EDAC-protected flash for storing boot images in multiple

copies

 Pulse command inputs - for reset to a specific software image

 NVRAM - for storage of metadata and other data that requires a large number of

writes that shall survive loss of power

For the Sirius TCM the following additional peripherals are included in the SoC:

 CCSDS - communications IP with RS422/LVDS interfaces for radio communication

and an UMBI interface for communication with EGSE

 Mass memory - 16GB of EDAC-protected NAND flash based, for storage of

mission critical data.

For the Sirius OBC, an Analog interface is included for external analog measurements.

The input power supply provided to the Sirius products shall be between +4.5 and +16 VDC.

The power consumption is highly dependent on peripheral loads and ranges from 0.8 W to

2 W.

2.1. System Overview with peripherals

Figure 2-1 depicts a System-on-Chip (SoC) overview including the related peripherals of the

Sirius OBC and Sirius TCM

products. The figure shows what parts that are included for

which products.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 10 of 156

FPGA

FPU

OpenRISC

1200FT

I/D Cache

I2C

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

2 GB System
Flash

R
ad

io
 In

te
rf

ac
e

s
R

S4
2

2
/L

V
D

S
R

S4
2

2
/R

S4
8

5
JT

A
G

/D
EB

U
G

Pulse CMDUMBI/EGSEETHERNET GPIO

ADC
(Housekeeping)

Ethernet
10/100

ADC
controller

OBC / TCM

NVRAM

Analog inputs

NVRAM

TCM TCM/OBC Future option

16 GB Flash

OBC

PPS

Figure 2-1 - The Sirius OBC / Sirius TCM SoC Overview

2.2. Fault tolerant design

The Sirius OBC and Sirius TCM are both fault tolerant by design to withstand the

environmental loads that the modules are subjected to when used in space applications.

The following error mitigation techniques are used.

 Continuous EDAC scrubbing of SDRAM data with at least 1 bit error correction and

2 bit error detection for each 16-bit word. Non-correctable errors cause a processor

interrupt to allow the software to handle the error differently depending on in which

section of the memory it appeared, unless the error appear in the execution path

(see below).

 EDAC checking of instructions before execution and on data used in the instruction

(at least 1 bit error correction and 2 bit error detection as described in the previous

point). Non-correctable errors cause automatic reboot.

 Parity checking of Instruction and Data caches when they are enabled. Errors

cause a processor interrupt with a cache reload as the default error handling.

 Parity checking of peripheral FIFOs. Errors cause processor interrupt.

 EDAC checking on system flash with double bit error correction and extended bit

error detection in combination with interleaving that corrects bursts with up to 16

bits in error.

 Triple Modular Redundancy (TMR) on all FPGA flip-flops

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 11 of 156

 All software stored in boot flash is, in addition to the EDAC protection of the flash

data, encoded with a header for checksum and length. Each boot image is stored

in three copies to allow for an automatic fallback option if the ECC and/or length

check fails on one copy.

 Watchdog, tripping leads to automatic reboot of the device.

 Advanced Error Manager keeping the detected failures during reset/reboot for later

analysis.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 12 of 156

3. Setup and operation

3.1. User prerequisites

The following hardware and software is needed for the setup and operation of the Sirius

products.

PC computer

 1 GB free space for installation (minimum)

 Debian 8 64-bit with super user rights

 USB 2.0

JTAG debugger

 ÅAC JTAG debugger hardware including harness

Recommended applications and software

 Installed serial communication terminal, e.g. gtkterm or minicom

 Host build system, e.g. the debian package build-essential

 The following software is installed by the ÅAC toolchain package

o GCC, C compiler for OpenRISC

o GCC, C++ compiler for OpenRISC

o GNU binutils and linker for OpenRISC

o Custom openocd binary designed for OpenRISC

For FPGA update capabilities

 Microsemi FlashPro Express v11.8, http://www.microsemi.com/products/fpga-

soc/design-resources/programming/flashpro#software

 FlashPro5 programmer

http://www.aacmicrotec.com/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 13 of 156

3.2. Connecting cables to the Sirius products

Figure 3-1 – ÅAC Sirius OBC with connector naming

Figure 3-2 - ÅAC Sirius TCM with connector naming

 All products and ingoing material shall be handled with care to prevent damage of

any kind.

JTAG-RTL

DEBUG-SW

SPW1

SPW2

UART0-2

PWR

UART3-4

DIGITAL

ANALOG

JTAG-RTL

DEBUG-SW

UMBI

SPW1

UART0-2

PWR

TRX2-LVDS

TRX1-RS422

DIGITAL

PULSE

SPW2

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 14 of 156

 ESD protection and other protective measures shall be considered. Handling

should be performed according to applicable ESD requirement standards such as

[RD12] or equivalent.

 Ensure that all mating connectors have the same zero reference (ground) before

connecting.

 Connect the nano-D connector to the PWR connector with 4.5 - 16 V DC. The units

will nominally draw about 260-300 mA @5V DC.

 The ÅAC debugger is mainly used for development of custom software for the

Sirius OBC or Sirius TCM and has both a debug UART for monitoring and a JTAG

interface for debug capabilities. It is also used for programming an image to the

system flash memory. For further information refer to Chapter 3.6. When it is to be

used, connect the 104452 ÅAC Debugger to the DEBUG-SW connector. Connect

the adapter USB-connector to the host PC.

 For FPGA updating only: Connect a FlashPro5 programmer to the JTAG-RTL

connector using the 104470 FPGA programming cable assembly. For further

information how to update the SoC refer to Chapter 11.

 For connecting the SpaceWire interface, connect the nano-D connector to

connector SPW1 or SPW2.

For more detailed information about the connectors, see [RD10] and [RD11].

3.3. Installation of toolchain

This chapter describes instructions for installing the aac-or1k-toolchain.

 3.3.1. Supported Operating Systems

 Debian 8 64-bit

When installing Debian, we recommend using the “netinst” (network install) method. Images

for installing are available via https://www.debian.org/releases/jessie/debian-installer/

In order to install the toolchain below, a Debian package server mirror must be added, either

in the installation procedure (also required during network install) or after installation. For

adding a package server mirror after installation, follow the instructions at

https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

 3.3.2. Installation Steps

1. Add the ÅAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

deb http://repo.aacmicrotec.com/archive/ aac/

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

http://www.aacmicrotec.com/
https://www.debian.org/releases/jessie/debian-installer/
https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 15 of 156

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

The terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the toolchain by issuing the following commands:

sudo apt-get update

sudo apt-get install aac-or1k-toolchain

Note: The toolchain package is roughly 1GB uncompressed, downloading/installing it

will take some time.

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them, this can be done either temporarily for the current shell via

source /opt/aac/aac-path.sh

or permanently by editing the ~/.bashrc (or equivalent) file

gedit ~/.bashrc

and adding the following snippet at the end of the file, and then saving and closing it:

AAC OR1k toolchain PATH setup

if [-f /opt/aac/aac-path.sh]; then

 . /opt/aac/aac-path.sh >/dev/null

fi

3.4. Installing the Board Support Package (BSP)

The BSP can be downloaded from http://repo.aacmicrotec.com/bsp. Simply extract the

tarball aac-or1k-xxx-x-bsp-y.tar.bz2 to a directory of your choice (xxx-x depends on your

intended hardware target - Sirius OBC or Sirius TCM and y matches the current version

number of that BSP).

The newly created directory aac-or1k-xxx-x-bsp now contains the drivers for both bare-metal

applications and RTEMS. See the included README and chapter 4.1 for build instructions.

3.5. Deploying a Sirius application

 3.5.1. Establish a debugger connection to the Sirius products

The Sirius products are shipped with debuggers who connect to a PC via USB. To interface

the Sirius products, the Open On-Chip Debugger (OpenOCD) software is used. A script

called run_aac_debugger.sh is shipped with the toolchain package which starts an

OpenOCD server for gdb to connect to.

1. Connect the Sirius products according to section 3.2 and switch on the power

supply.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 16 of 156

2. Start the run_aac_debugger.sh script from a terminal.

3. If the printed message is according to Figure 3-3, the connection is working.

Figure 3-3 - Successful OpenOCD connection to the Sirius products

The line

target state: halted

must be displayed in the output, otherwise the OpenOCD connection has failed and the

board must be power-cycled.

 3.5.2. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A serial communication terminal such as minicom or gtkterm is necessary to communicate

with the Sirius product, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected and you have to make sure you're using the correct device number to

communicate to the board's debug UART.

On Debian 8, a more foolproof way of identifying the terminal to use is the by-id mechanism.

Once you've identified the serial number of your debugger (see 3.5.4.), you can connect to it

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 17 of 156

using the autocreated path at /dev/serial/by-id/. The debug UART is identified as

usb-AAC_Microtec_JTAG_Debugger_FTZ7QCMF-if01-port0, where FTZ7QCMF is

the serial number in this case. Make sure you use the if01 number and not if00 as this is

consumed by the OpenOCD server later.

 3.5.3. Loading an application

An application can either be loaded only to the volatile memory, which is easier and typically

used during the development stages, or to NAND flash (see section 3.6). This is done using

gdb.

1.a) Start gdb with the following command from a shell for a bare-metal environment

or1k-aac-elf-gdb

 or

1.b) Start gdb with the following command from a shell for an RTEMS environment

or1k-aac-rtems4.11-gdb

2. When gdb has opened successfully, connect to the hardware through the

OpenOCD server using the gdb command

target remote localhost:50001

3. To run an executable program in hardware, first specify its name using the gdb

command file. Make sure the application is in ELF format.

file path/to/binary_to_execute

4. Now it needs to be uploaded onto the target RAM

load

5. In the gdb prompt, type c to start to run the application

 3.5.4. Using multiple debuggers on the same PC

In order to use multiple debuggers connected to the same PC, each instance of OpenOCD

must be configured to connect to the specific debugger serial number and to use unique

ports. Support for this is included in the run_aac_debugger.sh script.

In order to determine the serial number for a specific device, run the following command

before connecting the debugger

sudo tail -f /var/log/kern.log

which initially prints the last 10 lines of the kernel log file (which can be ignored). When

plugging in the debugger USB cable into the PC, this should produce new output similar to

[363061.959120] usb 1-1.3.3.3: new full-speed USB device number 15

using ehci_hcd

[363062.058152] usb 1-1.3.3.3: New USB device found, idVendor=0403,

idProduct=6010

[363062.058176] usb 1-1.3.3.3: New USB device strings: Mfr=1,

Product=2, SerialNumber=3

[363062.058194] usb 1-1.3.3.3: Product: JTAG Debugger

[363062.058207] usb 1-1.3.3.3: Manufacturer: AAC Microtec

[363062.058220] usb 1-1.3.3.3: SerialNumber: FTZ7QCMF

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 18 of 156

where FTZ7QCMF is the serial number for the debugger.

The GDB, telnet and TCL ports must be set to a unique value in the Linux user-available

range 1025-65535, the defaults are GDB: 50001, telnet: 4444, TCL: 6666.

For example, two debuggers with serial numbers FTZ7QCMF and FTZ7IB10 can be setup

via

run_aac_debugger.sh -s FTZ7QCMF -g 50001 -t 4444 -p 6666

run_aac_debugger.sh -s FTZ7IB10 -g 50002 -t 4445 -p 6667

Two instances of GDB can then be opened, and connected to the different debuggers via

target remote localhost:50001

and

target remote localhost:50002

respectively. Only the GDB port is used when connecting from GDB.

3.6. Programming an application (boot image) to system flash

This chapter describes how to program the NAND flash memory with a selected boot image.

To achieve this, the boot image binary is bundled together with the NAND flash

programming application during the latter's compilation. The NAND flash programming

application is then uploaded to the target and started just as an ordinary application using

gdb. The maximum allowed size for the boot image for is 16 MB. The nandflash_program

application can be found in the BSP.

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Ensure that this image is in a binary-only format and not ELF. This can be

accomplished with the help of the GCC objcopy tool included in the toolchain:

Note that X is to be replaced according to what your application has been compiled

against, either elf for a bare-metal application or rtems4.11 for the RTEMS variant.

or1k-aac-X-objcopy -O binary boot_image.elf boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/nandflash_program/src

4. Now, compile the nandflash-program application, bundling it together with the boot image

binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of gdb and

execute it, see section 3.5.3. Follow the instructions on screen and when it's ready,

reboot the board by a reset or power cycle.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 19 of 156

4. Software development

Applications to be deployed on the Sirius products can either use a bare-metal approach or

use the RTEMS OS. This corresponds to the two toolchain prefixes available: or1k-aac-elf-*

or or1k-aac-rtems4.11-*

Drivers for both are available in the BSP, see chapter 3.4 and the BSP README for more

information. However, the RTEMS OS is the recommended way and documentation for the

bare-metal layer is not included in this manual.

4.1. RTEMS step-by-step compilation

The BSP is supplied with an application example of how to write an application for RTEMS

and engage all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to have been installed and the

BSP unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/

2. Type make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory

export RTEMS_MAKEFILE_PATH=path/to/librtems/or1k-aac-

rtems4.11/or1k-aac

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter

3.5.

4.2. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 20 of 156

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The block diagram representing driver

functionality access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 21 of 156

5.2. Watchdog

 5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device.

 5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

5.2.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in

The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in

A bitwise”or” separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write).

Return value Description

> 0
A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 22 of 156

5.2.2.3. size_t write(…)

Any data is accepted as a watchdog kick.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

*
nNumber of bytes that were
written.

- 1 see errno values

errno values

EPERM Device was not opened

EBUSY Device is busy

5.2.2.4. int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL
1 = Enables the watchdog
0 = Disables the watchdog

WATCHDOG_SET_TIMEOUT_IOCTL 1 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EINVAL Invalid data sent

RTEMS_NOT_DEFINED Invalid I/O command

 5.2.3. Usage

The watchdog is enabled and disabled using ioctl() calls.

The watchdog must be kicked using a write() call before the timeout occurs or else the

watchdog will bark. Notice that the value shall be set between 1 and 255 seconds. Set to

zero is a false value.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 23 of 156

Default value of the watch dog is enabled. When debugged it must be set disabled

otherwise the system restart occasionally.

5.2.3.1. RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-2 - RTEMS driver usage description

Note: All calls to the RTEMS driver are blocking calls.

5.2.3.2. RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code structure

is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 24 of 156

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER must be defined for using the watchdog

driver. By defining this as part of the RTEMS configuration, the driver will automatically be

initialized at boot up.

5.3. Error Manager

 5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device

 5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt driven events such as power

loss, non-fatal multiple errors generated by the RAM EDAC mechanism.

5.3.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

fd A file descriptor for the device on
success

-1 see errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 25 of 156

errno values

EALREADY Device already opened

5.3.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.3. int ioctl(…)

Ioctl allows for disabling/enabling functionality of the error manager, setting of the timeout

and reading out counter values.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd uint32_t in Command to send

val uint32_t / uint32_t * in / out Value to write or a pointer to a buffer where
data will be written

Command table Description

ERRMAN_GET_SR_IOCTL Get the status register, see 5.3.2.3.1

ERRMAN_GET_CF_IOCTL Gets the carry flag register, see 5.3.2.3.2

ERRMAN_GET_SELFW_IOCTL Points to which boot firmware that will be loaded and
executed upon system reboot.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_RUNFW_IOCTL Gets the currently running firmware
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_SCRUBBER_IOCTL Gets the state of the memory scrubber.
0 = Scrubber is disabled
1 = Scrubber is enabled.

ERRMAN_GET_RESET_ENABLE_IOCTL Gets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 26 of 156

ERRMAN_GET_WDT_ERRCNT_IOCTL Gets the watchdog error count register.
This register can store a value up to 15 and then wraps.
After a wrap the WDT carry flag bit is set in the carry flag
register. see 5.3.2.3.2

ERRMAN_GET_EDAC_SINGLE_ERRCNT_IOCTL Gets the EDAC single error count.
See 5.3.2.3.3 for interpretation of the register.
After a wrap the EDAC single error count carry flag bit is
set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_EDAC_MULTI_ERRCNT_IOCTL Gets the EDAC multiple error count.
See 5.3.2.3.4 for interpretation of the register.
After a wrap the EDAC multiple error count carry flag bit
is set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_CPU_PARITY_ERRCNT_IOCTL Gets the CPU Parity error count register.
This register can store a value up to 15 and then wraps.
After a wrap the CPU parity error count carry flag bit is
set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_SYS_SINGLE_ERRCNT_IOCTL Gets the system flash single error (correctable) error
count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_SYS_MULTI_ERRCNT_IOCTL Gets the system flash multiple error (un-correctable)
error count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_MMU_SINGLE_ERRCNT_IOCTL Gets the mass memory single error (correctable) error
count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_MMU_MULTI_ERRCNT_IOCTL Gets the mass memory multiple error (un-correctable)
error count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_POWER_LOSS_ENABLE_IOCTL Gets the power loss detection enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

ERRMAN_SET_SR_IOCTL Sets the status register, see 5.3.2.3.1

ERRMAN_SET_CF_IOCTL Sets the carry flag register, see 5.3.2.3.2

ERRMAN_SET_SELFW_IOCTL Sets the next boot firmware.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_RESET_SYSTEM_IOCTL Performs a software reset.
The reset enable state is required to be 1 (On).

ERRMAN_SET_SCRUBBER_IOCTL Sets the state of the memory scrubber.
1 = On,
0 = Off.
The scrubber is a vital part of keeping the SDRAM free
from errors.

ERRMAN_SET_RESET_ENABLE_IOCTL Sets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

ERRMAN_SET_WDT_ERRCNT_IOCTL Sets the watchdog error count register.
The counter width is 4 bits i. e. 15 is the maximum value
that can be written.

ERRMAN_SET_EDAC_SINGLE_ERRCNT_IOCTL Sets the EDAC single error count.
See 5.3.2.3.3 for register definition.

ERRMAN_SET_EDAC_MULTI_ERRCNT_IOCTL Sets the EDAC multiple error count register.
See 5.3.2.3.4 for register definition.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 27 of 156

ERRMAN_SET_CPU_PARITY_ERRCNT_IOCTL Sets the CPU Parity error count register.
The counter width is 4 bits i. e. 15 is the maximum value
that can be written.

ERRMAN_SET_SYS_SINGLE_ERRCNT_IOCTL Sets the system flash single (correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_SYS_MULTI_ERRCNT_IOCTL Sets the system flash multiple (un-correctable) error
counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_SINGLE_ERRCNT_IOCTL Sets the mass memory single (correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_MULTI_ERRCNT_IOCTL Sets the mass memory multiple (un-correctable) error
counter.
This register is 4 bit wide.

ERRMAN_SET_POWER_LOSS_ENABLE_IOCTL Sets the power loss enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

5.3.2.3.1. Status register

Bit position Name Direction Description

31:12 RESERVED

11 ERRMAN_PULSEFLG R/W Pulse command flag bit is set.
Clear flag by write a ‘1’

10 ERRMAN_POWFLG R/W The power loss signal has been set.

9 ERRMAN_MEMCLR R The memory cleared signal is set from the
scrubber unit function from the memory
controller. Set when the memory has been
cleared and read by the bootrom to wait for
image.

8 RESERVED

7 ERRMAN_PARFLG R/W A previous CPU Register File Parity Error
Reset has been detected
Clear flag by write a ‘1’

6 ERRMAN_MEOTHFLG R/W A previous RAM EDAC Multiple Error Reset
has been detected for non-critical data
Clear flag by write a ‘1’

5 ERRMAN_SEOTHFLG R/W A previous RAM EDAC Single Error Reset has
been detected for critical data
Clear flag by write a ‘1’

4 ERRMAN_MECRIFLG R/W A previous RAM EDAC Multiple Error Reset
has been detected for non-critical data
Clear flag by write a ‘1’

3 ERRMAN_SECRIFLG R/W A previous RAM EDAC Single Error Reset has
been detected for critical data
Clear flag by write a ‘1’

2 ERRMAN_WDTFLG R/W A previous Watch Dog Timer Reset has been
detected
Clear flag by write a ‘1’

1 ERRMAN_RFLG R/W A previous Manual Reset has been detected
Clear flag by write a ‘1’

0 ERRMAN_IFLAG R/W Error Manager Interrupt Flag (multiple sources
i.e. read the whole status register)
Read:
‘0’ – No interrupt pending
‘1’ – Interrupt pending
Write:
‘0’ – Ignored
‘1’ – Clear

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 28 of 156

5.3.2.3.2. Carry flag register

Bit position Name Direction Description

31:8 RESERVED

7 ERRMAN_PARCFLG R/W Carry flag set when CPU Register File
Parity Error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write

‘1’)

6 ERRMAN_MEOFLG R/W Carry flag set when RAM EDAC
multiple other error counter overflow
has occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write

‘1’)

5 ERRMAN_SEOFLG R/W Carry flag set when RAM EDAC single
other error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write
‘1’)

4 ERRMAN_MECFLG R/W Carry flag set when RAM EDAC
Multiple Error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

3 ERRMAN_SECFLG R/W Carry flag set when RAM EDAC Single
Error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

2 ERRMAN_WDTCFLG R/W Carry flag set when Watch Dog Timer
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

1 ERRMAN_RFCFLG R/W Carry flag set when Manual Reset
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

0 RESERVED -

5.3.2.3.3. Single EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_SENOCNT_SDRAM R/W SDRAM EDAC single error
counter for non-critical
errors

15:4 RESERVED -

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 29 of 156

3:0 ERRMAN_SECRICNT_SDRAM R/W SDRAM EDAC single error
counter for critical errors

5.3.2.3.4. Multiple EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_MENOCNT R/W SDRAM EDAC multiple error
counter for non-critical errors

15:4 RESERVED -

3:0 ERRMAN_MECRICNT R/W SDRAM EDAC multiple error
counter for critical errors

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

INVAL Invalid value supplied to
IOCTL

 5.3.3. Usage

5.3.3.1. RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-3 - RTEMS driver usage description

Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be

subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

This queue emits messages upon power loss and single correctable errors.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 30 of 156

A subscriber must inspect the message according to the following table to determine

whether to take action or not. Multiple subscribers are allowed and all subscribers will be

notified upon a message.

Message Description

ERRMAN_IRQ_POWER_LOSS A power loss has been detected

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER Multiple EDAC errors that are not critical have been
detected

5.3.3.2. RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager_rtems.h> is required for accessing error manager

device name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialised at boot up.

 5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing due to

the lack of mechanisms of injecting errors in this release.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/error_manager_rtems.h>

#define

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 31 of 156

5.4. SCET

 5.4.1. Description

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of timestamps. The SCET has also been enhanced with General purpose

triggers and PPS signaling.

The SCET counts in seconds and subseconds, with a subsecond being 2
-16

th of a second,

roughly equivalent to 15.3 µs.

 5.4.2. General purpose triggers

To be able to provide more accurate time stamping on external events, the SCET has a

number of general purpose triggers. When a trigger fires, the SCET will sample a subset (24

bits) of the current clock for later software readout, matching the external event to the SCET

time regardless of current software state. The exact functionality connected to each general

purpose trigger and the number available is dependent on the system mapping of the SCET,

e.g. in a System-On-Chip (SoC).

 5.4.3. Pulse-Per-Second (PPS) signals

The SCET block is designed to be included in several different units in a system and for time

synchronization between these SCETs; each SCET has the ability to receive and/or transmit

PPS signals using two PPS signals which is intended for off-chip use. The first signal, pps0,

is an input only and intended to be used with a time-aware component such as a GPS

device for synchronizing the SCET counter to real time. The second signal, pps1, is

bidirectional and intended for use in a multi-drop PPS network. One unit in a system can act

as master on the multi-drop PPS network with the other units as slaves, with the ability to

switch master depending on the redundancy concept used.

When the SCET synchronizes the time counter with a PPS signal, it will also monitor this

PPS signal to make sure it arrives as expected within a user set timeframe (PPS threshold).

If input PPS is lost, it requires software interaction to resynchronize to the incoming PPS

pulse. This is to minimize the risk for sudden glitches in the SCET counter depending on the

incoming PPS accuracy and availability. The PPS monitoring will issue interrupts in bare-

metal or messages on the SCET message queue in RTEMS to notify the application if the

PPS has arrived, been lost or been found.

Exp PPS

OK PPS Missed PPSMissed PPS

Configured
threshold

(N + 1) s (N + 2) s

Time

Figure 4 PPS Threshold configuration

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 32 of 156

To differentiate between the uses of the PPS signal synchronization methods, the SCET can

be said to operate in a number of different modes: Free-running, Master, Master with time

synchronization and Slave. Please see the explanations below and 5.4.6 for an

implementation description.

5.4.3.1. Free-running mode

In this mode, the SCET doesn't use any PPS signals at all. It simply counts the current time

since power on without correlation with anyone else.

5.4.3.2. Master mode

In this mode, the SCET is still counting on its own, but now it also emits a pulse on pps1 for

every second tick, acting as a master on the bidirectional multi-drop PPS network.

5.4.3.3. Master mode with time synchronization

This mode is the same as the previous master mode, with the addition of also synchronizing

the time counter with the incoming pps0 signal. Should the PPS signal on pps0 disappear

for some reason, it will revert back to normal master mode and continue issuing PPS signals

on pps1.

5.4.3.4. Slave mode

In this mode, the SCET will synchronize the time counter with pps1, using the bidirectional

multi-drop PPS network as an input. Should the PPS pulse disappear for some reason, it will

revert to free running mode.

 5.4.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

SCET counter accesses can be done by reading or writing to the device file, modifying the

second and subsecond counter values.

The SCET RTEMS driver also supports a number of different IOCTLs for other operations

which isn't specifically affecting the SCET counter registers.

For event signaling, the SCET driver has a number of message queues, allowing the

application to act upon different events.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 33 of 156

5.4.4.1. Function int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. SCET device is defined as

RTEMS_SCET_DEVICE_NAME.

oflags int in A bitwise OR-separated list of values that

determine the method in which the file is to be

opened (whether it should be read only,

read/write, etc.).

Return value Description

>0 A file descriptor for the device

on success

-1 see errno values

errno values

EALREADY Device already opened

5.4.4.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.4.4.3. Function ssize_t read(…)

Reads the current SCET value, consisting of second and subsecond counters. Both counter

values are guaranteed to be sampled at the same moment.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Pointer to a 6-byte buffer where the timestamp
will be stored. The first four bytes are the
seconds and the last two bytes are the
subseconds.

count size_t in Number of bytes to read, must be set to 6.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 34 of 156

Return value Description

>=0 Number of bytes that were

read.

-1 See errno values

errno values

EPERM Device not opened

EINVAL Number of bytes to read,

count is not 6

5.4.4.4. Function ssize_t write(…)

Adjusts the SCET value's second and subsecond counters using two's complement

difference values.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void * in Pointer to a 6-byte buffer where the adjustment
difference values are stored. The first four
bytes are the difference value for the seconds
and the last two bytes are the difference value
for the subseconds.

count size_t in Number of bytes to write, must be set to 6.

Return value Description

>=0 Number of bytes that were

written.

-1 See errno values

errno values

EPERM Device not open

EINVAL Number of bytes to write,

count is not 6

5.4.4.5. Function int ioctl(…)

Ioctl allows for any other SCET-related operation which isn't specifically aimed at reading

and/or writing the SCET time value.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val see command in/out Data according to the specific command.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 35 of 156

Command table Type Direction Description

SCET_SET_PPS_SOURCE_IOCTL uint32_t in Sets the PPS source.

0 = External PPS source

1 = Internal PPS source

(default)

SCET_GET_PPS_SOURCE_IOCTL uint32_t out Gets the current PPS source

0 = External PPS source

1 = Internal PPS source

(default)

SCET_SET_PPS_O_EN_IOCTL uint32_t in Input argument configures if
pps0 or pps1 is input and if
pps1 is input or output.
0 = pps1 is input (default)
1 = pps0 is input, pps1 is

output

SCET_GET_PPS_O_EN_IOCTL uint32_t out Returns wheter the pps0 or
pps1 is input and if pps1 is
input or output.
0 = pps1 is input (default)
1 = pps0 is input, pps1 is

output

SCET_SET_PPS_THRESHOLD_IOCTL uint16_t in Configures the PPS threshold
window where the PPS pulse
is allowed to arrive without
being deemed lost. Defined in
number of subseconds. (0 is
default)

SCET_GET_PPS_THRESHOLD_IOCTL uint16_t out Returns the currently

configured PPS threshold

window in subseconds. (0 is

default)

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL uint32_t out Returns 24 bits of the SCET

time sampled when PPS

arrived.

Bit 23:16 contains lower 8 bits

of second

Bit 15:0 contains subseconds

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 36 of 156

SCET_SET_GP_TRIGGER_LEVEL_IOCTL uint8_t in Configures the trigger level of

each trigger:

Bit 0 is trigger 0,

Bit N is trigger N,

Bit 7 is trigger 7.

Bit value 0 = trigger activates

on 0 to 1 transition (rising

edge)

Bit value 1 = trigger activates
on 1 to 0 transition (falling
edge).
(0 is default)

SCET_GET_GP_TRIGGER_LEVEL_IOCTL uint8_t out Returns the currently
configured level of all the GP
triggers as a bit field:
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.
Bit value 0 = trigger activates
on 0 to 1 transition (rising
edge)
Bit value 1 = trigger activates
on 1 to 0 transition (falling
edge).
(0 is default)

SCET_SET_GP_TRIGGER_ENABLE_IOCTL uint8_t in Input argument selects which
GP trigger(s) to enable.
Input is a 8 bit field where bit 0
is trigger 0,
bit N is trigger N,
bit 7 is trigger 7.
All triggers are disabled by

default (0)

SCET_GET_GP_TRIGGER_ENABLE_IOCTL uint8_t out Returns which GP triggers
that are enabled.
Input is a 8 bit field where bit 0
is trigger 0,
bit N is trigger N,
bit 7 is trigger 7.
All triggers are disabled by

default (0)

SCET_GET_GP_TRIGGER_COUNTER_IOCTL uint32_t in Input argument selects which
GP trigger SCET counter
sample to read. Returns 24
bits of the SCET counter
sampled when the GP trigger
became active.
Bit 23:16 contains lower 8 bits
of second
Bit 15:0 contains subseconds

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 37 of 156

Return value Description

>=0 Return value on commands

that return these. 0 for success

in other cases.

-EINVAL Invalid value supplied to

IOCTL

-EIO Invalid IOCTL

 5.4.5. Usage

 5.4.6. PPS

The four described PPS modes can be obtained by setting the PPS output enable and PPS

source according to Table 5-1.

Table 5-1 Mapping between PPS modes and PPS settings

PPS mode PPS source PPS output enable
Free-running (default) Internal Input

Master Internal Output

Master with time
synchronization

External Output

Slave External Input

When PPS source is set to external and then lost, it will revert to internal setting.

Slave mode will fall back to Free-running mode and Master mode with time synchronization

will revert back to Master mode.

When in PPS source is set to internal: If an incoming PPS is detected the PPS found

interrupt is asserted. Typically a number of these PPS found interrupts should be

investigated by the application and once the PPS is deemed stable enough the PPS source

should be set to external (if external synchronization is sought after).

It is up to the application to decide and enforce if and when the external PPS source is to be

used again.

5.4.6.1. PPS Threshold

The PPS threshold has a 16 bit resolution and is used to define the subsecond range within

which incoming PPS that are deemed acceptable.

The range of acceptability is calculated as >= (65535 – threshold) to <= (65535 + 1 +

threshold) subseconds after the previous PPS.

If the PPS threshold is configured to 0 (min value) only incoming PPS that arrive within >=

subsecond 65535 of the current second to < subsecond 1 of the next second will be deemed

acceptable, (>= 0.65535 to <= 1.0).

If the PPS threshold is configured to 65535 (max value) all incoming PPS are deemed

acceptable. Lost events will not be detected at all.

 5.4.7. Event callback via message queue

The SCET driver exposes message queues for event messaging from the driver to the

application. A single subscriber is allowed for each queue.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 38 of 156

‘S’, ‘P’, ‘P’, ‘S’ handles PPS related messages with a prefix of:

SCET_INTERRUPT_STATUS_*

Table 5-2 Driver message queue message types

Event name Description

PPS_ARRIVED An external PPS signal has arrived

PPS_LOST The external PPS signal is lost

PPS_FOUND The external PPS signal was found

‘S’, ‘G’, ‘T’, ‘n’ handles messages sent from the general purpose trigger n, with the number n

ranging from 0 to up to the maximum defined for the particular SoC configuration.

Table 5-3 General purpose trigger n message queue

Event name Description

TRIGGERn Trigger n was triggered

 5.4.8. RTEMS application example

In order to use the SCET driver in the RTEMS environment, the following code structure is

suggested for use:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 39 of 156

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <assert.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_MAXIMUM_DRIVERS 10

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static const int32_t secs_to_adjust = -10;

static const int16_t subsecs_to_adjust = 1000;

/* Adjust SCET time 10 seconds backwards and 1000

 * subseconds forwards */

rtems_task Init (rtems_task_argument ignored)

{

 int result;

 int scet_fd;

 uint32_t old_seconds;

 uint16_t old_subseconds;

 uint32_t new_seconds;

 uint16_t new_subseconds;

 uint8_t read_buffer[6];

 uint8_t write_buffer[6];

 scet_fd = open(RTEMS_SCET_DEVICE_NAME, O_RDWR);

 assert(scet_fd >= 0);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

memcpy(&old_seconds, read_buffer,

 sizeof(uint32_t));

memcpy(&old_subseconds, read_buffer +

 sizeof(uint32_t), sizeof(uint16_t));

 printf("\nOld SCET time is %lu.%u\n", old_seconds,

 old_subseconds);

 printf("Adjusting seconds with %ld, subseconds

 with %d\n",

 secs_to_adjust, subsecs_to_adjust);

 memcpy(write_buffer, &secs_to_adjust,

sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t),

&subsecs_to_adjust, sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 40 of 156

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing SCET device name

RTEMS_SCET_DEVICE_NAME as well as other defines.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the SCET

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

 secs_to_adjust, subsecs_to_adjust);

 memcpy(write_buffer, &secs_to_adjust,

 sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t),

&subsecs_to_adjust, sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

 assert(result == 6);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

 memcpy(&new_seconds, read_buffer,

 sizeof(uint32_t));

 memcpy(&new_subseconds, read_buffer +

 sizeof(uint32_t), sizeof(uint16_t));

 printf("New SCET time is %lu.%u\n", new_seconds,

 new_subseconds);

 result = close(scet_fd);

 assert(result == 0);

 rtems_task_delete(RTEMS_SELF);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 41 of 156

5.5. UART

 5.5.1. Description

This driver is using the de facto standard interface for a 16550D UART given in [RD5] and

as such has an 8-bit interface, but has been expanded to provide a faster and more delay-

tolerant implementation.

5.5.1.1. RX/TX buffer depth

The RX and TX FIFOs have been expanded to 128 characters compared to the original

specification of 16 characters. To be backwards compatible as well as being able to utilize

the larger depth of the FIFOs, a new parameter has been brought in called buffer depth. The

set buffer depth decides how much of the FIFOs real depth it should base its calculations

on. Buffer depth affects both RX and TX FIFOs handling in the RTEMS driver.

5.5.1.2. Trigger levels

To be able to utilize the larger FIFOs, the meaning of the trigger levels have been changed.

In the specification in [RD5], it defines the trigger levels as 1 character, 4 characters, 8

characters and 14 characters. This has now been changed to instead mean 1 character, 1/4

of the FIFO is full, 1/2 of the FIFO is full and the FIFO is 2 characters from the given buffer

depth top. This results in the IP being fully backwards compatible, since a buffer depth of 16

characters would yield the same trigger levels as those given in [RD5].

 5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.5.2.1. Function int open(...)

Opens access to the requested UART. Only blocking mode is supported.

Upon each open call the device interface is reset to 115200 bps and its default mode

according to the table below.

Argument name Type Direction Description

pathname const char * in The absolute path to the file that is to be
opened.
See table below for uart naming.

flags Int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write etc). See below.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 42 of 156

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

Device name Description

/dev/uart0 Ordinary UART, default mode RS422

/dev/uart1 Ordinary UART, default mode RS422

/dev/uart2 Ordinary UART, default mode RS422

/dev/uart3 Ordinary UART, default mode RS422

/dev/uart4 Ordinary UART, default mode RS422

/dev/uart_psu_control PSU Control, RS485 only

/dev/uart_safe_bus Safe bus, RS485 only

5.5.2.2. Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function ssize_t read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO.

Please note that it is not uncommon for the read call to return less data than requested.

Argument name Type Direction Description

fd int in File descriptor received at open

buf void * in Pointer to character buffer to write data to

count size_t in Number of characters to read

Return value Description

> 0 Number of characters that were
read.

0 A parity / framing / overflow
error occurred. The RX data
path has been flushed. Data
was lost.

- 1 see errno values

errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 43 of 156

EPERM Device not open

EINVAL Invalid number of characters to
be read

5.5.2.4. Function ssize_t write(…)

Write data to the UART. The write call is blocking until all data have been transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open

buf const void * in Pointer to character buffer to read data from

count size_t in Number of characters to write

Return value Description

>= 0 Number of characters that were
written.

- 1 see errno values

errno values

EINVAL Invalid number of characters to
be written.

5.5.2.5. Function int ioctl(…)

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 mode selection is not applicable for safe bus and power ctrl UARTs.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

UART_IOCTL_SET_BITRATE uint32_t in Set the bitrate of the line interface.
Possible values:
UART_B375000
UART_B153600
UART_B115200 (default)
UART_B76800
UART_B57600
UART_B38400
UART_B19200
UART_B9600
UART_B4800
UART_B2400
UART_B1200

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 44 of 156

UART_IOCTL_MODE_SELECT uint32_t in Set the mode of the interface. Possible
values:
UART_RTEMS_MODE_RS422 (default)
UART_RTEMS_MODE_RS485
UART_RTEMS_MODE_LOOPBACK
(TX connected to RX internally)

UART_IOCTL_RX_FLUSH uint32_t in Flushes the RX software FIFO

UART_IOCTL_SET_PARITY uint32_t in Set parity. Possible values:
UART_PARITY_NONE (default)
UART_PARITY_ODD
UART_PARITY_EVEN

UART_IOCTL_SET_BUFFER_DEPTH uint32_t in Set the FIFO buffer depth. Possible
values:
UART_BUFFER_DEPTH_16 (default)
UART_BUFFER_DEPTH_32
UART_BUFFER_DEPTH_64
UART_BUFFER_DEPTH_128

UART_IOCTL_GET_BUFFER_DEPTH uint32_t* out Get the current buffer depth.

UART_IOCTL_SET_TRIGGER_LEVEL uint32_t in Set the RX FIFO trigger level. Possible
values:
UART_TRIGGER_LEVEL_1 = 1
character
UART_TRIGGER_LEVEL_4 = 1/4 full
UART_TRIGGER_LEVEL_8 = 1/2 full
UART_TRIGGER_LEVEL_14 =
buffer_depth - 2 (default)

UART_IOCTL_GET_TRIGGER_LEVEL uint32_t* out Get the current trigger level

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

 5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

5.5.3.1. RTEMS application example

In order to use the uart driver in the RTEMS environment, the following code structure is

suggested to be used:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 45 of 156

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the internal

RX queue is flushed.

 5.5.4. Limitations

8 data bits only.

1 stop bit only.

No hardware flow control support.

5.6. Mass memory

 5.6.1. Description

This section describes the mass memory driver’s design and usability.

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of usage. In case

of failure on a function call, errno value is set for determining the cause.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored){}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 46 of 156

 5.6.2. Data Structures

5.6.2.1. Struct massmem_cid_t

This struct is used as the target for reading the mass memory chip IDs.

Type Name Purpose

Array of 5 uint8_t edac Byte array for EDAC chip ID

Array of 5 uint8_t chip0 Byte array for chip 0 ID

Array of 5 uint8_t chip1 Byte array for chip 1 ID

Array of 5 uint8_t chip2 Byte array for chip 2 ID

Array of 5 uint8_t chip3 Byte array for chip 3 ID

5.6.2.2. Struct massmem_error_injection_t

This struct is used as a specification when manually injecting errors when writing to the the

mass memory.

Type Name Purpose

uint8_t edac_error_injection Bits to be XOR:ed with generated EDAC byte

uint32_t data_error_injection Bits to be XOR:ed with supplied data

5.6.2.3. Struct massmem_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading from spare area and data

simultaneously.

Type Name Purpose

uint32_t page_num What page to read/write

uint32_t offset Byte offset into spare area to read or write. Must be 32 word (of 4

bytes) aligned.

uint8_t * data_buf Pointer to buffer in which the data is to be stored, or to the data that is

to be written.

uint8_t * edac_buf Pointer to buffer in which the EDAC data is to be stored (or NULL if

EDAC data is not desired). Not used for write operations.

uint32_t size Size to read/write in bytes. Must be 32 word (of 4 bytes) aligned.

5.6.2.4. Struct massmem_ioctl_error_injection_args_t

This structure is used by the RTEMS API in order to perform a special write call to inject

errors into the mass memory.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 47 of 156

Type Name Purpose

uint32_t page_num What page to write

uint8_t * data_buf Pointer to data to write

uint32_t size Size of data to write in bytes

massmem_error_injection_t * error_injection Pointer to error injection struct. See 5.6.2.2 for definition

 5.6.3. RTEMS API

5.6.3.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. Mass memory device is defined as

MASSMEM_DEVICE_NAME.

oflags int in Device must be opened by exactly one of the

symbols defined in Table 5-4.

Return value Description

>0 A file descriptor for the

device.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-4 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 48 of 156

5.6.3.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

5.6.3.3. off_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

ESPIPE fd is associated with a pipe,

socket or FIFO.

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would

overflow off_t.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 49 of 156

5.6.3.4. ssize_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Note! The character buffer location handed to read must be 32-bit aligned.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

Return value Description

>0 Number of bytes that were

read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is out

of range or nbytes is too large

and reaches a page that is out

of range.

EBUSY Device is busy with previous

read/write operation.

5.6.3.5. ssize_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from

nbytes ssize_t in Number of bytes to write from buf.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 50 of 156

Return value Description

>0 Number of bytes that were

written.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is out

of range or nbytes is too large

and reaches a page that is out

of range.

EAGAIN Driver failed to write data. Try
again.

EIO Failed to write data. Block

should be marked as a bad

block.

5.6.3.6. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

cmd ioctl_command_t in Command specifier

(varies) (varies) (varies) Command-specific argument

The following return and errno values are common for all commands except.

Return value Description

0 Operation successful (or block
is marked ok in case of bad
block check)

-EBUSY Device is busy with previous

read/write operation.

-1 See errno values

errno values

ENODEV Internal RTEMS error

EIO Internal RTEMS error

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 51 of 156

5.6.3.6.1. Reset mass memory device
Resets the mass memory device.

5.6.3.6.2. Read status data
Reads the status register value.

5.6.3.6.3. Read control status data
Reads the control status register value.

5.6.3.6.4. Read EDAC register data
Reads the EDAC register value.

5.6.3.6.5. Read ID
Reads the chip IDs

5.6.3.6.6. Erase block
Erases a block

Command Value type Direction Description

MASSMEM_IO_RESET n/a n/a n/a

Command Value type Direction Description

MASSMEM_IO_READ_DATA_STATUS uint32_t* out Pointer to variable in which status data is to be
stored.

Command Value type Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out Pointer to variable in which control status data is to

be stored.

Command Value type Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out Pointer to variable in which control status data is to

be stored.

Command Value type Direction Description

MASSMEM_IO_READ_ID massmem_cid_t.* out Pointer to struct in which ID is to be stored, see

5.6.2.1.

Command Value type Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 52 of 156

Return value Description

-EINVAL The block number is out of

range

-EIO Failed to erase block. Block

should be marked as a bad

block

5.6.3.6.7. Read spare area
Reads the spare area with given data.

Return value Description

-EINVAL Indicates one or more of:

 The page number is out of

range

 Size is 0

 Size is larger than page

size

 Size is not a multiple of 4

 The data or EDAC buffer is

NULL

The data or EDAC buffer is not

4-byte aligned

-EIO Reading timed out or read

status indicated failure.

Command Value type Direction Description

MASSMEM_IO_READ_SPARE_AREA massmem_ioctl_spare_area_args_t* in/out Pointer to struct with input

page number specifier, and

destination buffers where

spare area data is to be

stored, see 5.6.2.3

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 53 of 156

5.6.3.7. Write spare area

Writes the given data to the spare area.

Return value Description

-EINVAL Indicates one or more of:

 The page number is out of

range

 Size is 0

 Size + offset is larger than

spare area size

 Size is not a multiple of 4

 The data buffer is NULL

 The data buffer is not 4-

byte aligned

-EIO Failed to write data. Block

should be marked as a bad

block.

5.6.3.7.1.

5.6.3.7.2. Bad block check
Reads the factory bad block status from a block.

Note that this only gives information about factory bad blocks; subsequent bad block status

is not included in this information.

Return value Description

0 Block is marked ok.

1 Block is marked as bad.

-EINVAL The page number is out of

range, buffers are NULL or not

4-byte aligned.

Command Value type Direction Description

MASSMEM_IO_WRITE_SPARE_AREA massmem_ioctl_spare_area_args_t* in/out Pointer to struct with page

number specifier, byte offset

and pointer to data which is to

be written, see 5.6.2.3

Command Value type Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 54 of 156

5.6.3.7.3. Error Injection
Injects errors in page write command call. The purpose is to test error corrections (EDAC).

Return value Description

-EINVAL Indicates one or more of:

 The page number is out of

range

 Size is 0

 Size is larger than page

size

 Size is not a multiple of 4

 The data or EDAC buffer is

NULL

The data buffer is not 4-byte

aligned

-EIO The mass memory write

operation failed, the block

should be marked as a bad

block

 5.6.4. Usage

5.6.4.1. RTEMS

5.6.4.1.1. Overview
The RTEMS driver accesses the mass memory by the reference a page number. There are

MASSMEM_BLOCKS blocks starting from block number 0 and

MASSMEM_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page is of size MASSMEM_PAGE_SIZE bytes.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

Command Value type Direction Description

MASSMEM_IO_ERROR_INJECTION massmem_ioctl_error_injection_args_t* in Pointer to struct with

program page arguments

as defined in 5.6.2.4

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 55 of 156

5.6.4.1.2. Usage
The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapters 5.6.3.3.

to 5.6.3.6. And, if desired, the access can be closed when not needed.

Figure 5-5 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 56 of 156

5.6.4.2. RTEMS application example

In order to use the mass memory flash driver in RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASS_MEMORY_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static uint8_t buf[MASSMEM_PAGE_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

 s = lseek(fd, page_number, SEEK_SET);

 .

 sz = write(fd, buf, MASSMEM_PAGE_SIZE);

 .

 lseek(fd, page_number, SEEK_SET)

 .

 sz = read(fd, buf, MASSMEM_PAGE_SIZE);

 .

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 57 of 156

 5.6.5. Error injection

Error injection is used to verify the EDAC capabilities of the IP.

The IP always writes/reads 8 32-bit data words. If less or an uneven amount of data is

requested from the application the drivers pads this internally.

To ensure that the memory can withstand a full byte corruption of data the 8 words of data

are interleaved over the mass memory chips. This is done transparently from the user

perspective except when writing the error injection vector.

Looking at the massmem_error_injection_t struct defined in 5.6.2.2:

the data_error_injection member is an uint32_t.

Bit 0 of byte 0, 1, 2, 3 affects the first data word.

Bit 1 of byte 0, 1, 2, 3 affects the second data word.

…

Bit 7 of byte 0, 1, 2, 3 affects the eight data word.

To inject a correctible error in the third data word flip either bit 2, 10, 18 or 26.

To inject an uncorrectible in the third data word flip two bits of either 2, 10, 18, 26.

 5.6.6. Limitations

The mass memory flash driver may only have one open file descriptor at a time.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 58 of 156

5.7. Spacewire

 5.7.1. Description

This section describes the SpaceWire driver’s design and usability.

 5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.7.2.5.

5.7.2.1. int open(…)

Registers the application to the device name for data transactions. Although multiple

accesses for data transaction is allowed, only one access per unique device name is valid.

Device name must be set with a logical number as described in usage description in

subchapter 5.7.3.1.

Argument name Type Direction Description

filename char * in Device name to register to for data transaction.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-5.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid device name

EEXIST Device already opened.

EEGAIN
Opening of device failed due to internal
error. Try again.

Table 5-5 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 59 of 156

5.7.2.2. int close(…)

Deregisters the device name from data transactions.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device name deregistered successfully

-1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

5.7.2.3. size_t read(…)

Reads a packet when available.

Note! This call is blocked until a package for the logic address is received. In addition, only

one task must access one file descriptor at a time. Multiple task accessing the same file

descriptor is not allowed.

Note! buf reference must be aligned to a 32 bit aligned address.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in
Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0
Received size of the actual packet. Can
be less than nbytes.

0 Buffer size was lower than received
packet size. Errno value is set to
EOVERFLOW.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file

descriptor

EINVAL
Packet size is 0 or larger than
SPWN_MAX_PACKET_SIZE

ETIMEDOUT Timeout received. Received packet is
incomplete.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 60 of 156

5.7.2.4. size_t write(…)

Transmits a packet.

Note! This call is blocked till the package is transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in
Packet size in bytes. Must be between 0 and

SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0 Number of bytes that were transmitted.

≤0 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL
Packet size is 0 or larger than
SPWN_MAX_PACKET_SIZE.

ETIMEDOUT Failed to transmit the complete packet.

EIO Internal error

5.7.2.5. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.7.2.5.1

value void * in
The value relating to command operation as
defined in subchapter 5.7.2.5.1.

5.7.2.5.1. Mode setting
Sets the device into the given mode.

Note! The mode setting affects the SpaceWire device and therefore all file descriptors

registered to it.

Command Type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in

Modes available:

 SPWN_IOCTL_MODE_OFF: Turns off the
node.

 SPWN_IOCTL_MODE_LOOPBACK:
Internal loopback mode

SPWN_IOCTL_MODE_NORMAL: Normal
mode.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 61 of 156

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EINVAL Invalid mode.

 5.7.3. Usage description

5.7.3.1. Overview

The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register with a

logical address.

The logical address is tied to a device number. To register to the device, the application

must use the predefined string SPWN_DEVICE_0_NAME_PREFIX with a chosen logical

address to register itself to the driver. See code example in subchapter 5.7.3.3. The

registration is done by function open and deregistered by the function close.

Only one logical address can be registered at a time yet multiple logical addresses can be

used at the same time within an application.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard [RD2] and cannot be registered to.

Note! A reception packet buffer must be aligned to 4 bytes in order to handle the packet’s

reception correctly. It is therefore recommended to assign the reception buffer in the

following way:

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES))

buf_rx[PACKET_SIZE];

5.7.3.2. Usage

The application must first register to a device name before it can be accessed for data

transaction. Once registered via function open, all provided operations can be used as

described in the subchapter 5.7.2. If desired, the access can be closed when not needed.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 62 of 156

Figure 5-6 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

Note! Data rate is dependent on the maximum packet size and packet transmission rate that

is limited by SpaceWire IP core. This simply results in effect to that the packet size is

proportionate to data rate i.e. the larger the packet size, the higher the data rate.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 63 of 156

5.7.3.3. RTEMS application example

In order to use the driver in RTEMS environment, the following code structure is suggested

to be used:

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

Two buffers, buf_tx and buf_rx, are aligned with CPU_STRUCTURE_ALIGNMENT for

correctly handling DMA access regarding transmission and reception of a SpaceWire

packet.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

.

.

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

#define RESOURCES_MEM_SIZE (512*1024) /* 1 Mb */

#define CONFIGURE_EXECUTIVE_RAM_SIZE RESOURCES_MEM_SIZE

#define CONFIGURE_MAXIMUM_TIMERS 1 /* Needed by driver */

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES)))

 buf_rx[SPWN_MAX_PACKET_SIZE];

uint8_t buf_tx[SPWN_MAX_PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

 .

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 64 of 156

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

CONFIGURE_EXECUTIVE_RAM_SIZE must also be defined for objects needed by the

driver.

5.8. GPIO

 5.8.1. Description

This driver software for the GPIO IP handles the setting and reading of general purpose

input/output pins. It implements the standard set of device file operations according to [RD7].

The GPIO IP has, apart from logical pin and input/output operations, also a number of other

features.

5.8.1.1. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the driver

software by the means of an interrupt.

5.8.1.2. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample the

current timer when a rising or falling edge is detected on a pin. Reading the time of the

timestamp requires interaction with the SCET and exact register address depends on the

current board configuration. One SCET sample register is shared by all GPIOs.

5.8.1.3. RTEMS differential mode

In RTEMS, a GPIO pin can also be set to operate in differential mode on output only. This

requires two pins working in tandem and if this functionality is enabled, the driver will

automatically adjust the setting of the paired pin to output mode as well. The pins are paired

in logical sequence, which means that pin 0 and 1 are paired as are pin 2 and 3 etc. Thus, in

differential mode it is recommended to operate on the lower numbered pin only to avoid

confusion. Pins can be set in differential mode on specific pair only, i.e. both normal single

ended and differential mode pins can operate simultaneously (though not on the same pins

obviously).

5.8.1.4. Operating on pins with pull-up or pull-down

For scenarios when one or multiple pins are connected to a pull-up or pull-down (for e.g.

open-drain operation), it's recommended that the output value of such a pin should always

be set to 1 for pull-down or 0 for pull-up mode. The actual pin value should then be selected

by switching between input or output mode on the pin to comply with the external pull

feature.

 5.8.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 65 of 156

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.8.2.1. Function int open(...)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead

retains the settings from any previous access.

Argument name Type Direction Description

pathname const char * in The absolute path to the GPIO pin to be
opened. All possible paths are given by
"/dev/gpioX" where X matches 0-31. The actual
number of devices available depends on the
current hardware configuration.

flags int in Access mode flag, O_RDONLY, O_WRONLY
or O_RDWR.

Return value Description

Fildes A file descriptor for the device on
success

-1 See errno values

errno values

EALREADY Device is already open

EINVAL Invalid options

5.8.2.2. Function int close(...)

Closes access to the GPIO pin.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.8.2.3. Function ssize_t read(...)

Reads the current value of the specified GPIO pin. If no edge detection have been enabled,

this call will return immediately. With edge detection enabled, this call will block with a

timeout until the pin changes status such that it triggers the edge detection. The timeout can

be adjusted using an ioctl command, but defaults to zero - blocking indefinitely, see also

5.8.2.5.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 66 of 156

buf void* in Pointer to character buffer to put the read data
in.

count size_t in Number of bytes to read, must be set to 1.

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for the edge
detection to trigger

5.8.2.4. Function ssize_t write(...)

Sets the output value of the specified GPIO pin. If the pin is in input mode, the write is

allowed, but its value will not be reflected on the pin until it is set in output mode.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to character buffer to get the write data
from.

count size_t in Number of bytes to write, must be set to 1.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

5.8.2.5. Function int ioctl(...)

The input/output control function can be used to configure the GPIO pin as a complement to

the simple data settings using the read/write file operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val void * in/out Data according to the specific command.

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECTION uint32_t out Get input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_SET_DIRECTION uint32_t in Set input/output direction of the pin.
'0' output mode
'1' input mode

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 67 of 156

GPIO_IOCTL_GET_FALL_EDGE_DETECTION uint32_t out Get falling edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_FALL_EDGE_DETECTION uint32_t in Set falling edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_RISE_EDGE_DETECTION uint32_t out Get rising edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_RISE_EDGE_DETECTION uint32_t in Set rising edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_TIMESTAMP_ENABLE uint32_t out Get timestamp enable status of the
pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_SET_TIMESTAMP_ENABLE uint32_t in Set timestamp enable configuration
of the pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_GET_DIFF_MODE uint32_t out Get differential mode status of the
pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_SET_DIFF_MODE uint32_t in Set differential mode configuration of
the pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_GET_EDGE_TIMEOUT uint32_t out Get the edge trigger timeout value in
ticks. Defaults to zero which means
wait indefinitely.

GPIO_IOCTL_SET_EDGE_TIMEOUT uint32_t in Set the edge trigger timeout value in
ticks. Zero means wait indefinitely.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

 5.8.3. Usage description

5.8.3.1. RTEMS application example

The following #define needs to be set by the user application to be able to use the GPIO:

CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 68 of 156

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, read, write and ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

 5.8.4. Limitations

Differential mode works on output only.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM

#define CONFIGURE_MAXIMUM_DRIVERS 15

#define CONFIGURE_MAXIMUM_SEMAPHORES 20

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int gpio_fd;

 uint32_t buffer;

 uint32_t config;

 ssize_t size;

 gpio_fd = open("/dev/gpio0", O_RDWR);

 config = GPIO_DIRECTION_IN;

 status = ioctl(gpio_fd, GPIO_IOCTL_SET_DIRECTION,

 &config);

 size = read(gpio_fd, &buffer, 1);

 status = close(gpio_fd);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 69 of 156

5.9. CCSDS

 5.9.1. Description

This section describes the driver as a utility for accessing the CCSDS IP.

On the telemetry, the frames are encoded with Reed Solomon encoding that conforms to the

CCSDS standard with a (255-223) RS encoder implementation and an interleaving depth of

5. That makes a total frame length of 1115 bytes. The standard RS polynomial is used.

On the telecommands the BCH decoder (63-56) supports the error correcting mode.

The driver can be configured to handle all available interrupts from the CCSDS IP:

 Pulse commands (CPDU)

 Timestamping of telemetry sent on virtual channel 0

 DMA transfer finished.

 Telemetry transfer frame error.

 Telecommand rejection due to error in the incoming telecommand.

 Telecommand frame buffer errors.

 Telecommand frame buffer overflow.

 Telecommand successfully received.

Telemetry is sent as blocks of TM Space packets of maximum block size of 2
17

 bytes. When

using the RTEMS driver, Telemetry is sent by writing to a writable device. The device can be

opened in non-blocking or blocking mode described chapters below. Up to 8 virtual channels

for telemetry are supported by the CCSDS IP and driver. In the current configuration, two

virtual channels VC0 and VC1 are supported. For telecommands, 64 virtual channels are

supported.

 5.9.2. Non-blocking

In non-blocking mode for the RTEMS driver, a write access is done without waiting for

aresponse from the IP before returning from the write-call. During non-blocking transfer of

achunk of data with a maximum size of four times the maximum descriptor length,

thesequence below is executed:

1. The address DMA transfer of next available descriptor is set.

2. DESC LENGTH, TM PRESENT, IRQ EN, WRAP is set of next available descriptor.

3. If the data to send needs several descriptors, steps 1 and 2 are repeated until all

data in the data-chunk has been transferred.

4. When a DMA transfer is finished, an interrupt is generated and the interrupt status

indicates which VC’s that were involved in the DMA transfers.

5. The TM Status of the actual VC is read, which will get the last descriptor for the last

DMA transfer of that VC. When the TM Status is read, the interrupt is cleared.

6. The driver reads status of the descriptor transfers since the last DMA transfers on

the actual virtual channel and prepares messages of the type described in 5.9.5.1

and sent to a message queue, named “CCSQ”, provided by the driver. The user-

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 70 of 156

application of the ccsds-driver must implement a listener of the message queue

and take actions if an error occurred during transfer.

7. . Steps 4 to 6 are repeated for all VC’s signaling an interrupt.

 5.9.3. Blocking

In blocking mode for the RTEMS divier, a DMA finished interrupt must occur before the write

call is returned. The user of the driver does not need to prepare any transfer list or

implement a listener of the message queue.

 5.9.4. Buffer data containing TM Space packets

TM Space packets can be packed within the same buffer, but a TM Space packet must not

be split over two different buffers. The first byte of the buffer must always start with a TM

Space packet. Data can be padded at the end, with padding byte value of 0xF5. The

padding data will not be sent to ground.

 5.9.5. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, errno value is set for determining the cause.

Access to the CCSDS-driver from an application is provided by different device-files:

 “/dev/ccsds” that is used for configuration and status for common TM and TC

functionality in the IP. Is defined as CCSDS_NAME in RTEMS driver interface file.

 “/dev/ccsds-tm” that is used for configuration and status of the TM path common for all

virtual channels. Is defined as CCSDS_NAME_TM in RTEMS driver interface file.

 “/dev/ccsds-tm0”, “/dev/ccsds-tm1”, …,”/dev/ccsds-tm6” that are used for sending

telemetry on virtual channel 0-6. The names are defined as CCSDS_NAME_TM_VC0,

CCSDS_NAME_TM_VC1, …, CCSDS_NAME_TM_VC6 in RTEMS driver interface file.

 “/dev/ccsds-tc” ” that is used for configuration and status of the TC path common for all

virtual channels. Is defined as CCSDS_NAME_TC in RTEMS driver interface file.

 “/dev/ccsds-tc0” that is used for functions related to handling of Telecommands. Is

defined as CCSDS_NAME_TC_VC0 in RTEMS driver interface file.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 71 of 156

The default configuration of the TM downlink is:

 FECF is included in TM transfer frames.

 Master Channel Frame counter is enabled for telemetry.

 Generation of Idle frames is enabled.

 Pseudo randomization of telemetry is disabled.

 Reed Solomon encoding of telemetry is enabled.

 Convolutional encoding of telemetry is disabled.

 Generation of telemetry is disabled.

 The divisor of the TM clock is set to 25.

 All available interrupts from the CCSDS IP are enabled.

 Generation of OCF/CLCW in TM Transfer frames is enabled.

 TM is disabled.

The default configuration of the TC uplink is:

 Derandomization of telecommands is disabled.

 All available interrupts are enabled.

5.9.5.1. Datatype dma_transfer_cb_t

For TM-devices operated in non-blocking mode (see 5.9.2) a message with content below

are send to the message queue “CCSQ” for reporting of transfer status.

Element Type Description

adress uint32_t The start address in SDRAM that is
fetched during transfer

length uint16_t The length of the transfer. Can be
maximum 65535.

vc uint8_t The virtual channel of the transfer.
Can be 0,…,6

status uint_8 Status of transfer
0 – Not send
1 – Send finished
2 – Send error

5.9.5.2. Data type tm_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Type Description

clk_divisor uint16_t The divisor of the clock

tm_enabled uint8_t Enable/disable of telemetry
0 – Disable
1 – Enable

ocf_clcw_enabled uint8_t Enable/disable of OCF/CLCW in TM
Transfer frames
0 – Disable
1 – Enable

fecf_enabled uint8_t Enable/disable of FECF
0 – Disable
1 – Enable

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 72 of 156

mc_cnt_enabled uint8_t Enable/Disable of master channel
frame counter
0 – Disable
1 – Enable

idle_frame_enabled uint8_t Enable/disable of generation of Idle
frames
0 – Disable
1 – Enable

tm_conv_bypassed uint8_t Bypassing of the TM convolutional
encoder
0 - No bypass
1 - Bypass

tm_pseudo_rand_bypassed uint8_t Bypassing of the TM pseudo
randomizer encoder
0 - No bypass
1 - Bypass

tm_rs_bypassed uint8_T Bypassing of the TM Reed Solomon
encoder
0 - No bypass
1 - Bypass

5.9.5.3. Data type tc_config_t

This datatype is a struct for configuration of the TC path. The elements of the struct are

described below:

Element Type Description

tc_derandomizer_bypassed uint8_t Bypassing of TC derandomizer.
0 - No bypass
1 - Bypass

5.9.5.4. Data type tm_status_t

This datatype is a struct to store status parameters of the TM. The elements of the struct are

described below:

Element Type Description

dma_desc_addr uint8_t The LSB of the descriptor address
giving the DMA Finished interrupt

tm_fifo_err uint8_t Reports if an FIFO error occurred
during transmission of data
0 - No Error
1 - FIFO Error

tm_busy uint8_t Reports if a transfer is in progress.
0 – No transfer
1 – A transfer is in progress

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 73 of 156

5.9.5.5. Data type tm_error_cnt_t

This datatype is a struct to store error counters of the TM path. The elements of the struct

are described below:

Element Type Description

tm_par_err_cnt uint8_t Indicates number of CRC errors in TC
path. The counter will wrap around
after 2^8-1.

5.9.5.6. Data type tc_status_t

This datatype is a struct to store status parameters of the TC path. The elements of the

struct are described below:

Element Type Description

tc_frame_cnt uint8_t Number of received TC frames. The
counter will wrap around after 255.

tc_buffer_cnt uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

cpdu_line_status uint16_t Bits 0-11 show if the corresponding
pulse command line was activated by
the last command.

cpdu_bypass_cnt uint8_t Indicates the number of accepted
commands. Wraps at 15.

5.9.5.7. Data type tc_error_cnt_t

This datatype is a struct to store error counters of the TC path. The elements of the struct

are described below:

Element Type Description

tc_overflow_cnt uint8_t Indicates number of missed TC frames
due to overflow in TC Buffers.The
counter will wrap around after 255.

tc_cpdu_rej_cnt uint8_t Indicates number of rejected CPDU
commands. The counter will wrap
around after 255.

tc_buf_rej_cnt uint8_t Indicates number of rejected TC
commands. The counter will wrap
around after 255.

tc_par_err_cnt uint8_t Indicates number of CRC errors in TC
path. The counter will wrap around
after 255.

5.9.5.8. Data type radio_status_t

This datatype is a struct to hold radio status. The elements of the struct are described below:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 74 of 156

Element Type Description

tc_sub_carrier uint8_t See RD8

tc_carrier uint16_t See RD8

5.9.5.9. int open(…)

Opens the devices provided by the CCSDS RTEMS driver. Only one instance of every

device can be opened.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. The name of the descriptor is
described in 5.9.5

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

mode int in A bitwise 'or' separated list of values that
determine the mode of the opened device. If
the flag LIBIO_FLAGS_NO_DELAY is set, the
device is opened in non-blocking mode.
Otherwise it is opened in blocking mode. For
further info see 5.9.3. Applies only to devices
/dev/ccsds-tm0,…, /dev/ccsds-tm6.

Return value Description

≥0 A file descriptor for the device
on success

- 1 see errno values

errno values

EBUSY If device already opened

5.9.5.10. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 75 of 156

5.9.5.11. size_t write(…)

To send data on virtual channel 0-6, the device descriptor described 5.9.5 shall be used. TM

needs to enabled to successfully send telemetry. If the device is opened in blocking mode,

the write operation will wait until all data has been transferred before returning. For devices

opened in blocking mode and data has not been transferred within 1500 msec, the write call

is aborted and an error is reported. The timeout value is based on expected time of writing

2
17

 bytes at lowest TM Bitrate. For devices opened in non-blocking mode, the write call

returns immediately and the status of the transfer is returned by a message available in a

message queue of the driver. See 5.9.2

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes (0-65535) to write to the

device.

Return value Description

0 or greater number of bytes that were

written.

- 1 see errno values

errno values

EIO Device not ready for write or

write operation is not supported

on device

ETIMEDOUT A write to a device in blocking

mode did not get a response

from IP within expected time.

ENOSYS TM is not enabled

5.9.5.12. size_t read(…)

To read a Telecommand Transfer frame a read-operation on device “/dev/ccsds-tc0” shall

be used. The read Telecommand Transfer frame is passed as a pointer to a variable of type

tc_frame_t. This call is blocking until a Telecommand Transfer Frame is received.

Argument name Type Direction Description

fd int in File descriptor received at open

buf void * in Character buffer where read data is returned

nbytes size_t in Number of bytes to write from the

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 76 of 156

Return value Description

0 or greater number of bytes that were
read.

- 1 see errno values

errno values

EIO A read operation is not
supported on the device.

5.9.5.13. int ioctl(…)

The devices provided by the CCSDS driver support different IOCTL’s.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val void * in The parameter to pass is depended on which
IOCTL is called. Is described in table below.

Command table Device Parameter type Description
CCSDS_SET_TM_CONFIG /dev/ccsds-tm tm_config_t Sets a configuration

of the TM path.

CCSDS_GET_TM_CONFIG /dev/ccsds-tm tm_config_t * Returns the
configuration of the
TM path.

CCSDS_SET_TC_CONFIG /dev/ccsds-tc tc_config_t Sets a configuration
of the TC path.

CCSDS_GET_TC_CONFIG /dev/ccsds-tc tc_config_t * Returns the
configuration of the
TC path.

CCSDS_GET_RADIO_STATUS /dev/ccsds radio_status_t Gets radio status.

CCSDS_GET_TM_STATUS /dev/ccsds-tm tm_status_t* Gets status of TM
path.

CCSDS_GET_TM_ERR_CNT /dev/ccsds-tm tm_error_cnt_t* Gets the TM error
counter.

CCSDS_GET_TC_ERR_CNT /dev/ccsds-tc tc_error_cnt_t* Gets the TC error
counter.

CCSDS_GET_TC_STATUS /dev/ccsds-tc tc_status_t* Gets status of TC
path.

CCSDS_SET_TC_FRAME_CTRL /dev/ccsds-tc uint32_t Set the TC frame
control register.

Bit 2-31 unused.
Bit 1:
0 – No effect
1 – Set to signal for
the CCSDS IP a
telecommand frame
has been read.

Bit 0:
0 – No effect
1 – Reset the buffer
function in the
CCSDS IP.

CCSDS_ENABLE_TM /dev/ccsds-tm N.A Enable TM

CCSDS_DISABLE_TM /dev/ccsds-tm N.A Disable TM.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 77 of 156

Return value Description

0 Command executed
successfully

-EIO Unknown IOCTL for device.

 5.9.6. Usage description

5.9.6.1. RTEMS – Send Telemetry

1. Open the device “/dev/ccsds-tm0”,”/dev/ccsds-tm1”, …, “/dev/ccsds-tm6”, “/dev/ccsds-

tc0” and “/dev/ccsds”. Set up the TM path by ioctl-call CCSDS_SET_TM_CONFIG on

device “/dev/ccsds-tm” or ioctl CCSDS_INIT on device “/dev/ccsds”

2. Prepare the content in SDRAM that will be fetched by DMA-transfer.

3. Write the SDRAM content to the device for the virtual channel to use.

5.9.6.2. RTEMS – Receive Telecommands

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc0” and “/dev/ccsds”. Set up the TC path

by ioctl-call CCSDS_SET_TC_CONFIG on device “/dev/ccsds-tc” or or ioctl

CCSDS_INIT on device “/dev/ccsds”

2. Do a read from “/dev/ccsds-tc0”. This call will block until a new TC has been received.

CCSDS_INIT /dev/ccsds N.A. Sets a default
configuration of
CCSDS IP. See 5.9.1

CCSDS_SET_CLCW /dev/ccsds-tm uint32_t Set the CLCW. See
RD8.

CCSDS_GET_CLCW /dev/ccsds-tm uint32_t* Get the CLCW. See
RD8.

CCSDS_SET_TM_TIMESTAMP /dev/ccsds-tm uint32_t Set period of
timestamp
generation.

0x00 – No time
stamping
0x01 – Take a time
stamp every time
frame sent
0x02 – Take a time
stamp every 2

nd
 time

frame sent
…
0xFF – Take a time
stamp every 255

th

time frame sent

CCSDS_GET_TM_TIMESTAMP /dev/ccsds-tm uint32_t * Get period of
timestamp
generation.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 78 of 156

5.9.6.3. RTEMS – Application configuration

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions open(),

close(), read(), write() and ioctl() to access the CCSDS device.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/ccsds_rtems.h> is required for data-types, definitions of IOCTL of device

CCSDS.

The define CONFIGURE_APPLICATION_NEEDS_CCSDS_DRIVER must be defined to

use the CCSDS driver from the application.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 79 of 156

5.10. ADC

 5.10.1. Description

This section describes the driver for accessing the ADC device.

The following ADC channels are available for the Sirius OBC:

Parameter Abbreviation ADC channel

Analog input ADC in 0 0

Analog input ADC in 1 1

Analog input ADC in 2 2

Analog input ADC in 3 3

Analog input ADC in 4 4

Analog input ADC in 5 5

Analog input ADC in 6 6

Analog input ADC in 7 7

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The following ADC channels are available for the Sirius TCM:

Parameter Abbreviation ADC channel

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The TCM-S FM board does not contain any input ADC channels.

When data is read from a channel, the lower 8 bits contains the channel status information,

and the upper 24 bits contains the raw ADC data.

To convert the ADC value into mV, mA or m°C, the formulas specified in the table below

shall be used. Note that this assumes a 24 bit ADC value which is what the ADC IP returns

on read. Should the raw bit value be truncated or scaled down, the scale factor (2^24) in the

equations need to be adjusted as well. Note also that the temperature equation require the

3V3 [mV] value.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 80 of 156

HK channel Formula

Temp [m°C] Temp_mV = (ADC_value*2500)/2^24
Temp_mC = (1000*(3V3_mV - Temp_mV) - Temp_mV*1210) / 0.00385*(Temp_mV - 3300)

Iin [mA] Iin_mA = (ADC_value*5000)/(2^24)

Vin [mV] Vin_mV = (ADC_value*20575)/(2^24)

3V3 [mV] 3V3_mV = (ADC_value*5000)/(2^24)

2V5 [mV] 2V5_mV = (ADC_value*5000)/(2^24)

1V2 [mV] 1V2_mV =(ADC_value*2525)/(2^24)

 5.10.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.10.2.1. Enum adc_ioctl_sample_rate_e

Enumerator for the ADC sample rate.

Enumerator Description

ADC_IOCTL_SPS_31250 SPS 31250

ADC_IOCTL_SPS_15625 SPS 15625

ADC_IOCTL_SPS_10417 SPS 10417

ADC_IOCTL_SPS_5208 SPS 5208

ADC_IOCTL_SPS_2597 SPS 2597

ADC_IOCTL_SPS_1007 SPS 1007

ADC_IOCTL_SPS_503_8 SPS 503.8

ADC_IOCTL_SPS_381 SPS 381

ADC_IOCTL_SPS_200_3 SPS 200.3

ADC_IOCTL_SPS_100_5 SPS 100.5

ADC_IOCTL_SPS_59_52 SPS 59.52

ADC_IOCTL_SPS_49_68 SPS 49.68

ADC_IOCTL_SPS_20_01 SPS 20.01

ADC_IOCTL_SPS_16_63 SPS 16.63

ADC_IOCTL_SPS_10 SPS 10

ADC_IOCTL_SPS_5 SPS 5

ADC_IOCTL_SPS_2_5 SPS 2.5

ADC_IOCTL_SPS_1_25 SPS 1.25

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 81 of 156

5.10.2.2. Function int open(…)

Opens access to the ADC. Only one instance can be open at any time, only read access is

allowed and only blocking mode is supported.

Argument name Type Direction Description

Pathname const char * in The absolute path to the ADC to be opened.
ADC device is defined as
ADC_DEVICE_NAME.

Flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

Fd A file descriptor for the device
on success

-1 See errno values

errno values

EEXISTS Device not opened

EALREADY Device is already open

EINVAL Invalid options

5.10.2.3. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EFAULT Device not opened

5.10.2.4. Function ssize_t read(…)

This is a blocking call to read data from the ADC.

Note! The size of the given buffer must be a multiple of 32 bit.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to buffer to write data into.

count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 82 of 156

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

ADC data buffer bit definition Description
31:8 ADC value

7:4 ADC status

3:0 Channel number

5.10.2.5. Function int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode, clock

divisor etc.

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val uint32_t / uint32_t* in/out Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC chip,
see [RD6].

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC chip,
see [RD6].

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock used
for communication with the ADC chip.
Minimum 4 and maximum 255.
Default is 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Get the clock divisor of the clock
used for communication with the
ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

Return value Description

0 Command executed
successfully

-1 see errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 83 of 156

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to
IOCTL

 5.10.3. Usage description

The following #define needs to be set by the user application to be able to use the ADC:

CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.10.3.1. RTEMS application example

In order to use the ADC driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 ssize_t size;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);

 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);

 size = read(read_fd, &buffer, 4);

 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 84 of 156

 5.10.4. Limitations

Only one ADC channel can be enabled at a time. To switch channels, disabling the old and

enabling the new channel is required.

Setting the clk divisor to something else than the default (255) might yield that some ADC

reads returns 0.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 85 of 156

5.11. NVRAM

The NVRAM on the OBC and TCM is a 262,144-bit magnetoresistive random access

memory (MRAM) device organized as 32,768 bytes of 8 bits. EDAC is implemented on a

byte basis meaning that half the address space is filled with checksums for correction. It’s a

strong correction which corrects 1 or 2 bit errors on a byte and detects multiple. The table

below presents the address space defined as words (16,384 bytes can be used). The

address space is divided into two sub groups as product- and user address space.

 5.11.1. Description

This driver software for the SPI RAM IP, handles the initialization, configuration and access

of the NVRAM.

The NVRAM is divided into a system memory area and a user memory area.

System memory area is protected and must be unlocked by physically connecting the

debugger unit before writing.

 5.11.2. EDAC mode

When in EDAC mode, which is the normal mode of operation, all write and read transactions

are protected by EDAC algorithms. All NVRAM addresses containing EDAC are hidden by

the IP. The address space is given by the table below:

Area Range start Range end

System 0x100 0x1FC

User 0x200 0x7FFC

 5.11.3. Non-EDAC mode

Non-EDAC mode is a debug mode that allows the user to examine the EDAC bytes.

The purpose of this mode is to be able to insert errors into the memory for testing of the

EDAC algorithm.

When in Non-EDAC mode net data and EDAC data is interleaved on an 8 bit basis.

I.e. when reading a 32 bit word byte, 0, 2 contains the net data and byte 1, 3 contains EDAC

data. The address space is doubled when compared to EDAC mode, as is shown with the

table below:

 5.11.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.11.4.1. Enum rtems_spi_ram_edac_e

Enumerator for the error correction and detection of the SPI RAM.

Enumerator Description

SPI_RAM_IOCTL_EDAC_ENABLE Error Correction and Detection
enabled.

SPI_RAM_IOCTL_EDAC_DISABLE Error Correction and Detection
disabled.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 86 of 156

5.11.4.2. Function int open(...)

Opens access to the requested SPI RAM.

Argument name Type Direction Description

pathname const char * in The absolute path to the SPI RAM to be
opened. SPI RAM device is defined as
SPI_RAM_DEVICE_NAME.

flags int in Access mode flag.

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

EINVAL Invalid options

5.11.4.3. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.11.4.4. Function ssize_t read(...)

Read data from the SPI RAM. The call block until all data has been received from the SPI

RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
read. May also set errno EIO.

-1 See errno values

errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 87 of 156

EINVAL Invalid options

ENODEV Internal RTEMS resource
error.

EIO and >= 0 return
value

Read was successful and a
single or double-bit error was
corrected using EDAC.
The corrected value has NOT

been re-written.

EIO and -1 return
value

Multi-bit uncorrectable read
error.

5.11.4.5. Function ssize_t write(...)

Write data into the SPI RAM. The call block until all data has been written into the SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to read data from.

count size_t in Number of bytes to write. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
written.

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource
error.

5.11.4.6. Function int lseek(...)

Set the address for the read/write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset void* in SPI RAM read/write byte offset. Must be a
multiple of 4.

whence int in SEEK_SET and SEEK_CUR are supported.

Return value Description

>=0 Byte offset

-1 See errno values

errno values

EINVAL Invalid options

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 88 of 156

5.11.4.7. Function int ioctl(...)

Input/output control for SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd uint32_t / uint32_t* in Command to send.

val int in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

SPI_RAM_SET_EDAC_IOCTL uint32_t in Configures the error correction and
detection for the SPI RAM, see
[5.11.4.1.]

SPI_RAM_SET_DIVISOR_IOCTL uint32_t in Configures the serial clock divisor.

SPI_RAM_GET_EDAC_STATUS_IOCTL uint32_t* out Get EDAC status for previous read
operations.

SPI_RAM_GET_DEBUG_DETECT_IOCTL uint32_t* out Get Debug detect status.

EDAC Status Description

SPI_RAM_EDAC_STATUS_MULT_ERROR Multiple errors
detected.

SPI_RAM_EDAC_STATUS_DOUBLE_ERROR Double error
corrected.

SPI_RAM_EDAC_STATUS_SINGLE_ERROR Single error corrected.

Debug Detect Status Description

SPI_RAM_DEBUG_DETECT_TRUE Debugger detected.

SPI_RAM_DEBUG_DETECT_FALSE Debugger not
detected.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource error.

 5.11.5. Usage description

The following #define needs to be set by the user application to be able to use the SPI RAM:

CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

The SPI RAM RTEMS driver supports multiple file descriptors opened simultaneously.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 89 of 156

EDAC error information is reported via errors in the read operation, which is the

recommended way to obtain this information.

The SPI_RAM_GET_EDAC_STATUS_IOCTL command is deprecated and may be

removed in future versions.

5.11.5.1. RTEMS application example

In order to use the SPI RAM driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spi_ram_rtems.h> is required for accessing the SPI_RAM.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spi_ram_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument){

 rtems_status_code status;

 int dsc;

 uint8_t buf[8];

 ssize_t cnt;

 off_t offset;

 dsc = open(SPI_RAM_DEVICE_NAME, O_RDWR);

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = write(dsc, &buf[0], sizeof(buf));

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = read(dsc, &buf[0], sizeof(buf));

 status = close(dsc);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 90 of 156

5.12. System flash

 5.12.1. Description

The System flash holds the software images for the system as described in section 8.4. This

section details the RTEMS interface to the System flash driver.

 5.12.2. Data structure types

5.12.2.1. Type sysflash_cid_t

This struct type holds the result of reading the system flash chip ID.

Type Name Purpose

Array of 2 uint32_t chip0 Byte array for chip 0 ID

5.12.2.2. Type sysflash_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading or writing the spare area.

Type Name Purpose

uint32_t page_num What page to read/write.
Values: [0 - (SYSFLASH_MAX_NO_PAGES-1)]

uint32_t raw 0: Raw reading off (EDAC and Interleaving active)
1: Raw reading on (EDAC and Interleaving disabled)

uint8_t * data_buf Pointer to buffer in which the data is to be stored or to the data that is
to be written.

uint32_t size Size to read/write in bytes.
Values: [1 - SYSFLASH_PAGE_SPARE_AREA_SIZE]

 5.12.3. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver. The driver functionality is accessed through RTEMS POSIX API for ease of use. In

case of failure on a function call, the errno value is set for determining the cause.

5.12.3.1. Function int open(…)

Opens access to the driver. The device can only be opened by one user at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be opened.
System flash device is defined as
SYSFLASH_DEVICE_NAME.

oflags int in Device must be opened by exactly one of the symbols
defined in Table 5-4.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 91 of 156

errno values

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-6 - open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.12.3.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

5.12.3.3. Function off_t lseek(…)

Sets page offset for read/ write operations.

NOTE: The interface is not strictly POSIX, as the offset argument is expected to be given in

pages and not bytes.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number. (NOTE: Not bytes!)

whence Int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would overflow off_t.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 92 of 156

5.12.3.4. Function ssize_t read(…)

Reads requested size of bytes from the device starting from the offset set using lseek.

NOTE: For iterative read operations, lseek must be called to set page offset before each

read operation.

Argument name Type Direction Description

fd Int in File descriptor received at open.

buf void * in Character buffer where to store the data (should be
32-bit aligned for most efficient read).

nbytes size_t in Number of bytes to read into buf (should be a multiple

of 4 for most efficient read).

Return value Description

>0 Number of bytes that were read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL Page offset set in lseek is out of range or nbytes is

too large and reaches a page that is out of range.

ENODEV Semaphore not available.

EBUSY Flash controller busy.

EIO Semaphore error or internal driver error.

5.12.3.5. Function ssize_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

NOTE: For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd Int in File descriptor received at open.

buf void * in Character buffer to write data from (should be 32-bit
aligned for most efficient write).

nbytes size_t in Number of bytes to write from buf (should be a
multiple of 4 for most efficient write).

Return value Description

>0 Number of bytes that were written.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an open file descriptor

EINVAL Page offset set in lseek is out of range or nbytes is

too large and reaches a page that is out of range.

ENODEV Semaphore not available.

EBUSY Flash controller busy.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 93 of 156

EIO Semaphore error,
internal driver error,
or
program failed at chip level, block should be
considered bad (double check chip status FAIL flag
using SYSFLASH_IO_READ_CHIP_STATUS).

5.12.3.6. Function int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

cmd ioctl_command_t in Command specifier

value void * in The value relating to command operation
as defined in 5.6.3.6.1 to .

The following return and errno values are common for all commands.

Return value Description

0 Operation successful.

-1 See errno values

errno values

EBADF The file descriptor fd is not an open file descriptor.

EINVAL Invalid command.

EIO Internal driver semaphore error.

5.12.3.6.1. Reset System flash
Resets the system flash chip.

5.12.3.6.2. Read chip status
Reads the chip status register.

5.12.3.6.3. Read controller status
Reads the controller status register.

Command Value type Direction Description

SYSFLASH_IO_RESET n/a n/a n/a

Command Value type Direction Description

SYSFLASH_IO_READ_CHIP_STATUS uint8_t * out Pointer to variable in which status data is to be
stored.

Command Value type Direction Description

SYSFLASH_IO_READ_CTRL_STATUS uint16_t * out Pointer to variable in which controller status data
is to be stored.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 94 of 156

5.12.3.6.4. Read ID
Reads the flash chip ID.

5.12.3.6.5. Erase block
Erases a block.

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EINVAL The block number is out of range

EIO Erase failed on chip level, block should be considered
bad.

5.12.3.6.6. Read spare area
Reads the spare area for a given page.

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EINVAL Page number is out of range
or
Buffer is NULL

5.12.3.6.7. Write spare area
Writes the data to the given page spare area.

Command Value type Direction Description

SYSFLASH_IO_READ_ID sysflash_cid_t * out Pointer to struct in which ID is to be stored, see
5.6.2.1.

Command Value type Direction Description

SYSFLASH_IO_ERASE_BLOCK uint32_t in Block number to erase.

Command Value type Direction Description

SYSFLASH_IO_READ_
SPARE_AREA

sysflash_ioctl_spare_area_args_t * in Pointer to struct with page number
specifier, and destination buffers where
spare area data is to be stored, see
5.6.2.3

Command Value type Direction Description

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 95 of 156

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EINVAL Page number is out of range
or
Buffer is NULL

EIO Program failed on chip level, block should be
considered bad.

5.12.3.6.8. Factory bad block check
Reads the factory bad block marker from a block and reports status.

NOTE: This only gives information about factory marked bad blocks. Bad blocks that arise

during use need to be handled by the application software.

Return value Description

AAC_SYSFLASH_
FACTORY_BAD_
BLOCK_CLEARED

Block is OK.

AAC_SYSFLASH_
FACTORY_BAD_
BLOCK_MARKED

Block is marked bad.

errno values

EINVAL The block number is out of range

 5.12.4. Usage description

5.12.4.1. Overview

In NAND flash the memory area is divided into pages that have a data area and a spare

area.The pages are grouped into blocks. Before data can be programmed to a page it must

be erased (all bytes are 0xFF). The smallest area to erase is a block consisting of a number

of pages, so if the block contains any data that needs to be preserved this must first be read

out. The driver defines some constants for the application software to use when handling

blocks and pages. There are SYSFLASH_BLOCKS blocks starting from block number 0 and

SYSFLASH_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page data area is SYSFLASH_PAGE_SIZE bytes. Each page also has a spare area that is

SYSFLASH_PAGE_SPARE_AREA_SIZE bytes. Partial pages can be read/programmed,

SYSFLASH_IO_WRITE_
SPARE_AREA

sysflash_ioctl_spare_area_args_t * in Pointer to struct with page number
specifier, and source buffer with data
which is to be written, see 5.6.2.3

Command Value type Direction Description

SYSFLASH_IO_BAD_BLOCK_CHECK uint32_t in Block number.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 96 of 156

but reading/programming always starts at the beginning of the page (or spare area). Pages

(including spare area) must be programmed in sequence within a block.

With NAND flash memory technology some blocks will be bad from the factory, and more

bad blocks will appear due to wear. The driver itself does not manage bad blocks, but it will

supply the information needed for the application software to implement a system to keep

track of them. A common use for the page spare area is to hold ECC information. However,

this system has a more comprehensive EDAC solution, so the main use for the spare area is

to hold the factory bad block markers (first byte of the first page spare area is 0x00). Bad

blocks should never be erased or programmed.

5.12.4.2. Usage

The RTEMS driver provides the application software with a POSIX file interface for

accessing the functionality of the bare-metal driver. However, unlike the POSIX calls where

the offset is given in bytes, the Sysflash driver expects the offset to be in pages. The read

and write calls provide an abstraction to the page-by-page access in the bare-metal driver,

so multiple pages can be read/written with one call, but the application will still need to make

sure that pages are erased before they are written.

In RTEMS the device file must be opened to grant access to the system flash device. Once

opened, all provided operations can be used as described in section 5.12.3. And, if desired,

the access can be closed when not needed.

NOTE: All calls to the RTEMS driver are blocking calls, though the driver uses interrupts

internally to ease processor load.

Figure 5-7 - RTEMS driver usage description

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 97 of 156

5.12.4.3. RTEMS application example

In order to use the system flash driver in the RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read, write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/system_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

 5.12.5. Debug detect

Erasing blocks/programming pages to the first half of the flash memory (lower addresses)

only works when the debug detect signal is high (indicating debugger is connected). If

erase/program operations to that area are attempted when the debug detect signal is low

they will appear to succeed from a software perspective but the controller will not pass them

on to the flash chip.

 5.12.6. Limitations

The system flash driver may only have one open file descriptor at a time.

The POSIX interface is modified to use an offset in pages instead of bytes.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/system_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SYSFLASH_DEVICE_NAME, O_RDWR);

 .

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 98 of 156

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 99 of 156

6. Spacewire router

In both Sirius OBC and Sirius TCM products, a smaller router is integrated onto their relative

SoCs. The routers all use path addressing (see [RD2]) and given the topology illustrated in

Figure 6-1, the routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In reference to the topology above, sending a package from the Sirius OBC to the Sirius

TCM
TM

 or vice versa, the routing address will be 1-3.

In addition to this, each end node, Sirius OBC or Sirius TCM, has one or more logical

address(es) to help distinguish between different applications or services running on the

same node. The logical address complements the path address and must be included in a

SpaceWire packet.

Example: If a packet is to be sent from Sirius OBC to the Sirius TCM
TM

 it needs to be

prepended with 0x01 0x03 XX.

0x01 routes the packet to port 1 of the Sirius OBC

router.

0x03 routes the packet to port 3 of the Sirius TCM

router.

XX is the logical address of the recipient application/service on the Sirius TCM.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 100 of 156

7. Sirius TCM

7.1. Description

The Sirius TCM handles receiving of Telecommands (TCs) and Telemetry (TM) as well as

Spacewire communication using the RMAP protocol.

TC, received from ground, can be of two command types; a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin according to the pulse command parameters. All other commands are

handled by the Sirius TCM

software. Any command not addressing the Sirius TCM will be

routed to other nodes on the SpaceWire network according to the current Sirius TCM

configuration.

TM is received from other nodes on the SpaceWire network. The Sirius TCM supports both

live TM transmissions directly to ground as well as storage of TM to the Mass Memory for

later retrieval or download to ground during ground passes.

The Sirius TCM is highly configurable to be adaptable to different customer needs and

missions and currently supports SpaceWire (SpW) using the Read Memory Access Protocol

(RMAP), UART interfaces, pulse commands as well as Telecommand and Telemetry using

CCSDS frame encodings and ECSS PUS packets.

The default configuration of the TM downlink is:

 FECF is included in TM transfer frames.

 Master Channel Frame counter is enabled for telemetry.

 Generation of Idle frames is enabled.

 Pseudo randomization of telemetry is enaled.

 Reed Solomon encoding of telemetry is enabled.

 Convolutional encoding of telemetry is disabled.

 The divisor of the TM clock is set to 25.

 All available interrupts from the CCSDS IP are enabled.

 Generation of OCF/CLCW in TM Transfer frames is enabled.

 TM is enabled.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 101 of 156

The default configuration of the TC uplink is:

 Derandomization of telecommands is disabled.

7.2. Block diagram

 TCM-S

S
P
A
C
E
W
I
R
E

SpaceWire

Router

0303

0101

0202

UARTs

RS422

/

RS485

RS422

/

RS485

UmbilicalUmbilical

RS422RS422

LVDSLVDS

RS422RS422

C
C
S
D
S

TRX

TRX

Mass memory NVRAM Watchdog

W
a
t
c
h
d
o
g

A
D
C

S
C
E
T

TCM core application

Error managerRAMSystem flash

Pulse commandsPulse commands
RS422RS422

1212

Figure 7-1 – Sirius TCM functionality layout with the external ports depicted

7.3. TCM-S application overview

The TCM-S application is partitioned into several software modules who each handles a

specific functional part. An overview of the software architecture of the TCM-S is presented

in Figure 7.2. A main design driver of the TCM-S software architecture is the ability to pass

along data between the different handlers without copying, since that would quickly

decrease the performance and throughput of the system. To help with the no-copy policy,

each peripheral handling larger amounts of data have DMA functionality, off-loading the

CPU from mere datashuffling tasks while at the same time increasing performance by at

least a magnitude. Data coming in on the SpaceWire interface intended for the mass

memory will thus be stored in RAM only once - in the handoff between the SpaceWire and

mass memory handlers.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 102 of 156

TM Handler

CCSDS

TC Handler

CCSDS

SF Handler

System Flash

MM Handler

Mass Memory

UART Handler

UART

SpW Handler

Spacewire

NVRAM Handler

NVRAM

HK Handler

Error Mgr

ADC

SCET

Driver Access
Function
Module

Helper
Module

Message

Router

Figure 7.2 TCM-S software application overview

7.4. Configuration

The TCM-S can be configured for specific missions by parameters in NVRAM described in

Table 7-1 to Table 7-7.

Partition configuration of mass memory is specified in Table 7-1.

Table 7-1: PARTITION_CFG

Data Type Description

0 UINT32 Starting block number of the partition.

4 UINT32 Ending block number of the partition (inclusive).
8 UINT8 Partition mode.

0 – Direct
1 – Continuous
2 – Circular

9 UINT8 Specifies type of data stored on the partition.
0 – PUS Packets
1 – Raw Data (not supported for download)

10 UINT8 Specifies which virtual channel (0 or 1) to be used
for downloading of the data in the partition.

11 UINT8 Segment size for the partition.
1 - 16 kbyte
2 - 32 kbyte
3 - 48 kbyte
4 - 64 kbyte

12 UINT32 The data source identifier for the partition. Can be
used to set a custom identifier of a data producer
to a partition. Setting of this value is not required
to successfully configure a partition.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 103 of 156

Data from different sources can be routed to the SpW-network. Routing info is set by format

specified in Table 7-2.

Table 7-2: UART_ROUTING

Data Type Description

uart UINT8

Source of message
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

address UINT32 The RMAP-address UART info is routed to

ext address UINT8 The extended RMAP-address UART info is routed
to

Path UINT16 The index of the SpW-path for the routing. See
Table 7-4.

Configuration of UART-devices is done by Table 7-3 below.

Table 7-3: UART_CONFIG

Data Type Description

uart UINT8

The UART device.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

Bitrate UINT8

UART bitrate:
10 = 375000 baud
9 = 153600 baud
8 = 115200 baud (default)
7 = 75600 baud
6 = 57600 baud
5 = 38400 baud
4 = 19200 baud
3 = 9600 baud
2 = 4800 baud
1 = 2400 baud
0 = 1200 baud

Mode UINT8

UART mode:
0 = RS422 mode
1 = RS485 mode
2 = Loopback

Reserved UINT8 Reserved for padding and future use

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 104 of 156

Paths on SpW-network are specified by table Table 7-4 below:

Table 7-4: NVRAM SpW path storage

Data Type Description

Path Array of UINT8
A path on SpW network including the logic
address of the receiving node.

Telecommand can be routed to nodes on the SpW by APID as specified in below:

Table 7-5: NVRAM APID Routing

Byte Type Description

0-1

UINT16 APID or lower APID in APID range
Bit15: 0 – Single APID Routing, 1 – APID range
Bit14: 0 – Ext. APID, 1 – TCM-S APID
Bit13:11 Not used
Bit10:0 – APID

2-3

UINT16 Upper APID in APID range
Bit15: 0 – Single APID Routing, 1 – APID range
Bit14: 0 – Ext. APID, 1 – TCM-S APID
Bit13:11 – Not used
Bit10:0 - APID

4-5 UINT16 The index of the SpW-path of the APID. See Table
7-4.

6-7 UINT16 Reserved for future use and padding.

Configuration of the TM path is described in Table 7-6 below:

Table 7-6: TM_CONFIG

Data Type Description

TM Clk divisor UINT16
The resulting TM bitrate is 0.5 * System Frequency/TM Clk
divisor

TM Config UINT16

Configuration of TM path.
Bit6: 0 – Disable RS Encoder, 1 – Enable RS Encoder
Bit5: 0 – Disable Conv. Encoder, 1 - Enable Conv. Encoder
Bit4: 0 – Disable Randomizer, 1 – Enable Randomizer
Bit3: 0 – Disable Idle Frames, 1 – Enable Idle Frames
Bit2: 0 – Disable MCFC, 1 – Enable MCFC
Bit1: 0 – Disable FECF, 1 – Enable FECF
Bit0: 0 – Disable CLCW, 1 – Enable CLCW

Configuration of the TC path is described in Table 7-7 below:

Table 7-7: TC_CONFIG

Data Type Description

TC Config UINT32
Configuration of TM path.
Bit1: 0 – Disable BCH Decoder, 1 – Enable BCH Decoder
Bit0: 0 – Disable Derandomizer, 1 – Enable Derandomizer

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 105 of 156

7.5. Telemetry

Telemetry is simultaneously sent on all the transceiver interfaces, i.e. the RS422 (TRX1),

the LVDS (TRX2) and umbilical (UMBI) interfaces. VC 0 and VC 1 are supported for TM

Data and VC 7 is reserved for idle-frames. The CCSDS IP generates complete TM Transfer

Frames from PUS packets. If a PUS packet does not fit in one TM Transfer Frame, the

CCSDS module splits the packet into several TM Transfer Frames. If a PUS packet not does

fill the whole TM Transfer Frame, an idle-packet is added as padding to fill the frame. The

following telemetry settings are configurable by RMAP-commands (see 7.12):

 Divisor of TM Clock

 Inclusion of CLCW of TM Transfer Frames

 Inclusion of Frame Error Control Field of TM Transfer Frames

 Updating of Master Channel Frame Counter

 Idle frame generation (sent on VC7 when no data is sent on VC0 or VC1)

 Convolutional encoding

 Pseudo randomization

The TCM-S supports the format of TM Transfer Frames described in [RD8].

7.6. Telecommands

Telecommands can be received on the RS422 (TRX1), the LVDS (TRX2) or the umbilical

(UMBI) interface.

The TCM actively searches for Command Link Transmission Units (CLTU), i.e.

telecommands, on all three inputs simultaneously (as long as they are enabled). When a

telecommand start sequence is detected, the other inputs are ignored during telecommand

reception. The search will restart once the entire telecommand is either received or a

reception error is detected. In short, the telecommand reception uses the following reception

logic, also illustrated in

• All incoming signals on the inputs are synchronized to the system clock domain.

• When the CLTU receptor has detected and decoded a start pattern, it sets an enable

signal for the active path, indicating that this CLTU receptor is now active.

• The telecommand path activated is set until the reception status changes, i.e. the

current telecommand is finished and a new start pattern is detected correctly on a

different CLTU path.

• The selected telecommand clock, data and enable signals are now forwarded through

the mux to the BCH decoder, rejecting data and clock on inactive data paths.

• When BCH has decoded the tail in the CLTU, all CLTU receptors are set in search

mode again, scanning for the start pattern ready to receive a new telecommand.

• The BCH interface does not “see” the data/clock until the start pattern is decoded

correctly and the enable signal is set.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 106 of 156

Figure 7.3 – Telecommand Input Multiplexer

Derandomization of TC can be enabled/disabled by RMAP command (see 7.12)

The TCM-S supports the format of TC Transfer Frames described in [RD9].

 7.6.1. Pulse commands

The CCSDS IP in the TCM has a built-in Command Pulse Distribution Unit (CPDU)

execution functionality with the possibility to execute up to twelve CPDUs without interaction

from software. A pulse command is decoded directly in hardware and it sets an output pin

according to the pulse command parameters. The CPDU_DURATION_UNIT is defined to

12.5 ms and the output is hence a multiple of this signal length.

The CPDU function can e.g. be used to reset modules in a spacecraft and also choose

which software image to boot, an updated version or the safe image. The last executed

pulse command can be read from the telecommand status data field.

For details about the format of pulse commands, see 7.10.2

 7.6.2. COP-1

The CCSDS COP-1 functionality on the spacecraft is implemented mainly in software where

the command link control word (CLCW) is generated based on telecommand status. The

CLCW is inserted when the OCF_CLCW flag is set in the control register, otherwise user

data will be inserted instead. It will insert four bytes, and the CLCW is also included in the

CRC calculation for the master frame on both idle and data frames. The NO RF AVAILABLE

flag and NO BIT LOCK flag are set from external pins and will overwrite the respective bits

in the CLCW word which hence cannot be controlled by software. The flag NO RF

AVAILABLE is set by signal Carrier lock in and the flag NO BIT LOCK is set by signal Sub-

carrier lock in.

7.7. Time Management

The TCM-S has an internal SCET timer that can be synchronised to an external time source.

In order for synchronisation to occur, a stable PPS input must first be provided for at least 7

seconds, after which the PPS will be considered “qualified” and the TCM-S will automatically

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 107 of 156

sync SCET subseconds to the external PPS arrival time. A received SCETTime write

command can then synchronise the seconds value, see 7.12.4.17.

If the PPS is not stable, the TCM-S will abort synchronisation to the external source and will

attempt to re-qualify the PPS. When the PPS is not qualified, neither subseconds nor

seconds synchronisation will occur.

The current criteria for stability is set to be extremely generous, and only after a PPS interval

of 2 seconds or more will the PPS be considered unstable by the TCM-S.

 7.7.1. TM time stamps

A timestamp can be generated when a TM Transfer Frame is sent on VC0. The rate of

timestamp generation is configurable through an RMAP command and the latest timestamp

is readable on the same interface. See 7.12.4.11 and 7.12.4.12 for further info.

7.8. Error Management and System Supervision

The Error Manager in the TCM-S provides information about different errors and operational

status of the system such as:

 EDAC single error count

 EDAC multiple error count

 Watchdog trips

 CPU Parity errors.

Error Manager related information and housekeeping data is available by RMAP. See

7.12.4.16

The status of the TM Downlink and TC Uplink are available through RMAP. See 7.12.4.14

and 7.12.4.1

A watchdog is enabled in the TCM-S that must be kicked by the TCM-S Application or a

reset will occur.

7.9. Mass Memory Handling

The mass memory in the TCM-S is primarily intended for storage of telemetry data while

awaiting transfer to ground, but can also be used for internal data storage. The mass

memory is configurable as described in chapter 7.4.

The mass memory is accessed through RMAP commands as described in chapters

7.12.4.19 to 7.12.4.26.The mass memory is nandflash-based and that also slightly colours

its user interface, even though the detailed handling has been abstracted away. The primary

storage units in a flash are the block of 2097152 bytes, i.e. 2 Mbytes, and the page of 16384

bytes, i.e. 16 kbytes, which will be used throughout the document where relevant. The total

amount of mass memory available is 16 Gbytes.

Due to the flash nature of the mass memory, each new block will require erasing before

accepting writes, but the TCM software will handle this automatically. For each 32-bit word

stored in mass memory, there are 8 bits stored as EDAC to be able to detect double errors

and correct single errors. During erases or writes, the operation may fail and the software

will then mark this block as bad and skip this in all future transactions. The bad block list is

stored in NVRAM and will thus survive a reboot and/or power cycling. This graceful

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 108 of 156

degradation behaviour of the mass memory implies that partitions may shrink in size and

this phenomenon needs to be taken into account when planning partition sizes. Another

effect of the bad blocks is that available space on a partition may decrease by more than the

actual data written and this might need tracking by the user.

To simplify divisions between different types of data with different configurations, the mass

memory is divided into logical partitions where each partition is configured by its mode, type,

segment size and TM virtual channel for downloading. All partitions have an address space

of 4 Gbytes regardless of their physical size and this is also the maximum size of a partition.

Reading and writing to partitions behaves slightly different between different types of

partitions, but when a partition is full, it requires a free operation to allow for further writes.

New space for writing will only become available once a block is completely freed (that is,

when a free operation passes over a block boundary).

Figure 7.4 illustrates this with an example two-block partition, showing in the last picture that

new data cannot be written until free has reached the block boundary. To simplify operations

for the user, free operations can be requested on more data than is available in the mass

memory, see 7.12.4.24 for details.

Data written
to mass memory S Start of data E End of data

E

S

Start First free Second free

E

S

E

S

Ready for
write

E

SBlock boundary

Figure 7.4 Illustration of free behaviour and block boundaries.

Note! Freeing data from a partition will physically erase it, i.e. once data has been freed it is

not possible to recover.

 7.9.1. Partition configuration

Partitions are configured via the NVRAM configuration tool, according to the format in

7.12.4.21, below follows some detailed information regarding certain configuration items.

7.9.1.1. Partition mode

Each partition can be configured as Continuous, Circular or Direct mode.

In Continuous mode, all write accesses are sequential and can be of any size, but will

return with an error when the partition is full. The MM handler internally implements free and

write pointers to keep track of the data in the partition. The write pointer is used as the

address for storing the data and is updated after each successful write. The free pointer is

used as the address when freeing data and is updated after each successful free. Read

access and download of data is available on any arbitrary address within the partition

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 109 of 156

(between the free and write pointer addresses). Obsoleted data need to be freed to enable

further writes when the partition is full.

Circular mode operates much in the same way as Continuous mode except that writes will

never fail when the partition is full. Instead, it will automatically free one or more blocks used

for the oldest written data and update the free pointer accordingly. Thus data never needs to

be freed manually, but the operation is available.

For both Continuous and Circular mode, an internal cache of one page is used to hold any

data that does not fit a page. As soon as the cache is filled, the data is written to physical

memory. Any restarts or power cycling will result in loss of any data only written into this

cache. If loss of cache data is an issue, ensure that all writes end on a page boundary as

this will make sure all data is always written to flash.

In Direct mode, a write access can be to any arbitrary address in the address space

provided that writing starts at a block boundary and is continuously written within this block.

Each access must also be a multiple of the page size and thus keeps no cache of data not

stored in physical memory. Read access and download of data is available from any

arbitrary address within a partition, given that it has valid data (previously written). Obsoleted

data or data to overwrite need to be freed here as well, but can be freed on any valid

address in the address space.

The direct partition mode does not utilise free and write pointers.

Direct mode
Continuous/circular

mode

F

W

4 Gbytes

Figure 7.5 Illustration of partition modes and the free/write pointers

7.9.1.2. Partition segment size

The segment size is only applicable for downloading and for partitions of type PUS (see

below). The mass memory supports segment sizes of 16, 32, 48 and 64 kbyte.

7.9.1.3. Partition type

Partitions can be of two types, PUS (see [RD4]) and raw.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 110 of 156

Partitions of type PUS requires that each segment will begin with a PUS packet and it is up

to the software writing into the mass memory to maintain this segmentation. There are no

limitations on the number of PUS packets that can be contained in one segment, but if the

written data doesn't fit exactly into the segment size it must be padded up to the segment

boundary. Padding can be achieved either with a PUS idle packet (which also will be

transferred to ground) or with a bit pattern of 0xF5, allowing padding of as little as one byte.

During a download operation when the padding bit pattern is discovered, download will skip

to the next segment (if available).

Packet 1

Packet 1

Packet 2

Packet 3 Packet 4

Packet 5

Packet 2

Packet 3

Packet 4

Idle packet

Packet 1

Packet 2 Packet 3 Packet 4

Packet 5

Packet 6

Padding

Segment 1
No padding required

Segment 2
Padding with idle packet

Segment 3
Padding with bit pattern

Segment boundary

Figure 7.6 Illustration of packet placement inside segments with different padding (marked in grey)

Partitions of type raw are currently not supported for download, but imposes no other

limitations.

7.9.1.4. Partition virtual channel

This specifies which CCSDS virtual channel to be used for downloading of the data in the

partition. Currently virtual channels 0 and 1 are supported.

 7.9.2. Recovery

The mass memory handler utilises the NVRAM to store on-going operation data, and these

are used in the initialisation step in order to recover consistency after an aborted write or

free operations, caused for example by a power failure reset.

The initialisation recovery is aggressive, and will prioritise a usable system over data

retention, hence for example if a discontinuity is discovered in a partition that is configured

as continuous or circular, the recovery process will erase data blocks from the highest

logical partition address and downwards, until a continuous partition is recovered. Such

discontinuities can for example occur due to corrupt blocks, or if a partition is configured to

include blocks with unknown contents (e.g. changing a direct partition into a continuous

partition).

Recovery does not take into account the format of the stored data, and may for example

leave a partition with data that no longer fulfils segmentation requirements for download.

Recovery may cause the free and write pointers of continuous/circular partitions to move.

Recovery will cause rediscovery of previously freed data in a block in the following

scenarios:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 111 of 156

 If not all data was freed from the block.

 If data was freed from the block in a continuous/circular partition and the free did not

move past the block boundary.

 If data was freed from the block in a continuous/circular partition and the write pointer

was located inside the block.

For continuous/circular partitions, this data rediscovery will only occur in the block where the

free pointer was last located. For direct partitions, it will occur in every block which fulfils the

criteria.

The NVRAM is considered safe, and thus errors from NVRAM are considered fatal and will

cause initialisation failure. These failures are usually due to invalid parameters specified in

the NVRAM configuration.

7.10. ECSS standard services

The TCM-S supports a subset of the services described in [RD4]

 7.10.1. PUS-1 Telecommand verification service

The TCM-S performs a verification of APID of the incoming TC. If the verification fails, the

telecommand is rejected and a Telecommand Acceptance Failure - report (1,2) is

generated as described in [RD4]. On successful verification, the command is routed to the

receiving APID. The receiving APID performs further verification of packet length, checksum

of packet, packet type, packet subtype and application data and generates reports

accordingly (1,1) or (1,2). If specified by the mission, the APID shall implement services for

Telecommand Execution Started, Telecommand Execution Progress and Telecommand

Execution Complete.

Table 7-8: Telecommand Acceptance Report – Failure (1,2)

Packet ID Packet Sequence Control Code

UINT16 UINT16
UINT8.
0 – Illegal APID

 7.10.2. PUS-2 Device Command Distribution Service

The TCM-S supports the command pulse distribution unit (CPDU) pulse commands in

hardware as defined in 7.2.2 in [RD4].

The CPDU listens on virtual channel 2, APID 2.

It has 12 controllable (0-11) output lines and can be toggled to supply different pulse lengths

according to the following scheme:

Table 7-9 CPDU Command (2, 3)

Output Line ID Duration

0-11
(1 octet)

0 – 7
(1 octet)

The duration is a multiple of the CPDU_DURATION_UNIT (D), defined to 12.5 ms, as

detailed below.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 112 of 156

Table 7-10 CPDU Duration

Duration in bits Duration in time (ms)

000 1 x D = 12.5

001 2 x D = 25

010 4 x D = 50

011 8 x D = 100

100 16 x D = 200

101 32 x D = 400

110 64 x D = 800

111 128 x D = 1600

Note: The APIDs reserved for the CPDU are 1 – 9 for future use.

7.11. Custom services

 7.11.1. PUS-130 Software upload

During the lifetime of a satellite, the on-board software might need adjustments as bugs are

detected or the mission parameters adjusted. This service solves that by providing a means

for updating the on-board software in orbit. See chapter 9 for further info.

7.12. Spacewire RMAP

According to [RD3], a 40-bits address consisting of an 8-bit Extended Address field and a

32-bit Address field is used in RMAP. This has been utilized in the TCM-S according to

Table 7-13 to separate between configuration commands and mass memory storage of data

(partition handling).

The initiator logic address of output messages from the TCM-S, and the RMAP key that

needs to be used for input messages and should be expected from output messages, are

shown in Table 7-11.

Table 7-11: RMAP predefined fields

Field Value

Initiator Logical Address 0x42

Key 0x30

In addition, target address and reply address must be added to the RMAP header in

commands targeting the Sirius TCM to compensate for topology external to the Sirius TCM

and the embedded SpaceWire router. As can be seen Figure 7-1, if the Sirius TCM were to

be addressed from SpaceWire port 1, the example addresses below must be added to the

routing addresses in the RMAP header.

Table 7-12: RMAP predefined fields for routing

Field Value

Target Spw Address 0x01, 0x03

Reply Address 0x01, 0x03

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 113 of 156

 7.12.1. Input

The RMAP commands supported by the Sirius TCM are specified in the table below. See

chapter 7.12.4 for details on each specific command.

Note! The Sirius TCM uses the RMAP Transaction ID to separate between outstanding

replies to different units. When several nodes are addressing the Sirius TCM, they need to

be assigned a unique transaction id range to ensure correct system behaviour. To allow for

similar transaction identification throughout the system, the Sirius TCM uses the Transaction

ID range 0x0000-0x0FFF in all outgoing communication.

Table 7-13: RMAP commands to TCM

Name Ext. Addr Address Cmd Description

TMStatus 0xFF 0x00000000 R Reads latest telemetry status.

TMConfig 0xFF 0x00000200 R Reads telemetry configuration.

TMControl 0xFF 0x00000300 W Enable/Disable telemetry.

TMFEControl 0xFF 0x00000400 W
Enable/Disable Frame Error Control Field for
TM Transfer Frames.

TMMCFCControl 0xFF 0x00000500 W
Enable/Disable Master Channel Frame
Counter Control for TM Transfer Frames.

TMIFControl 0xFF 0x00000600 W Enable/Disable Idle Frames.

TMPRControl 0xFF 0x00000700 W
Enable/Disable Pseudo Randomization for
telemetry.

TMCEControl 0xFF 0x00000800 W
Enable/Disable Convolutional Encoding for
telemetry.

TMBRControl 0xFF 0x00000900 W Sets telemetry clock frequency divisor.

TMOCFControl 0xFF 0x00000A00 W
Enable/Disable inclusion of Operational
Control field in TM Frames.

TMTSControl 0xFF 0x00000B00 R/W Configures Timestamp of telemetry.

TMTSStatus 0xFF 0x00000C00 R
Latest timestamp of telemetry on virtual
channel 0.

TMSend 0xFF 0x00001000 W Sends telemetry on virtual channel 0.

TCStatus 0xFF 0x01000000 R Reads latest telecommand status.

TCDRControl 0xFF 0x01000100 W
Enables/Disables Derandomizer of
telecommands.

HKData 0xFF 0x02000000 R Reads housekeeping data.

SCETTime 0xFF 0x02000100 R/W Reads/Sets SCET time.

UARTCommand 0xFF 0x0400010n W

Sends a command to UART device n.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus.

MMData 0x00-0x0F 0xnnnnnnnn R/W

Reads/writes data from/to a partition.
The extended address field determine the
partition number. The address field is used
differently on different types of partitions,
see command details.

MMDataRange 0xFF 0x0500010n R
Address ranges of all stored data in partition
n.

MMPartitionConfig 0xFF 0x0500030n R Configuration of partition n.

MMPartitionSpace 0xFF 0x0500040n R Space available in partition n.

MMDownloadPartitionData 0xFF 0x0500050n W Downloads partition n data via telemetry.

MMFree 0xFF 0x0500060n W Frees memory from partition n.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 114 of 156

MMDownloadStatus 0xFF 0x0500070n R Amount of data downloaded in partition n.

 7.12.2. Output

The TCM-S publishes data to other nodes according to the address map below:

Note! All outgoing communication will use the Transaction ID range of 0x0000-0x0FFF.

Table 7-14: Published data from TCM

Name Ext. Addr. Address Cmd Description

TCCommand 0xFF 0x00000000 W Routed Telecommands

UARTData 0xFF 0x0400000x W

Data received on specified UART x.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

 7.12.3. Status code in reply messages

In the status field of write/read, the values in Table 7-15 can be returned, this replaces the

standard RMAP status codes described in Table 7-15[RD3], see individual commands for

specific status code interpretations.

 Table 7-15: Status code

Code Numeric value

- 0

EIO 5

EEXIST 17

EINVAL 22

ENOSPC 28

EBADMSG 77

EALREADY 120

 7.12.4. RMAP input address details

The chapters below contain the detailed information on the data accesses to the given

RMAP addresses.

7.12.4.1. TMStatus

Reads the latest telemetry status.

Table 7-16: TMStatus data

Byte Type Description

0 UINT8
0x00 – No Error
0x01 – FIFO error.

1 UINT8 0x00 – No transfer in progress.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 115 of 156

0x01 – Transfer in progress.

RMAP reply status:

Table 7-17: TMStatus reply status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been

initialized.

EIO I/O error. The TM device cannot be accessed

7.12.4.2. TMConfig

Reads the telemetry configuration.

Table 7-18: TMConfig data

Byte Type Description

0-1 UINT16 Telemetry clock bitrate divisor value, default 25.

2 UINT8
Telemetry Control
0x00 – Disabled
0x01 – Enabled (default)

3 UINT8
OCF Control
0x00 – Disabled
0x01 – Enabled (default)

4 UINT8
Frame Error Counter Field Control
0x00 – Disabled
0x01 – Enabled (default)

5 UINT8
Master Channel Frame Count Control
0x00 – Disabled
0x01 – Enabled (default)

6 UINT8
Idle Frame Control
0x00 – Disabled
0x01 – Enabled (default)

7 UINT8
Convolutional Encoding Control
0x00 – Disabled (default)
0x01 – Enabled

8 UINT8
Pseudo Randomization Control
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status:

Table 7-19: TMConfig reply status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized.
EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 116 of 156

7.12.4.3. TMControl

Controls generation of telemetry.

Table 7-20: TMControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-21: TMControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range
EIO I/O error. The TM device cannot be accessed

7.12.4.4. TMFEControl

Controls Frame Error Control Field inclusion for transfer frames.

Table 7-22: TMFEControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-23: TMFEControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range
EIO I/O error. The TM device cannot be accessed

7.12.4.5. TMMCFCControl

Controls the Master Channel Frame Counter generation for transfer frames.

Table 7-24: TMMCFCControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 117 of 156

RMAP reply status (if a reply is requested):

Table 7-25: TMMCFCControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range
EIO I/O error. The TM device cannot be accessed

7.12.4.6. TMIFControl

Controls the Idle Frame generation for transfer frames.

Table 7-26: TMIFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is a requested):

Table 7-27: TMIFControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.4.7. TMPRControl

Controls the Pseudo Randomization for transfer frames.

Table 7-28: TMPRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-29: TMPRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 118 of 156

7.12.4.8. TMOCFControl

Controls Operational Control Field inclusion in TM Transfer frames.

Table 7-30: TMOCFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-31: TMOCFControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.4.9. TMCEControl

Controls the Convolutional Encoding for transfer frames.

Note! Convolutional encoding doubles both the amount of telemetry data sent and also the

telemetry clock frequency, keeping the same net datarate as without.

Table 7-32: TMCEControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-33: TMCEControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.4.10. TMBRControl

Sets the telemetry clock frequency divisor.

The telemetry clock is fed to the radio. The frequency of the telemetry clock is the system

clock (50 MHz) divided by the divisor. E.g. if the divisor value is set to 25, the telemetry clock

frequency is 2 MHz

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 119 of 156

Note! If the convolutional encoding is disabled, as defined in subchapter 7.12.4.9, the

telemetry clock is divided by two, i.e. 1 MHz from example above, to keep the net data rate

the same.

Table 7-34: TMBRControl data

Byte Type Description

0-1 UINT16
Bitrate divisor value (default 25). Minimum divisor is 4,
maximum is 255.

RMAP reply status (if a reply is requested):

Table 7-35: TMBRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.12.4.11. TMTSControl

Configures the timestamping for transfer frames.

Table 7-36: TMTSControl data

Byte Type Description

0 UINT8

0x00 – No timestamping (default)
0x01 – Take a timestamp every time frame sent
0x02 – Take a timestamp every 2

nd
 time frame sent

…
0xFF – Take a timestamp every 255

th
 time frame sent

RMAP reply status (if a reply is requested):

Table 7-37: TMTSControl status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed.

7.12.4.12. TMTSStatus

The latest timestamp of telemetry sent on virtual channel 0. Timestamping needs to be

enabled before timestamps can be read. See 7.12.4.14.

Table 7-38: TMTSStatus data

Byte Type Description

0 UINT32 Seconds counter sampled when the frame event triggered

4 UINT16 Subseconds counter sampled when the frame event triggered

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 120 of 156

RMAP reply status:

Table 7-39: TMTSStatus status codes

Status code Description

0 Success.
EINVAL Timestamping is not enabled. See 7.12.4.11

EIO I/O error. The TM device cannot be accessed

7.12.4.13. TMSend

Sends telemetry to the TM path on virtual channel 0. The data must contain at least one

telemetry PUS Packet.

Table 7-40: TMSend data

Byte Type Description

0 - nn Array of UINT8 Data containing PUS packet(s).

RMAP reply status (if a reply is requested):

Table 7-41: TMSend status codes

Status code Description

0 Success.
EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.12.4.14. TCStatus

Reads current telecommand status.

Table 7-42: TCStatus data

Byte Type Description

0 UINT32 CLCW word of the last received telecommand.

4 UINT8
Number of missed TC frames due to overflow. Wraps after
0xFF.

5 UINT8 Number of rejected CPDU commands. Wraps after 0xFF.

6 UINT8 Number of rejected telecommands. Wraps after 0xFF.

7 UINT8
Number of parity errors generated by checksums in the
telecommand path. Wraps after 0xFF.

8 UINT8
Number of received telecommands. Both TC and CPDU are
counted. Wraps after 0xFF.

9 UINT16

Last CPDU pulse command. Logic 1 indicates the last activated
line.
Bit 15:12 – Unused
Bit 11:0 – Line 11:0

11 UINT8 Number of accepted CPDU commands. Wraps after 0x0F.

12 UINT8
Derandomizer setting
0x00 – Disabled.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 121 of 156

0x01 – Enabled.

13 UINT16 Length of the last received TC frame

RMAP reply status:

Table 7-43: TCStatus status codes

Status code Description

0 Success.
EINVAL The driver for the TC device has not been initialized.

EIO I/O error. The TC device cannot be accessed

7.12.4.15. TCDRControl

Configures derandomization for telecommand frames.

Table 7-44: TCDRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-45: TCDRControl status codes

Status code Description

0 Success.
EINVAL The driver for the TC device has not been initialized.

EIO I/O error. The TC device cannot be accessed

7.12.4.16. HKData

Reads the housekeeping data.

Table 7-46: HKData data

Byte Type Description

0 UINT32 SCET Seconds

4 UINT16 SCET Subseconds

6 UINT16 Input voltage [mV]

8 UINT16 Regulated 3V3 voltage [mV]

10 UINT16 Regulated 2V5 voltage [mV]

12 UINT16 Regulated 1V2 voltage [mV]

14 UINT16 Input current [mA]

16 INT32 Temperature [mºC]

20 UINT8 S/W version 0-padding

21 UINT8 S/W major version

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 122 of 156

22 UINT8 S/W minor version

23 UINT8 S/W patch version

24 UINT8 CPU Parity Errors

25 UINT8 Watchdog trips

26 UINT8 Critical (CPU) SDRAM EDAC Single Errors

27 UINT8 Other SDRAM EDAC Single Errors

28 UINT8 Critical (CPU) SDRAM EDAC Multiple Errors

29 UINT8 Other SDRAM EDAC Multiple Errors

RMAP reply status:

Table 7-47: HKData status codes

Status code Description

0 Success.
EINVAL The driver for the HK device has not been initialized.

EIO I/O error. The HK device cannot be accessed

7.12.4.17. SCETTime

Reads/sets the SCET time.

Setting the SCET time is only possible when the PPS is considered qualified, see 7.7 for

details. If set, the seconds value will be updated at the next PPS, hence the seconds value

should normally be the current seconds count + 1.

The subseconds value is ignored for write commands.

Table 7-48: SCETTime data

Byte Type Description

0 UINT32 SCETSeconds
4 UINT16 SCETSubSeconds

RMAP reply status (if a reply is requested):

Table 7-49: SCETTime status codes

Status code Description

0 Success.

EINVAL Insufficient command length.

EIO I/O error. Reading from the SCET device failed.

7.12.4.18. UARTCommand

Send a command on the specified UART interface.

Table 7-50: UARTCommand data

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 123 of 156

Byte Type Description

0 - nn Array of UINT8 UART command data

RMAP reply status (if a reply is requested):

Table 7-51: UARTCommand status codes

Status code Description

0 Success.
EINVAL The driver for the UART device has not been

initialized.

EIO I/O error. The UARTdevice cannot be accessed

7.12.4.19. MMData

Reads or writes data from/to a partition.

7.12.4.19.1. Read
The address given in the RMAP command defines the starting byte address of the read and

the RMAP data size determines the length of the read in bytes.

If no data is available at the starting address an error will be reported. If less than the

requested data is available, a short read will be returned with an RMAP error status

indication. If read errors occur based on uncorrectable read errors, the data will be returned

along with an RMAP error status indication.

Reads which pass the end of the partition logical address space will automatically wrap.

7.12.4.19.2. Write
Writes to direct partitions needs to specify the starting address and the size via the RMAP

address and RMAP data size, the size needs to be a multiple of the page size (16 kbytes). If

the write would overwrite existing data or write at an invalid location, an RMAP error status

will be reported and no data will be written.

Writes to continuous or circular partitions needs to specify the size via the RMAP data size,

and must indicate use of the write pointer by setting the address to 0.

Writes which pass the end of the partition logical address space will automatically wrap.

For direct and continuous partitions, if bad blocks occur during a write which causes

available blocks to run out, the remainder of the write will be discarded and a pending copy

operation will be set. In order to avoid data loss, freeing of enough data in order to provide

two new unused blocks should be performed as soon as possible, which will allow the copy

operation to be retried. Confirmation of the success of the copy operation should be done by

verifying that the available space is equal to one block, otherwise the freeing and copy

success confirmation procedure should be repeated. For circular partitions, the copy retrying

is taken care of automatically.

The amount of data that was written and the amount of data that was discarded in case of a

write causing available blocks to run out on direct or continuous partitions can be found by

examining the data ranges.

Writing to a circular mode partition that is being downloaded is not allowed.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 124 of 156

The data field of the read/write RMAP message in Table 7-52 contains raw data written to or

read from the partition.

Table 7-52: MMData data

Byte Type Description

0 - nn Array of UINT8 Data

RMAP reply status (if a reply is requested):

Table 7-53: MMData data status codes

Status code Description

0 Success.

ENOSPC Write: Not enough space on partition (may have

been caused by bad blocks, see suggested handling

above).

Read: Not enough data on partition. Note! It's

allowed to ask for more read data than is available

on the partition. Available data will be returned

(stating the length in the RMAP reply packet)

together with this error code.

EINVAL Invalid partition number, or

Attempt to write partial page to direct mode partition,

or

Address is not 0 when writing to continuous or

circular partition, or

Length is greater than INT32_MAX.

EEXIST Write operation to direct mode partition would

overwrite existing data.

EALREADY Write to circular partition that is being downloaded.

7.12.4.20. MMDataRange

This command will return all data address ranges where data is written in this partition, see

Table 7-54. The range information should interpreted differently for different partition modes.

Continuous and circular mode - Only one range will be reported, corresponding to the free

and write pointers. Empty and full partitions will show the free and write pointers having the

same value, use the MMPartitionSpace command to get size status.

Direct mode - This is a collection of ranges. Empty partitions will return an empty range table

(RMAP reply data of length 0). The ranges will represent the start and end of each

continuous data segment in the partition.

Ranges will not exactly match the currently unavailable space due to partially freed (but not

yet erased) blocks.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 125 of 156

The start address of the range is inclusive, the end address of the range is excusive.

 Table 7-54: MMDataRange data

Byte Type Description

0-3 UINT32 Start address of first data range.

4-7 UINT32 End address of first data range (exclusive).

8-11 UINT32 Start address of second data range (optional).

12-15 UINT32 End address of second data range (exclusive) (optional).

.

.

.

.

.

.

.

.

.

RMAP reply status:

Table 7-55: MMDataRange status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.12.4.21. MMPartitionConfig

Reads the current partition configuration (see 7.9.1), the RMAP reply message data format

is described in Table 7-56.

The available blocks in the flash mass memory ranges from 0 to 8191.

Table 7-56: MMPartitionConfig data

Byte Type Description

0 UINT32 Starting block number of the partition.

4 UINT32 Ending block number of the partition (inclusive).

8 UINT8

Partition mode.
0 – Direct
1 – Continuous
2 – Circular

9 UINT8
Specifies type of data stored on the partition.
0 – PUS Packets
1 – Raw Data (not supported for download)

10 UINT8
Specifies which virtual channel (0 or 1) to be used for
downloading of the data in the partition.

11 UINT8

Segment size for the partition.
1 - 16 kbyte
2 - 32 kbyte
3 - 48 kbyte
4 - 64 kbyte

12 UINT32
The data source identifier for the partition. Can be used to set a
custom identifier of a data producer to a partition. Setting of this
value is not required to successfully configure a partition.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 126 of 156

RMAP reply status:

Table 7-57: MMPartitionConfig data status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.12.4.22. MMPartitionSpace

Gets the amount of free space in a partition.

Note that due to the nature of the flash memory, as memory is freed, the space will become

free for writing only in leaps as the free operation is used up to a block boundary. This

means that a partition can have a discrepancy between reported free space and expected

free space of maximum one block.

The reported space for direct partitions will correspond to the total space of every available

unused page, minus any freed bytes which belongs to a block which has not yet been fully

freed.

The reported space for continuous and circular partitions will correspond to the total space

of every unused byte, minus the data offset in the initial write block.

For continuous/circular partitions, since the write pointer is never reset it may not be located

at the beginning of a block when the initial write occurs or is about to occur, hence the

amount of free space may not correspond exactly to the amount of available fully freed

blocks. It is possible (but not recommended during normal operation) to re-synchronize the

write pointer by writing exactly the amount needed to end up at the start of a block, and then

erase up to the write pointer. This will cause the free space to be exactly equal to the

amount of available blocks (or the partition maximum logical address space limit).

Table 7-58 MMPartitionSpace data

Byte Type Description

0-7 UINT64 Available size in bytes.

RMAP reply status:

Table 7-59: MMPartitionSpace status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

7.12.4.23. MMDownloadPartitionData

Downloads data of the requested length from the partition using the virtual channel set in the

partition configuration (see 7.9.1.4). Download commands will be processed one at a time

and any prioritizations between different partitions must be handled by sending the

download commands in priority order. For direct mode, all download data need to be in a

continuous address area (i.e. same data range) or the download will stop when reaching the

end of a continuous area even though the download ordered is larger.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 127 of 156

In case an invalid PUS packet length is encountered in a memory segment during download,

the rest of the segment will be skipped and the download will continue with the next

segment.

If a download is started at the end of a partition that is simultaneously written to and the

amount of data is beyond the current content of the partition from that point, the download

will download only the data available at the time that the download command is issued,

regardless of the data written to the partition during download.

Data will normally be downloaded in chunks equal to the segment size set for the partition.

It's possible to start and end a download on an uneven segment boundary, but then it's the

responsibility of the user to make sure it starts and ends on even PUS packet boundaries.

See also information in chapter 7.9.1.2 on padding of data.

A download will not automatically free any data.

The RMAP write command data format is described in Table 7-60.

Table 7-60 MMDownloadPartitionData data.

Byte Type Description

0-3 UINT32 Address of the data to download

4-11 UINT64 Length in bytes to download

The RMAP reply status (if a reply is requested) will be the first error encountered during a

single segment download, i.e. all segment downloads has to be sent without fault for

Success to be returned.

Table 7-61 MMDownloadPartitionData data status codes

Status code Description

0 Success.

ENOSPC Not enough data on partition. Note! It's allowed to

request download of more data than is available on

the partition. This error code will then be returned

and to see the actual amount of data downloaded,

use the MMDownloadStatus command.

EINVAL Invalid partition number.

EIO I/O error. Failed to access storage or NVRAM.

EALREADY A download session is already in progress on this

partition.

EBADMSG Data was not successfully downloaded on downlink.

7.12.4.24. MMFree

Frees memory of a partition. The MMFree operation behaves differently depending on the

mode of the partition targeted.

Direct mode - The address and length given in the RMAP command together defines which

memory area should be freed.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 128 of 156

Continuous and circular mode - The free pointer position together with the length given in

the RMAP command defines which memory area should be freed and the address field is

ignored. This operation will also move the free pointer forward.

Trying to free more memory than is available is a valid use case and can for example. be

used to empty a partition by issuing an MMFree call with the maximum partition length.

If a free to a direct partition starts inside used data and not at a block boundary, the

operation will free nothing and an RMAP error status will be reported, since such a free

could create an illegal address gap. Freeing the whole partition is a special case and still

allowed from any starting address.

Frees which pass the end of the partition logical address space will automatically wrap.

Frees may start at unused addresses.

See also 7.9 for an illustration of how free affects the actual amount of memory free for

writes.

Note that MMFree on a partition where a download is in progress is not allowed.

The RMAP write command data format is described in Table 7-62.

Table 7-62: MMFree data

Byte Type Description

0-3 UINT32 Address of memory to free.

4-11 UINT64 Length of memory to free in bytes.

RMAP reply status (if a reply is requested):

Table 7-63: MMFree status codes

Status code Description

0 Success.

EINVAL Invalid partition number, or
address is not 0 for continuous/circular partition.

EEXIST Operation could create illegal address gap inside
block.

EALREADY A download is in progress on this partition.

7.12.4.25. MMDownloadStatus

Returns the amount of data downloaded for this partition during the last completed

download.

Table 7-64: MMDownloadStatus data

Byte Type Description

0-7 UINT64 Amount of data downloaded.

RMAP reply status:

Table 7-65: MMFree status codes

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 129 of 156

Status code Description

0 Success.

EINVAL Invalid partition number.

EIO I/O error. Failed to access storage or NVRAM.

7.12.4.26. MMStopDownloadData

This command can be sent to stop a current download for a partition previously started by

the MMDownloadPartitionData command.

RMAP reply status (if a reply is requested):

Table 7-66 MMStopDownload status codes

Status code Description

0 Success.

EINVAL Invalid partition number.

 7.12.5. RMAP output address details

7.12.5.1. TCCommand

A fully formed PUS packet according to [RD4] containing a TC packet to be routed.

7.12.5.2. UARTData

Routed data from UART.

Table 7-67: UARTData data

Byte Type Description

0 - nn Array of UINT8 Data received on UART

7.13. Limitations

For performance reasons, the current TCM-S release calculates checksums on neither the

incoming nor the outgoing RMAP/SpaceWire packets.

The mass memory maximum partition size is 4 Gbytes. However there is no limit on the

number of blocks assigned for a specific partition, allowing a configuration to compensate for

any possible loss in size due to bad blocks.

The mass memory doesn't support download of data from partitions of type raw.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 130 of 156

8. System-on-Chip definitions

In this section the peripherals, memory sections and interrupts defined for the SoC for the

Sirius OBC and Sirius TCM are described

8.1. Memory mapping

Table 8-1 - Sirius memory structure definition

Memory Base Address Function

0xF0000000 Boot ROM

0xE0000000 CCSDS (Sirius TCM only)

0xCB000000 Watchdog

0xCA000000 SpaceCraft Elapsed Time

0xC1000000 SoC info

0xC0000000 Error Manager

0xBD000000 - 0xBF000000 Reserved

0xBC000000 Reserved for SPI interface 1

0xBB000000 Reserved for SPI interface 0

0xBA000000 GPIO

0xB6000000 Reserved for ADC controller 1

0xB5000000 ADC controller 0

0xB4000000 Reserved

0xB3000000 Mass memory flash controller (Sirius TCM only)

0xB2000000 System flash controller

0xB1000000 Reserved

0xB0000000 NVRAM controller

0xAC000000 Reserved for PCIe

0xAB000000 Reserved for CAN

0xAA000000 Reserved for USB

0xA9000000 -0xA3000000 Reserved

0xA2000000 Reserved for redundant SpaceWire

0xA1000000 SpaceWire

0xA0000000 Reserved for Ethernet MAC

0x9C000000 -0x9F000000 Reserved

0x9B000000 Reserved for I2C interface 1

0x9A000000 Reserved for I2C interface 0

0x99000000 Reserved

0x98000000 UART 7 (Safe bus functionality, RS485)

0x97000000 UART 6 (PSU control functionality, RS485)

0x96000000 Reserved for High speed UART w. DMA

0x95000000 UART 4 (Routed to LVDS HK on Sirius TCM)

0x94000000 UART 3 (Routed to RS422 HK on Sirius TCM)

0x93000000 UART 2

0x92000000 UART 1

0x91000000 UART 0

0x90000000 UART Debug (LVTTL)

0x80000000 - 0x8F000000 Reserved for customer IP

0x00000000 SDRAM memory including EDAC (64 MB)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 131 of 156

8.2. Interrupt sources

The following interrupts are available to the processor:

Table 8-2 - Sirius interrupt assignment

Interrupt no. Function Description

0-1 Reserved Internal use

2 UART Debug UART interrupt signal

3 UART 0 UART interrupt signal

4 UART 1 UART interrupt signal

5 UART 2 UART interrupt signal

6 UART 3 UART interrupt signal

7 UART 4 UART interrupt signal

8 UART 5 UART interrupt signal

9 UART 6 UART interrupt signal

10 UART 7 UART interrupt signal

11 ADC controller 0 ADC controller 0 interrupt signal

12 - Avaliable (reserved for ADC controller 1)

13 - Available (reserved for I2C interface 0)

14 - Avaliable (reserved for I2C interface 1)

15 - Avaliable

16 - Avaliable

17 SCET SCET interrupt signal

18 Error manager Error manager interrupt signal

19 - Available (reserved for redundant SpaceWire)

20 System flash System flash controller interrupt signal

21 Mass memory Mass memory flash controller interrupt signal

22 Spacewire SpaceWire interrupt signal

23 CCSDS CCSDS interrupt signal

24 - Available (reserved for Ethernet)

25 GPIO GPIO interrupt signal

26 - Available (reserved for SPI 0)

27 - Available (reserved for SPI 1)

28 - Avaliable (reserved for custom adaptation)

29 - Avaliable (reserved for custom adaptation)

30 - Avaliable (reserved for custom adaptation)

8.3. SCET timestamp trigger sources

Some of the peripherals in the SoC have the capability of sending a timestamp trigger signal

on specific events. These signals are routed to the SCET which has a number of general

purpose trigger registers (GP) where a snapshot of the SCET counter is stored for later

retrieval by application software, see chapter 5.4. The tables below detail the mapping

between the trigger signals and the general purpose trigger registers in the two products.

Table 8-3 General purpose trigger map

GP number Trigger source Description

0 power_loss
Triggered when the voltage drops below a certain level, i.e. power is
lost to the board

1 ccsds
Triggered when telemetry sending on virtual channel 0 starts
(Sirius TCM only)

2 gpio
Triggered when one of the pins input changes states and edge
detection and timestamping are enabled

3 adc Triggered when an ADC conversion is started

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 132 of 156

8.4. Boot images and boot procedure

 8.4.1. Description

The bootrom is a small piece of software built into a read-only memory inside the System-

on-Chip. Its main function is to load a software image from the system flash to RAM and

start it by jumping to the reset vector (0x100). To make the system fault tolerant, there are

two logical images of the main software, designated Updated and Safe. Each logical image

is stored in three physical copies distributed over the system flash. By default the bootrom

will first try to load the Updated image and if that fails fall back to the Safe image. The image

to load can also be selected by setting the Next FW register in the Error Manager and doing

a soft reset (see section 5.3 for more details). Boot order of the logical images and their

physical copies is shown in Figure 8-1.

 8.4.2. Block diagram

Figure 8-1 Software images in flash

 8.4.3. Usage description

The locations in the system flash where the bootrom looks for software images are given in

Table 8.4. The first two 32-bit words of the image are expected to be a header with image

size and an XOR checksum, see Table 8.5. If the size falls within the accepted range, the

bootrom loads the image to RAM while verifying the checksum. Both the image size check

and the checksum is on top of the automatic EDAC on all flash data. The EDAC is handled

by hardware and calculates one extra byte of redundancy data for each true data byte

written to flash.

The bootrom loads a table of bad blocks from the NVRAM. If a flash block within the range

to load from is marked as bad in the table, that block is assumed to have been skipped

when the image was programmed, so the bootrom continues reading from the next block. If

the image could be loaded from flash without error and its checksum is correct, the bootrom

jumps to the reset vector in RAM. If there is a flash error when loading, if the checksum is

incorrect, or if the image has an invalid size, the bootrom steps to the next image by

changing the Next FW field in the Error Manager and doing a soft reset. If the image being

loaded is the last available the bootrom will ignore errors and attempt to start it anyway, in

order to always have a chance of a working system. To indicate to the software which image

and copy is loaded, the Running FW field in the Error Manager is updated before handing

over execution.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 133 of 156

Table 8.4 Software image locations

Image Flash page number

Safe copy #1 0x00000

Safe copy #2 0x20000

Safe copy #3 0x40000

Updated copy #1 0x80000

Updated copy #2 0xA0000

Updated copy #3 0xC0000

Table 8.5 Software image header

Field Size Description

Image size 32 bits

The size in bytes of the software image, not
including the header, stored as a 32-bit
unsigned integer. A software image can be
264 Bytes – 63 MB.

Checksum 32 bits

A cumulative XOR of all 32-bit words in the
image including the size, so that a cumulative
XOR of the whole image and header (including
checksum) shall evaluate to 0.

 8.4.4. Limitations

If the image size is out of range for Safe image copy #1 (the final fallback image), the

bootrom will not be able to load it and the fallback option of handing execution to a damaged

software image if no other is available cannot be used.

8.5. Reset behaviour

The SoC has a clock and reset block that synchronizes the external asynchronous reset to

each clock domain. The internal soft reset, which can be commanded by software, follows

the same design philosophy i.e. is also synchronized into the clock domain where it’s used.

8.6. General synchronize method

All signals passing clock domain crossings are either handled via asynchronous two port

FIFOs or synchronized into the other clock domain. Two flip-flops in series are used to

reduce possible metastability effects. All external signals are synchronized into its clock

domain following the above method.

8.7. Pulse command inputs

The pulse command inputs on the Sirius products can be used to force a board to reboot

from a specific image. Paired with the ability of the Sirius TCM to decode PUS-2 CPDU

telecommands without software interaction and issue pulse commands, this provides a

means to reset malfunctioning boards by direct telecommand from ground as a last resort.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 134 of 156

Each board has two pulse command inputs. Input 0 resets the board and loads the updated

image while input 1 resets the board and loads the safe image. Both require an active-high

pulse length between 20 - 40 ms to be valid. If, for some reason, both pulse command

inputs would be active at the same time, the pulse on input 0 takes precedence.

8.8. SoC information map

The information included in the SoC info block for the Sirius products can be found in Table

8-6. This information must be fetched from the gdb prompt and can be used as a check of

which SoC version that is flashed on the board. In a connected gdb prompt type:

x/3xw 0xC1000000

Table 8-6 Sirius SoC info

Base address
number

Function Description

0x0 TIME_STAMP
When building the SoC, a Unix timestamp is taken and put into the
system. It is made as a 32 bit vector indicating seconds since 1970-01-
01 (UTC).

0x4 PRODUCT_ID

 0x00

 0x01

OBC S BB
OBC SR – With SPW router 3 ports

 0x08

 0x09

OBC S FM
OBC SR FM – With SPW router 3 ports

 0x10

 0x11

TCM S BB
TCM S R – With SPW router 3 ports

 0x18

 0x19

TCM S FM
TCM SR FM – With SPW router 3 ports

 0x20-
0xFF

 Reserved

0x8 SOC_VERSION

Follows the methodology release 0.1.0 = Release-X.Y.Z,
First eight bits are reserved: 0x00XXYYZZ
X represents a major number, 8 bits
Y represents a minor number, 8 bits
Z represents a patch number, 8 bits
Representated in 32 bits.

Example: 0x00010203 = 1.2.3
Major version 1
Minor version 2
Patch number 3

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 135 of 156

9. Software upload

9.1. Description

During the lifetime of a satellite, the on-board software might need adjustments as bugs are

detected or the mission parameters adjusted. This module tries to solve that by providing a

means for updating the on-board software in orbit. The OBC-S and the TCM-S are both

prepared for this functionality by having two software images, where writing to the first one

requires the debugger to be connected, thus making only the second one available for

updates in orbit.

Updating a flight image entails four types of operations. First the actual data transfer and

commanding from earth, which requires the software upload mechanism to be compliant

with the CCSDS standard for TC and where the principal recipient would be the TCM-S,

regardless of the end target. The TCM-S simply acts as a router in this case, routing the

PUS command to the intended source based on the PUS APID and the TCM-S routing

table.Second would be the mechanism for distributing the image upload data to different

recipients in a data handling system (i.e. also the TCM-S itself) using the PUS extension of

the CCSDS standard (see [RD4]). Third would be the assembly of all telecommands, with a

data fragment each, into a full or partial image for update with verification. Finally, the fourth

would be the actual update of the physical flash image.

The descriptions in sections 2.3 and 2.4 will cover the two middle operations. The first (inital

CCSDS handling) and the last (flash operations) are covered in [RD2]. The picture in

Figure 9-1 shows the intended control flow when commanding the software update from

ground.

9.2. Block diagram

Figure 9-1 The intended sofware upload command flow

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 136 of 156

9.3. CCSDS API – custom PUS service 130

This service is provided to allow updates to the flight software on a node in a data handling

system using ÅAC Microtec components, but can be used for any type of on-board

computer.The subtypes consist of a set of commands.

All service subtypes will report telecommand acceptance as PUS service (1,1/2) and

telecommand execution complete as PUS services (1, 7/8) (see [RD4]) if requested in the

telecommand PUS header. All reports are sent on the live telemetry virtual channel.

Recommended usage is to always request acceptance and execution complete reports so

that the Ground Segment can keep track of the upload process.

All checksum parameters in the service are CRC32 with polynomial 0x04C11DB7 and seed

value 0.

The Telecommand Acceptance Report - Failure will use the standard error codes according

to table Table 9.1 without any parameters (see [RD4]).

Telecommand Execution Completed Report -Failure values are listed under each subtype

heading. Errors noted as ’critical’ will cause the whole software upload process to be

aborted.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 137 of 156

Table 9.1 Telecommand acceptance failure error types

Error code Data type Error description

0 UINT8 Illegal APID (PAC error)

1 UINT8 Incomplete or invalid length packet

2 UINT8 Incorrect checksum

3 UINT8 Illegal packet type

4 UINT8 Illegal packet subtype

5 UINT8

Illegal or inconsistent application

data (unused)

 9.3.1. Subtype 1 – Image transfer start

A telecommand using this subtype has to be sent first before sending any image data and

will set up for a new image upload. It can also be used to abort an existing upload

transaction during the data transfer phase, by simply initializing a new one. The data format

is specified in table 2.5 below.

Minimum image size is currently 272 bytes including header, and maximum image size is 16

Mbyte.

Table 9.2 Image transfer start command data structure

Total number of bytes in image Reserved (zero) Reserved (zero)

UINT32 UINT32 UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 9.3 in case of a failure.
Table 9.3 Image transfer start telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Imvalid image size

EBUSY UINT8
Unable to open System Flash for
writing

 9.3.2. Subtype 2 – Image data

This subtype transports data segments of the actual flight software image. Each segment

can be maximum 1000 bytes long (to avoid splitting packets over several frames), and all

segments except the last shall be of maximum length. The data format is specified in Table

9.4 below, with the data length given in the PUS header.

Table 9.4 Image data command structure

Segment number Segment length Segment data

UINT16 UINT16 UINT8 UINT8 UINT8 …

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 138 of 156

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 9.5 in case of a failure.
Table 9.5 Image data telecommand execution failure codes

Error code Data type Error description

EALREADY UINT8

This segment number has already

been added

EINVAL UINT8

Segment number or segment

length is out of bounds

EIO UINT8

Read/write error in intermediate

storage area of flash (critical)

ENOSPC UINT8

Out of non-bad blocks in

intermediate storage area of flash

(critical)

ENOENT UINT8 No upload in progress

 9.3.3. Subtype 3 – Verify uploaded image

This subtype calculates and compares the checksum of the uploaded software image with

the checksum set in the command’s payload data, see Table 9.6
Table 9.6 Verify uploaded image argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 9.7 in case of a failure.
Table 9.7 Verify uploaded image telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8

Checksum argument doesn’t match

image checksum

ENOENT UINT8 No upload in progress

 9.3.4. Subtype 4 – Write uploaded image

To actually do the updating of the flight image, this command is sent to the service provider

which will then write the image to flash. To safe-guard against accidental update

commanding, a correct CRC is required as input argument for this command, see Table 9.8

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 139 of 156

Table 9.8 Write image command argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 9.9 in case of a failure.
Table 9.9 Write image telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8

Checksum argument doesn’t match

image checksum

ENOSPC UINT8

Out of non-bad blocks in flash

(critical)

ENOENT UINT8 No upload in progress

 9.3.5. Subtype 5 – Calculate CRC in flash

This command allows the CRC calculation of an image copy stored in flash. This can be

used for extra verification after update of an image or whenever the flight image copies

needs a verification. The telecommand takes the image copy number as argument (max

value 6), seeTable 9.10. Image copy number 1 - 3 is for the (non-updateable) safe image

and 4 - 6 covers the updated image copies.
Table 9.10 Calculate CRC in flash command argument

Image copy number

UINT8

A telecommand execution complete report (if requested in the PUS header) will return the

values listed in Table 9.11 in case of a failure.
Table 9.11 Calculate flash CRC telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8

Image number too high (maximum

6)

EBUSY UINT8

Unable to open System Flash

device

Furthermore, upon execution completed, a report will be generated using the same type and

subtype as for the telecommand. This report will contain the calculated checksum, see Table

9.12

Table 9.12 Calculated flash CRC report

Image copy number Checksum

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 140 of 156

UINT8 UINT32

9.4. Software API

This API depicts the functions available on the level below the PUS API and share many

similarities with these. In many cases, the PUS API simply handle the PUS packaging and

validation and maps almost directly into the software API functions.

 9.4.1. int32_t swu_init(…)

This function initializes all internal parameters for a new image upload. Calling init again

while an upload is in progress will cause the existing upload to be aborted. A valid image

must be at least 272 bytes and at most 16777216 bytes including header, but setting the

argument to 0 is also allowed in order to abort an upload without starting a new one.

Argument name Type Direction Decription

total uint32_t in
Total size of the uploaded image

Return value Description

0 Success

-EINVAL Invalid image size

-EBUSY Unable to open System Flash for writing

 9.4.2. int32_t swu_segment_add(…)

This function is used for putting together data segments into a full image. Use the function

swu check to get current upload status.

Argument name Type Direction Decription

seg_num uint16_t in Number of this data segment

length uint16_t in Length of this data segment

data uint8_t * in Data of the added segment

Return value Description

0 Success

-EALREADY This segment has already been added

-EINVAL
Segment number or segment length is invalid, or
data is a NULL pointer

-EIO
Read/write error in intermediate storage area of
flash (critical)

-ENOSPC
Out of non-flash blocks in intermediate storage
area of slash (critical)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 141 of 156

-ENOENT No upload in progress

 9.4.3. int32_t swu_check(…)

This function can be used to check the status of a current image upload. If all segments

have been added, it will calculate the checksum of the entire image. If not all segments have

beenadded, it will instead return an error code and an array of the ten first missing segments

(maximum).

Argument name Type Direction Decription

checksum uint32_t * out Data checksum if the image is complete. 0 otherwise

mlist uint16_t * out

An array of the first 10 missing segments. If the image is

complete, no data will be entered into this variable. If only

the checksum is of interest this may be a NULL pointer.

mlength uint16_t * out

The amount of elements in the missing segment array. If

only the checksum is of interest this may be a NULL

pointer.

Return value Description

0 Success

-ENODATA Not enough data - some data segments missing

-ENOENT No upload in progress

-EINVAL NULL pointer in arguments

 9.4.4. int32_t swu_update(…)

This function will perform the actual write of the image to flash. If one or more of the boot

image areas in flash is out of space due to too many bad blocks an error will be returned,

but the copies with enough space will still be written.

Argument name Type Direction Decription

checksum uint32_t in

Externally calculated checksum (checked against an

internal calculation before update)

Return value Description

0 Success

-EINVAL

Checksum argument doesn’t match image

checksum

-EIO Error when accessing flash

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 142 of 156

-ENOSPC

Out of non-bad blocks in one or more of the boot

image areas in flash

-ENOENT No upload in progress

 9.4.5. int32_t swu_flash_check(…)

This function will calculate the checksum of an image in flash for specific verification

purposes. The maximum image number is 6 and number 1 - 3 maps to the safe image

copies and number 4 - 6 maps to the updated image copies. If the argument is out of

bounds of the number of images, an error return code will be returned instead.

Argument name Type Direction Decription

image_number uint8_t in Image number in flash to calculate the checksum of

checksum uint32_t * out The calculated checksum.

Return value Description

0 Success

-EINVAL

Image number is too small or large, or checksum

is a NULL pointer

-EIO Read error in image

-EBUSY Unable to open flash device file

9.5. Usage description

A user of the software upload module can either let the module handle all PUS commanding

through the PUS API (see section 9.3) or handle all PUS packetizing and reporting internally

and only hook into the functional interface described in section 9.4. A code example is

provided in the directory ..\src\example

9.6. Limitations

The maximum size of an image for upload is 16 Mbytes.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 143 of 156

10. Connector interfaces

10.1. JTAG-RTL, FPGA-JTAG connector

The following pins are available on the ST60-10P connector, see Table 10-1.

Table 10-1 - JTAG pin-outs

Pin # Signal name Description

Pin 1 GND Ground

Pin 2 RTL-JTAG-TDI Test Data In, data shifted into the device.

Pin 3 RTL-JTAG-TRSTB Test Reset

Pin 4 VCC_3V3 Power supply

Pin 5 VCC_3V3 Power supply

Pin 6 RTL-JTAG-TMS Test Mode Select

Pin 7 Not connected -

Pin 8 RTL-JTAG-TDO Test Data Out, data shifted out of the device

Pin 9 GND Ground

Pin 10 RTL-JTAG-TCK Test Clock

10.2. DEBUG-SW

The following pins are available on the ST60-18P, connector. See Table 10-2.

Table 10-2 - Debug SW pin-outs

Pin # Signal name Description

Pin 1 ETH-DEBUG-RESET Reset

Pin 2 GND Ground

Pin 3 ETH-DEBUG-SYNC Not available

Pin 4 ETH-DEBUG-TX Not available

Pin 5 ETH-DEBUG-RX Not available

Pin 6 ETH-DEBUG-MDC Not available

Pin 7 ETH-DEBUG-MDIO Not available

Pin 8 ETH-DEBUG-CLK Not available

Pin 9 GND Ground

Pin 10 DEBUG-JTAG-TDI Debug Test data in

Pin 11 DEBUG-JTAG-RX Debug UART RX

Pin 12 DEBUG-JTAG-TX Debug UART TX

Pin 13 VCC_3V3 Power supply

Pin 14 DEBUG-JTAG-TMS Debug Test mode select

Pin 15 VCC_3V3 Power supply

Pin 16 DEBUG-JTAG-TDO Debug Test data out

Pin 17 ETH-DEBUG-DETECT Detect signal for the debugger

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 144 of 156

Pin 18 DEBUG-JTAG-TCK Debug Test clock

10.3. PWR – Power

The following pins are available on the nano-D9 socket connector, see Table 10-3

Table 10-3 - Power pin-outs

Pin # Signal name Description

Pin 1 VBUS+
Power input

Pin 2 VBUS+

Pin 3 UART7_RXTX_RS485_P
Safebus

Pin 4 UART7_RXTX_RS485_N

Pin 5 PPS_RS422_P
PPS Distribution

Pin 6 PPS_RS422_N

Pin 7 UART6_RXTX_RS485_P
PSU Control Interface

Pin 8 UART6_RXTX_RS485_N

Pin 9 GND

Ground Pin 10 GND

Pin 11 GND

Pin 12 PULSE0_I_RS422_P
Pulse Command 0

Pin 13 PULSE0_I_RS422_N

Pin 14 PULSE1_I_RS422_P
Pulse Command 1

Pin 15 PULSE1_I_RS422_N

10.4. SPW1 – Spacewire 1

The following pins are available on the nano-D9 socket connector, see Table 10-4

Table 10-4 - SPW1 pin-outs

Pin # Signal name Description

Pin 1 SPW1_DIN_LVDS_P Data in, Positive

Pin 2 SPW1_SIN_LVDS_P Strobe in, Positive

Pin 3 CGND Chassis ground

Pin 4 SPW1_SOUT_LVDS_N Strobe out, Negative

Pin 5 SPW1_DOUT_LVDS_N Data out, Negative

Pin 6 SPW1_DIN_LVDS_N Data in, Negative

Pin 7 SPW1_SIN_LVDS_N Strobe in, Negative

Pin 8 SPW1_SOUT_LVDS_P Strobe out, Positive

Pin 9 SPW1_DOUT_LVDS_P Data out, Positive

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 145 of 156

10.5. SPW2 – Spacewire 2

The following pins are available on the nano-D9 socket connector, see Table 10-5

Table 10-5 – SPW2 pin-outs

Pin # Signal name Description

Pin 1 SPW2_DIN_LVDS_P Data in, Positive

Pin 2 SPW2_SIN_LVDS_P Strobe in, Positive

Pin 3 CGND Chassis ground

Pin 4 SPW2_SOUT_LVDS_N Strobe out, Negative

Pin 5 SPW2_DOUT_LVDS_N Data out, Negative

Pin 6 SPW2_DIN_LVDS_N Data in, Negative

Pin 7 SPW2_SIN_LVDS_N Strobe in, Negative

Pin 8 SPW2_SOUT_LVDS_P Strobe out, Positive

Pin 9 SPW2_DOUT_LVDS_P Data out, Positive

10.6. ANALOG, Analog input and 3xGPIO (Sirius OBC only)

The following pins are available on the nanoD25 socket connector, see Table 10-6

Table 10-6 – ANALOGS, 4xGPIO pin-outs

Pin # Signal name Description

Pin 1 ADC_IN_0 Analog input channel

Pin 2 ADC_IN_1 Analog input channel

Pin 3 ADC_IN_2 Analog input channel

Pin 4 ADC_IN_3 Analog input channel

Pin 5 ADC_IN_4 Analog input channel

Pin 6 ADC_IN_5 Analog input channel

Pin 7 ADC_IN_6 Analog input channel

Pin 8 ADC_IN_7 Analog input channel

Pin 9 BIAS 2.5V bias voltage

Pin 10 BIAS 2.5V bias voltage

Pin 11 GPIO12 3.3V Digital I/O

Pin 12 GPIO13 3.3V Digital I/O

Pin 13 GPIO14 3.3V Digital I/O

Pin 14 GND Ground

Pin 15 GND Ground

Pin 16 GND Ground

Pin 17 GND Ground

Pin 18 GND Ground

Pin 19 GND Ground

Pin 20 GND Ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 146 of 156

Pin 21 GND Ground

Pin 22 BIAS 2.5V bias voltage

Pin 23 BIAS 2.5V bias voltage

Pin 24 GPIO15 3.3V Digital I/O

Pin 25 GND Ground

10.7. DIGITAL, PPS input and 12xGPIO

The following pins are available on the nanoD25 socket connector, see Table 10-7

Table 10-7 DIGITALS pinouts

Pin # Signal name Description

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Board ground

Pin 14 Not used Not used

Pin 15 Not used Not used

Pin 16 Not used Not used

Pin 17 Not used Not used

Pin 18 Not used Not used

Pin 19 Not used Not used

Pin 20 Not used Not used

Pin 21 Not used Not used

Pin 22 Not used Not used

Pin 23 PPS_INPUT_RS422_N Pulse per second, differential RS422 signal for time
synchronization Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Board ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 147 of 156

10.8. UART0-2 - RS422/485

The following pins are available on the nanoD15 socket connector, see Table 10-8

Table 10-8 COM02_RS4XX pinouts

Pin # Signal name Description

Pin 1 UART0_RX_RS4XX_P
UART 0 RX

Pin 2 UART0_RX_RS4XX_N

Pin 3 UART0_TX_RS4XX_P
UART 0 TX

Pin 4 UART0_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART1_RX_RS4XX_P
UART 1 RX

Pin 8 UART1_RX_RS4XX_N

Pin 9 UART1_TX_RS4XX_P
UART 1 TX

Pin 10 UART1_TX_RS4XX_N

Pin 11 UART2_RX_RS4XX_P
UART 2 RX

Pin 12 UART2_RX_RS4XX_N

Pin 13 UART2_TX_RS4XX_P
UART 2 TX

Pin 14 UART2_TX_RS4XX_N

Pin 15 GND Ground

10.9. UART3-5 - RS422/485 (Sirius OBC only)

The following pins are available on the nanoD15 socket connector, see Table 10-9

Table 10-9 COM35_RS4XX pin-outs

Pin # Signal name Description

Pin 1 UART3_RX_RS4XX_P
UART 3 RX

Pin 2 UART3_RX_RS4XX_N

Pin 3 UART3_TX_RS4XX_P
UART 3 TX

Pin 4 UART3_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART4_RX_RS4XX_P
UART 4 RX

Pin 8 UART4_RX_RS4XX_N

Pin 9 UART4_TX_RS4XX_P
UART 4 TX

Pin 10 UART4_TX_RS4XX_N

Pin 11 UART5_RX_RS4XX_P
Not used

Pin 12 UART5_RX_RS4XX_N

Pin 13 UART5_TX_RS4XX_P
Not used

Pin 14 UART5_TX_RS4XX_N

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 148 of 156

Pin 15 GND Ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 149 of 156

10.10. TRX1 - RS422 Transceiver interface (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, seeTable 10-10. This

connector can, for instance, be used for an S-BAND radio.

Table 10-10 TRX1 pin-outs

Pin # Signal name Description

Pin 1 TRX1_DOUT_RS422_P
RS422 output

Pin 2 TRX1_DOUT_RS422_N

Pin 3 TRX1_COUT_RS422_P
RS422 output

Pin 4 TRX1_COUT_RS422_N

Pin 5 TRX1_DIN_RS422_P
RS422 Input

Pin 6 TRX1_DIN_RS422_N

Pin 7 TRX1_CIN_RS422_P
RS422 Input

Pin 8 TRX1_CIN_RS422_N

Pin 9 TRX1_SCAL_IN_RS422_P
RS422 Input

Pin 10 TRX1_SCAL _IN_RS422_N

Pin 11 TRX1_C_LOCK_IN_RS422_P
RS422 Input

Pin 12 TRX1_C_LOCK_IN_RS422_N

Pin 13 GND Ground

Pin 14 GND Ground

Pin 15 GND Ground

Pin 16 GND Ground

Pin 17 GND Ground

Pin 18 GND Ground

Pin 19 GND Ground

Pin 20 UART4_TX_RS422_P
RS422 output

Pin 21 UART4_TX_RS422_N

Pin 22 UART4_RX_RS422_P
RS422 input

Pin 23 UART4_RX_RS422_N

Pin 24 TRX1_DETECT Transceiver detect input

Pin 25 GND Ground

10.11. TRX2 - LVDS Transceiver interface (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, see Table 10-11. This

connector can, for instance, be used for an X-BAND or S-BAND radio.

Table 10-11 TRX2 pin-outs

Pin # Signal name Description

Pin 1 TRX2_DOUT_LVDS_P
Baseband data out, LVDS

Pin 2 TRX2_DOUT_LVDS_N

Pin 3 TRX2_COUT_LVDS_P Baseband clock out, LVDS

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 150 of 156

Pin 4 TRX2_COUT_LVDS_N

Pin 5 TRX2_DIN_LVDS_P
Baseband data in, LVDS

Pin 6 TRX2_DIN_LVDS_N

Pin 7 TRX2_CIN_LVDS_P
Baseband clock in, LVDS

Pin 8 TRX2_CIN_LVDS_N

Pin 9 TRX2_SCAL_IN_LVDS_P
Sub-carrier lock in, LVDS

Pin 10 TRX2_SCAL_IN_LVDS_N

Pin 11 TRX2_CAL_IN_LVDS_P
Carrier lock in, LVDS

Pin 12 TRX2_CAL_IN_LVDS_N

Pin 13 GND Ground

Pin 14 UART3_TX_LVDS_P
LVDS output

Pin 15 UART3_TX_LVDS_N

Pin 16 UART3_RX_LVDS_P
LVDS input

Pin 17 UART3_RX_LVDS_N

Pin 18 GND
Ground

Pin 19 GND

Pin 20 UART3_TX_RS422_P
RS422 output

Pin 21 UART3_TX_RS422_N

Pin 22 UART3_RX_RS422_P
RS422 input

Pin 23 UART3_RX_RS422_N

Pin 24 TRX2_DETECT Transceiver detect input

Pin 25 GND Ground

10.12. UMBI – Baseband Umbilical (Sirius TCM only)

The following pins are available on the nano-D15 socket connector, see Table 10-12

Table 10-12 UMBI pin-outs

Pin # Signal name Description

Pin 1 UMBI_DOUT_RS422_P
Baseband data out

Pin 2 UMBI_DOUT_RS422_N

Pin 3 UMBI_COUT_RS422_P
Baseband clock out

Pin 4 UMBI_COUT_RS422_N

Pin 5 UMBI_DIN_RS422_P
Baseband data in

Pin 6 UMBI_DIN_RS422_N

Pin 7 UMBI_CIN_RS422_P
Baseband clock in

Pin 8 UMBI_CIN_RS422_N

Pin 9 UMBI_SC_LOCK_IN_RS422_P
Sub-carrier lock in

Pin 10 UMBI_SC_LOCK_IN_RS422_N

Pin 11 UMBI_C_LOCK_IN_RS422_P
Carrier lock in

Pin 12 UMBI_C_LOCK_IN_RS422_N

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 151 of 156

Pin 13 UMBI_DETECT Umbilical detect input

Pin 14 GND Ground (reference)

Pin 15 GND Ground (reference)

10.13. Pulse Command Outputs (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, see Table 9-13

Table 9-13 Pulse command pin-outs

Pin # Signal name Description

Pin 1 PULSE1_O_RS422_P
RS422 output

Pin 2 PULSE1_O_RS422_N

Pin 3 PULSE2_O_RS422_P
RS422 output

Pin 4 PULSE2_O_RS422_N

Pin 5 PULSE3_O_RS422_P
RS422 output

Pin 6 PULSE3_O_RS422_N

Pin 7 PULSE4_O_RS422_P
RS422 output

Pin 8 PULSE4_O_RS422_N

Pin 9 PULSE5_O_RS422_P
RS422 output

Pin 10 PULSE5_O_RS422_N

Pin 11 PULSE6_O_RS422_P
RS422 output

Pin 12 PULSE6_O_RS422_N

Pin 13 GND Ground

Pin 14 PULSE7_O_RS422_P
RS422 output

Pin 15 PULSE7_O_RS422_N

Pin 16 PULSE8_O_RS422_P
RS422 output

Pin 17 PULSE8_O_RS422_N

Pin 18 PULSE9_O_RS422_P
RS422 output

Pin 19 PULSE9_O_RS422_N

Pin 20 PULSE10_O_RS422_P
RS422 output

Pin 21 PULSE10_O_RS422_N

Pin 22 PULSE11_O_RS422_P
RS422 output

Pin 23 PULSE11_O_RS422_N

Pin 24 PULSE12_O_RS422_P
RS422 output

Pin 25 PULSE12_O_RS422_N

11. Updating the Sirius FPGA

To be able to update the SoC on the Sirius OBC

and Sirius TCM you need the following

items.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 152 of 156

11.1. Prerequisite hardware

 Microsemi FlashPro5 unit

 104470 FPGA programming cable assembly

11.2. Prerequisite software

 Microsemi FlashPro Express v11.8 or later

 The updated FPGA firmware

11.3. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable

assembly to connector 4 in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from ÅAC should contain at least two files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

4. Start the FlashPro Express application, click “Open…” in the “Job Projects” box

(see Figure 11-1) and select the supplied .pro file.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 153 of 156

Figure 11-1 - Startup view of FlashPro Express

5. Once the file has loaded (warnings might appear), click RUN (see Figure 11-2).

Please note that the connected FlashPro5 programmed ID should be shown.

Figure 11-2 - View of FlashPro Express with project loaded.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 154 of 156

6. The FPGA should now be loaded with the new firmware, which might take a few

minutes. Once it is finalized the second last message should be “Chain

programming PASSED”, see Figure 11-3.

Figure 11-3 - View of FlashPro Express after program passed.

The Sirius FPGA image is now updated

12. Mechanical data

The total size of the Sirius board is 183x136 mm.

Mounting holes are ø3.4 mm with 4.5 mm pad size.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 155 of 156

13. Glossary

ADC Analog Digital Converter
APID Application Process ID

BSP Board Support Package
CCSDS The Consultative Committee for Space Data Systems
EDAC Error Detection and Correction
EM Engineering model
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
FPGA Field Programmable Gate Array
GCC GNU Compiler Collection program (type of standard in Unix)
GPIO General Purpose Input/Output
Gtkterm Is a terminal emulator that drives serial ports
I
2
C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
Minicom Is a text based modem control and terminal emulation program
NA Not Applicable
NVRAM Non Volatile Random Access Memory
OBC On Board Computer
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface
PUS Packet Utilization Standard
RAM Random Access Memory, however modern DRAM has not random access. It is often associated

with volatile types of memory
ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SoC System-on-Chip
SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-

wire serial bus.
TC Telecommand
TCL Tool Command Language, a script language
TCM Mass memory
TM Telemetry
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. I
 Issue date 2018-04-16

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 156 of 156

Contact us

ÅAC Microtec AB

Uppsala Science Park
Dag Hammarskjölds väg 48
SE-751 83 Uppsala
Sweden

Phone: +46 18-560130

info@aacmicrotec.com

AAC Microtec North America
Inc.

5 Berry Patch Ln Columbia
Illinois 62236,
USA

Phone: +1 (602) 284-7997

info@aacmicrotecus.com

AAC Microtec UK Ltd

Atlas Building
Harwell Campus
Oxfordshire OX11-0QX
UK

Phone: +44 7500 934829

info@aacmicrotec.com

Clyde Space

Skypark 5
45 Finnieston Street
Glasgow G3 8JU
UK

Phone: +44 (0) 141 946 4440

info@aacmicrotec.com

http://www.aacmicrotec.com/

	1. Introduction
	1.1. Applicable releases
	1.2. Intended users
	1.3. Getting support
	1.4. Reference documents

	2. Equipment information
	2.1. System Overview with peripherals
	2.2. Fault tolerant design

	3. Setup and operation
	3.1. User prerequisites
	3.2. Connecting cables to the Sirius products
	3.3. Installation of toolchain
	3.3.1. Supported Operating Systems
	3.3.2. Installation Steps

	3.4. Installing the Board Support Package (BSP)
	3.5. Deploying a Sirius application
	3.5.1. Establish a debugger connection to the Sirius products
	3.5.2. Setup a serial terminal to the device debug UART
	3.5.3. Loading an application
	3.5.4. Using multiple debuggers on the same PC

	3.6. Programming an application (boot image) to system flash

	4. Software development
	4.1. RTEMS step-by-step compilation
	4.2. Software disclaimer of warranty

	5. RTEMS
	5.1. Introduction
	5.2. Watchdog
	5.2.1. Description
	5.2.2. RTEMS API
	5.2.2.1. int open(…)
	5.2.2.2. int close(…)
	5.2.2.3. size_t write(…)
	5.2.2.4. int ioctl(…)

	5.2.3. Usage
	5.2.3.1. RTEMS
	5.2.3.2. RTEMS application example

	5.3. Error Manager
	5.3.1. Description
	5.3.2. RTEMS API
	5.3.2.1. int open(…)
	5.3.2.2. int close(…)
	5.3.2.3. int ioctl(…)
	5.3.2.3.1. Status register
	5.3.2.3.2. Carry flag register
	5.3.2.3.3. Single EDAC error register
	5.3.2.3.4. Multiple EDAC error register

	5.3.3. Usage
	5.3.3.1. RTEMS
	5.3.3.2. RTEMS application example

	5.3.4. Limitations

	5.4. SCET
	5.4.1. Description
	5.4.2. General purpose triggers
	5.4.3. Pulse-Per-Second (PPS) signals
	5.4.3.1. Free-running mode
	5.4.3.2. Master mode
	5.4.3.3. Master mode with time synchronization
	5.4.3.4. Slave mode

	5.4.4. RTEMS API
	5.4.4.1. Function int open(…)
	5.4.4.2. Function int close(…)
	5.4.4.3. Function ssize_t read(…)
	5.4.4.4. Function ssize_t write(…)
	5.4.4.5. Function int ioctl(…)

	5.4.5. Usage
	5.4.6. PPS
	5.4.6.1. PPS Threshold

	5.4.7. Event callback via message queue
	5.4.8. RTEMS application example

	5.5. UART
	5.5.1. Description
	5.5.1.1. RX/TX buffer depth
	5.5.1.2. Trigger levels

	5.5.2. RTEMS API
	5.5.2.1. Function int open(...)
	5.5.2.2. Function int close(...)
	5.5.2.3. Function ssize_t read(…)
	5.5.2.4. Function ssize_t write(…)
	5.5.2.5. Function int ioctl(…)

	5.5.3. Usage description
	5.5.3.1. RTEMS application example
	5.5.3.2. Parity, framing and overrun error notification

	5.5.4. Limitations

	5.6. Mass memory
	5.6.1. Description
	5.6.2. Data Structures
	5.6.2.1. Struct massmem_cid_t
	5.6.2.2. Struct massmem_error_injection_t
	5.6.2.3. Struct massmem_ioctl_spare_area_args_t
	5.6.2.4. Struct massmem_ioctl_error_injection_args_t

	5.6.3. RTEMS API
	5.6.3.1. int open(…)
	5.6.3.2. int close(…)
	5.6.3.3. off_t lseek(…)
	5.6.3.4. ssize_t read(…)
	5.6.3.5. ssize_t write(…)
	5.6.3.6. int ioctl(…)
	5.6.3.6.1. Reset mass memory device
	5.6.3.6.2. Read status data
	5.6.3.6.3. Read control status data
	5.6.3.6.4. Read EDAC register data
	5.6.3.6.5. Read ID
	5.6.3.6.6. Erase block
	5.6.3.6.7. Read spare area

	5.6.3.7. Write spare area
	5.6.3.7.1.
	5.6.3.7.2. Bad block check
	5.6.3.7.3. Error Injection

	5.6.4. Usage
	5.6.4.1. RTEMS
	5.6.4.1.1. Overview
	5.6.4.1.2. Usage

	5.6.4.2. RTEMS application example

	5.6.5. Error injection
	5.6.6. Limitations

	5.7. Spacewire
	5.7.1. Description
	5.7.2. RTEMS API
	5.7.2.1. int open(…)
	5.7.2.2. int close(…)
	5.7.2.3. size_t read(…)
	5.7.2.4. size_t write(…)
	5.7.2.5. int ioctl(…)
	5.7.2.5.1. Mode setting

	5.7.3. Usage description
	5.7.3.1. Overview
	5.7.3.2. Usage
	5.7.3.3. RTEMS application example

	5.8. GPIO
	5.8.1. Description
	5.8.1.1. Falling and rising edge detection
	5.8.1.2. Time stamping in SCET
	5.8.1.3. RTEMS differential mode
	5.8.1.4. Operating on pins with pull-up or pull-down

	5.8.2. RTEMS API
	5.8.2.1. Function int open(...)
	5.8.2.2. Function int close(...)
	5.8.2.3. Function ssize_t read(...)
	5.8.2.4. Function ssize_t write(...)
	5.8.2.5. Function int ioctl(...)

	5.8.3. Usage description
	5.8.3.1. RTEMS application example

	5.8.4. Limitations

	5.9. CCSDS
	5.9.1. Description
	5.9.2. Non-blocking
	5.9.3. Blocking
	5.9.4. Buffer data containing TM Space packets
	5.9.5. RTEMS API
	5.9.5.1. Datatype dma_transfer_cb_t
	5.9.5.2. Data type tm_config_t
	5.9.5.3. Data type tc_config_t
	5.9.5.4. Data type tm_status_t
	5.9.5.5. Data type tm_error_cnt_t
	5.9.5.6. Data type tc_status_t
	5.9.5.7. Data type tc_error_cnt_t
	5.9.5.8. Data type radio_status_t
	5.9.5.9. int open(…)
	5.9.5.10. int close(…)
	5.9.5.11. size_t write(…)
	5.9.5.12. size_t read(…)
	5.9.5.13. int ioctl(…)

	5.9.6. Usage description
	5.9.6.1. RTEMS – Send Telemetry
	5.9.6.2. RTEMS – Receive Telecommands
	5.9.6.3. RTEMS – Application configuration

	5.10. ADC
	5.10.1. Description
	5.10.2. RTEMS API
	5.10.2.1. Enum adc_ioctl_sample_rate_e
	5.10.2.2. Function int open(…)
	5.10.2.3. Function int close(…)
	5.10.2.4. Function ssize_t read(…)
	5.10.2.5. Function int ioctl(…)

	5.10.3. Usage description
	5.10.3.1. RTEMS application example

	5.10.4. Limitations

	5.11. NVRAM
	5.11.1. Description
	5.11.2. EDAC mode
	5.11.3. Non-EDAC mode
	5.11.4. RTEMS API
	5.11.4.1. Enum rtems_spi_ram_edac_e
	5.11.4.2. Function int open(...)
	5.11.4.3. Function int close(...)
	5.11.4.4. Function ssize_t read(...)
	5.11.4.5. Function ssize_t write(...)
	5.11.4.6. Function int lseek(...)
	5.11.4.7. Function int ioctl(...)

	5.11.5. Usage description
	5.11.5.1. RTEMS application example

	5.12. System flash
	5.12.1. Description
	5.12.2. Data structure types
	5.12.2.1. Type sysflash_cid_t
	5.12.2.2. Type sysflash_ioctl_spare_area_args_t

	5.12.3. RTEMS API
	5.12.3.1. Function int open(…)
	5.12.3.2. Function int close(…)
	5.12.3.3. Function off_t lseek(…)
	5.12.3.4. Function ssize_t read(…)
	5.12.3.5. Function ssize_t write(…)
	5.12.3.6. Function int ioctl(…)
	5.12.3.6.1. Reset System flash
	5.12.3.6.2. Read chip status
	5.12.3.6.3. Read controller status
	5.12.3.6.4. Read ID
	5.12.3.6.5. Erase block
	5.12.3.6.6. Read spare area
	5.12.3.6.7. Write spare area
	5.12.3.6.8. Factory bad block check

	5.12.4. Usage description
	5.12.4.1. Overview
	5.12.4.2. Usage
	5.12.4.3. RTEMS application example

	5.12.5. Debug detect
	5.12.6. Limitations

	6. Spacewire router
	7. Sirius TCM
	7.1. Description
	7.2. Block diagram
	7.3. TCM-S application overview
	7.4. Configuration
	7.5. Telemetry
	7.6. Telecommands
	7.6.1. Pulse commands
	7.6.2. COP-1

	7.7. Time Management
	7.7.1. TM time stamps

	7.8. Error Management and System Supervision
	7.9. Mass Memory Handling
	7.9.1. Partition configuration
	7.9.1.1. Partition mode
	7.9.1.2. Partition segment size
	7.9.1.3. Partition type
	7.9.1.4. Partition virtual channel

	7.9.2. Recovery

	7.10. ECSS standard services
	7.10.1. PUS-1 Telecommand verification service
	7.10.2. PUS-2 Device Command Distribution Service

	7.11. Custom services
	7.11.1. PUS-130 Software upload

	7.12. Spacewire RMAP
	7.12.1. Input
	7.12.2. Output
	7.12.3. Status code in reply messages
	7.12.4. RMAP input address details
	7.12.4.1. TMStatus
	7.12.4.2. TMConfig
	7.12.4.3. TMControl
	7.12.4.4. TMFEControl
	7.12.4.5. TMMCFCControl
	7.12.4.6. TMIFControl
	7.12.4.7. TMPRControl
	7.12.4.8. TMOCFControl
	7.12.4.9. TMCEControl
	7.12.4.10. TMBRControl
	7.12.4.11. TMTSControl
	7.12.4.12. TMTSStatus
	7.12.4.13. TMSend
	7.12.4.14. TCStatus
	7.12.4.15. TCDRControl
	7.12.4.16. HKData
	7.12.4.17. SCETTime
	7.12.4.18. UARTCommand
	7.12.4.19. MMData
	7.12.4.19.1. Read
	7.12.4.19.2. Write

	7.12.4.20. MMDataRange
	7.12.4.21. MMPartitionConfig
	7.12.4.22. MMPartitionSpace
	7.12.4.23. MMDownloadPartitionData
	7.12.4.24. MMFree
	7.12.4.25. MMDownloadStatus
	7.12.4.26. MMStopDownloadData

	7.12.5. RMAP output address details
	7.12.5.1. TCCommand
	7.12.5.2. UARTData

	7.13. Limitations

	8. System-on-Chip definitions
	8.1. Memory mapping
	8.2. Interrupt sources
	8.3. SCET timestamp trigger sources
	8.4. Boot images and boot procedure
	8.4.1. Description
	8.4.2. Block diagram
	8.4.3. Usage description
	8.4.4. Limitations

	8.5. Reset behaviour
	8.6. General synchronize method
	8.7. Pulse command inputs
	8.8. SoC information map

	9. Software upload
	9.1. Description
	9.2. Block diagram
	9.3. CCSDS API – custom PUS service 130
	9.3.1. Subtype 1 – Image transfer start
	9.3.2. Subtype 2 – Image data
	9.3.3. Subtype 3 – Verify uploaded image
	9.3.4. Subtype 4 – Write uploaded image
	9.3.5. Subtype 5 – Calculate CRC in flash

	9.4. Software API
	9.4.1. int32_t swu_init(…)
	9.4.2. int32_t swu_segment_add(…)
	9.4.3. int32_t swu_check(…)
	9.4.4. int32_t swu_update(…)
	9.4.5. int32_t swu_flash_check(…)

	9.5. Usage description
	9.6. Limitations

	10. Connector interfaces
	10.1. JTAG-RTL, FPGA-JTAG connector
	10.2. DEBUG-SW
	10.3. PWR – Power
	10.4. SPW1 – Spacewire 1
	10.5. SPW2 – Spacewire 2
	10.6. ANALOG, Analog input and 3xGPIO (Sirius OBC only)
	10.7. DIGITAL, PPS input and 12xGPIO
	10.8. UART0-2 - RS422/485
	10.9. UART3-5 - RS422/485 (Sirius OBC only)
	10.10. TRX1 - RS422 Transceiver interface (Sirius TCM only)
	10.11. TRX2 - LVDS Transceiver interface (Sirius TCM only)
	10.12. UMBI – Baseband Umbilical (Sirius TCM only)
	10.13. Pulse Command Outputs (Sirius TCM only)

	11. Updating the Sirius FPGA
	11.1. Prerequisite hardware
	11.2. Prerequisite software
	11.3. Step by step guide

	12. Mechanical data
	13. Glossary

