

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 1 of 135

Sirius OBC and TCM User Manual

Rev. F

© ÅAC Microtec 2017

ÅAC Microtec AB owns the copyright of this document which is supplied in confidence and which shall
not be used for any purpose other than for which it is supplied and shall not in whole or in part be
reproduced, copied, or communicated to any person without written permission from the owner.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 2 of 135

REVISION LOG

Rev Date Change description

A 2016-10-25
First release, drafted from 204911 Sirius Breadboard User Manual
Rev L

B 2016-12-15 Updated after editorial updates

C 2017-01-03

Release with updates to the following sections:

 Massmem (new API with DMA)

 Error manager (IOCTL API)

 ADC (channel table update, channel limitation)

 Sirius TCM (TM/TC defaults, API updates {errno, MMStatus,
TMTSStatus, }, removed limitations)

 Bootrom (extended description)

 SCET (extended description, new API)

 UART32 (removed)

 CCSDS (interrupt API deprecation)

 NVRAM (EDAC/non-EDAC modes described)

D 2017-02-01

Release with updates to the following sections:

 Sirius TCM (Extra info sections, TMBRSet->TMBRControl)

 Mass memory (IOCTL API, error inject info)

 SCET (Clarify threshold)

E 2017-03-01

Release with updates to the following sections:

 ADC (minor updates to clock div limits)

 Setup and operation (find debugger serial, use of multiple
debuggers)

F 2017-04-18

Release with updates to the following sections:

 CCSDS (new API)

 Sirius TCM (new timesync API, NVRAM table updated, new
segment sizing for partitions)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 3 of 135

TABLE OF CONTENT

1. INTRODUCTION ... 7
1.1. Applicable releases .. 7
1.2. Intended users .. 7
1.3. Getting support ... 7
1.4. Reference documents .. 8

2. EQUIPMENT INFORMATION ... 9
2.1. System Overview with peripherals ... 9

3. SETUP AND OPERATION ...11
3.1. User prerequisites .. 11
3.2. Connecting cables to the Sirius products .. 12
3.3. Installation of toolchain ... 13

3.3.1. Supported Operating Systems ... 13
3.3.2. Installation Steps .. 13

3.4. Installing the Board Support Package (BSP) ... 14
3.5. Deploying a Sirius application .. 14

3.5.1. Establish a debugger connection to the Sirius products ... 14
3.5.2. Setup a serial terminal to the device debug UART... 15
3.5.3. Loading an application ... 16
3.5.4. Using multiple debuggers on the same PC .. 16

3.6. Programming an application (boot image) to system flash .. 17

4. SOFTWARE DEVELOPMENT ...19
4.1. RTEMS step-by-step compilation .. 19
4.2. Software disclaimer of warranty ... 19

5. RTEMS ...20
5.1. Introduction .. 20
5.2. Watchdog .. 21

5.2.1. Description ... 21
5.2.2. RTEMS API .. 21
5.2.3. Usage ... 22

5.3. Error Manager ... 24
5.3.1. Description ... 24
5.3.2. RTEMS API .. 24
5.3.3. Usage ... 29
5.3.4. Limitations .. 31

5.4. SCET .. 32
5.4.1. Description ... 32
5.4.2. General purpose triggers ... 32
5.4.3. Pulse-Per-Second (PPS) signals ... 32
5.4.4. RTEMS API .. 33
5.4.5. Usage ... 38
5.4.6. PPS .. 38
5.4.7. Event callback via message queue .. 38
5.4.8. RTEMS application example .. 39

5.5. UART .. 42
5.5.1. Description ... 42

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 4 of 135

5.5.2. RTEMS API .. 42
5.5.3. Usage description .. 45
5.5.4. Limitations .. 46

5.6. Mass memory .. 46
5.6.1. Description ... 46
5.6.2. Data Structures .. 47
5.6.3. RTEMS API .. 48
5.6.4. Usage ... 54
5.6.5. Error injection ... 57
5.6.6. Limitations .. 57

5.7. Spacewire .. 58
5.7.1. Description ... 58
5.7.2. RTEMS API .. 58
5.7.3. Usage description .. 60

5.8. GPIO ... 63
5.8.1. Description ... 63
5.8.2. RTEMS API .. 63
5.8.3. Usage description .. 66
5.8.4. Limitations .. 67

5.9. CCSDS ... 68
5.9.1. Description ... 68
5.9.2. RTEMS API .. 68
5.9.3. Datatype dma_transfer_cb_t .. 69
5.9.4. Data type tm_config_t .. 69
5.9.5. Data type tc_config_t ... 70
5.9.6. Data type tm_status_t .. 70
5.9.7. Data type tc_error_cnt_t ... 70
5.9.8. Data type tm_error_cnt_t ... 71
5.9.9. Data type tc_status_t ... 71
5.9.10. Data type radio_status_t .. 71
5.9.11. int open(…) .. 72
5.9.12. int close(…) .. 72
5.9.13. size_t write(…) ... 73
5.9.14. size_t read(…).. 73
5.9.15. int ioctl(…) .. 74

5.10. Non-blocking vs blocking transfers .. 76
5.10.1. Non-blocking .. 76
5.10.2. Blocking ... 77

5.11. Usage description... 77
5.11.1. RTEMS – Send Telemetry ... 77
5.11.2. RTEMS – Receive Telecommands .. 77
5.11.3. RTEMS – Application configuration .. 77

5.12. ADC .. 78
5.12.1. Description ... 78
5.12.2. RTEMS API .. 79
5.12.3. Usage description .. 82
5.12.4. Limitations .. 83

5.13. NVRAM .. 84
5.13.1. Description ... 84
5.13.2. EDAC mode ... 84
5.13.3. Non-EDAC mode ... 84
5.13.4. RTEMS API .. 84

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 5 of 135

5.13.5. Usage description .. 87

6. SPACEWIRE ROUTER ..89

7. SIRIUS TCM...90
7.1. Description .. 90
7.2. Block diagram ... 91
7.3. TCM-S application overview .. 91
7.4. Configuration .. 92
7.5. Telemetry ... 95
7.6. Telecommands ... 96

7.6.1. Pulse commands.. 96
7.6.2. COP-1 .. 97

7.7. Time Management .. 97
7.7.1. TM time stamps.. 97

7.8. Error Management and System Supervision ... 97
7.9. Mass Memory Handling .. 98
7.10. ECSS standard services .. 98

7.10.1. PUS-1 Telecommand verification service .. 98
7.10.2. PUS-2 Device Command Distribution Service ... 99

7.11. Spacewire RMAP .. 99
7.11.1. Input ... 100
7.11.1. Output .. 101
7.11.2. Status code in reply messages .. 101

7.12. RMAP input address details .. 101
7.12.2. RMAP output address details ... 115

7.13. Handling of Rd/Wr-pointers and wrap-flags for partitions .. 116
7.14. Limitations .. 116

8. SYSTEM-ON-CHIP DEFINITIONS ... 117
8.1. Memory mapping .. 117
8.2. Interrupt sources .. 118
8.3. SCET timestamp trigger sources .. 118
8.4. Boot images and boot procedure.. 119

8.4.1. Description ... 119
8.4.2. Block diagram .. 119
8.4.3. Usage description .. 119
8.4.4. Limitations .. 120

8.5. Reset behaviour .. 120
8.6. General synchronize method .. 120
8.7. Pulse command inputs .. 120
8.8. SoC information map ... 121

9. CONNECTOR INTERFACES ... 122
9.1. JTAG-RTL, FPGA-JTAG connector ... 122
9.2. DEBUG-SW .. 122
9.3. PWR – Power .. 123
9.4. SPW1 – Spacewire 1 ... 123
9.5. SPW2 – Spacewire 2 ... 124
9.6. ANALOG, Analog input and 3xGPIO (Sirius OBC only) .. 124
9.7. DIGITAL, PPS input and 12xGPIO ... 125

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 6 of 135

9.8. UART0-2 - RS422/485 ... 126
9.9. UART3-5 - RS422/485 (Sirius OBC only) ... 126
9.10. TRX1 - RS422 Transceiver interface (Sirius TCM only) ... 128
9.11. TRX2 - LVDS Transceiver interface (Sirius TCM only) .. 128
9.12. UMBI – Baseband Umbilical (Sirius TCM only) .. 129
9.13. Pulse Command Outputs (Sirius TCM only) .. 130

10. UPDATING THE SIRIUS FPGA ... 131
10.1. Prerequisite hardware .. 131
10.2. Prerequisite software ... 131
10.3. Step by step guide .. 131

11. MECHANICAL DATA .. 133

12. GLOSSARY ... 134

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 7 of 135

1. Introduction

This manual describes the functionality and usage of the ÅAC Sirius OBC and Sirius TCM

products. The Sirius OBC or Sirius TCM differ in certain areas such as the SoC, interfaces

etc. but can mostly be described with the same functionality and will throughout this

document be referred to as “the Sirius products” when both products are referred at the

same time.

1.1. Applicable releases

This version of the manual is applicable to the following software releases:

Sirius OBC 0.11.0

Sirius TCM 0.11.0

1.2. Intended users

This manual is written for software engineers using the ÅAC Sirius products. The electrical

and mechanical interface is described in more detail in the electrical and mechanical ICD

documents [RD10] and [RD11].

1.3. Getting support

If you encounter any problem using the Sirius products or another ÅAC product please use

the following address to get help:

Email: support@aacmicrotec.com

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 8 of 135

1.4. Reference documents

RD# Document ref Document name

RD1 http://opencores.org/openrisc,architecture OpenRISC 1000 Architecture
Manual

RD2 ECSS-E-ST-50-12C SpaceWire – Links, nodes,
routers and networks

RD3 ECSS-E-ST-50-52C SpaceWire – Remote memory
access protocol

RD4 ECSS-E-70-41A
Ground systems and
operations – Telemetry and
telecommand packet utilization

RD5 SNLS378B

PC16550D Universal
Asynchronous
Receiver/Transmitter with
FIFOs

RD6 AD7173-8, Rev. A
Low Power, 8-/16-Channel,
31.25 kSPS, 24-Bit, Highly
Integrated Sigma-Delta ADC

RD7 Edition 4.10.99.0 RTEMS BSP and Device
Driver Development Guide

RD8 CCSDS 132.0-B-2 TM Space Data Link Protocol
RD9 CCSDS 232.0-B-2 TC Space Data Link Protocol

RD10
P2-2-96-ICD-014 Sirius OBC electrical and

mechanical ICD

RD11 P2-2-96-ICD-013
Sirius TCM electrical and
mechanical ICD

RD12
SS-EN 61340-5-1

Electrostatics - Part 5-1:
Protection of electronic
devices from electrostatic
phenomena - General
requirements

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 9 of 135

2. Equipment information

The Sirius OBC and Sirius OBC products are depicted in Figure 3-1 and Figure 3-2.

The Sirius products also include both a debugger interface for downloading and debugging

software applications and a JTAG interface for programming the FPGA during

manufacturing.

The FPGA firmware implements a SoC centered around a 32 bit OpenRISC Fault Tolerant

processor [RD1] running at a system frequency of 50 MHz and with the following set of

peripherals:

 Error manager, error handling, tracking and log of e.g. power loss and/or memory

error detection.

 SDRAM 64 MB data + 64 MB EDAC running @100MHz

 Spacecraft Elapsed Timer (SCET), including a PPS (Pulse Per Second) time

synchronization interface for accurate time measurement with a resolution of 15 µs

 SpaceWire, including a three-port SpaceWire router, for communication with

external peripheral units

 UARTs uses the RS422 and RS485 line drivers on the board with line driver mode

set by software.

 GPIOs

 Watchdog, a fail-safe mechanism to prevent a system lockup

 System flash of 2 GB with EDAC-protection for storing boot images in multiple

copies

 Pulse command inputs for reset to a specific software image

 MRAM for storage of metadata and other data that requires a large number of

writes that shall survive loss of power

For the Sirius TCM the following additional peripherals are included in the SoC:

 CCSDS, communications IP.

 Mass memory of 16GB with EDAC-protection, NAND flash based, for storage of

mission critical data.

For the Sirius OBC an Analog interface is included.

The input power supply provided to the Sirius products shall be between +4.5 and +16 VDC.

The power consumption is highly dependent on peripheral loads and ranges from 0.8 W to

2 W.

2.1. System Overview with peripherals

Figure 2-1 depicts a System-on-Chip (SoC) overview including the related peripherals of the

Sirius OBC and Sirius TCM

products. The figure shows what parts that are included for

which products.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 10 of 135

FPGA

FPU

OpenRISC

1200FT

I/D Cache

I2C

UART

GPIO

CCSDS

Memory
controller

System
flash

controller

Flash
controller

SpaceWire

DMA
Control

Watchdog

Debug
Unit

SCET
Error

manager

2x 64MB
SDRAM

2 GB System
Flash

R
ad

io
 In

te
rf

ac
es

R
S4

2
2

/L
V

D
S

R
S4

2
2

/R
S4

8
5

JT
A

G
/D

EB
U

G

Pulse CMDUMBI/EGSEETHERNET GPIO

ADC
(Housekeeping)

Ethernet
10/100

ADC
controller

OBC / TCM

NVRAM

Analog inputs

NVRAM

TCM TCM/OBC Future option

16 GB Flash

OBC

PPS

Figure 2-1 - The Sirius OBC / Sirius TCM SoC Overview

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 11 of 135

3. Setup and operation

3.1. User prerequisites

The following hardware and software is needed for the setup and operation of the Sirius

products.

PC computer

 1 GB free space for installation (minimum)

 Debian 7 or 8 64-bit with super user rights

 USB 2.0

JTAG debugger

 ÅAC JTAG debugger hardware including harness

Recommended applications and software

 Installed serial communication terminal, e.g. gtkterm or minicom

 Host build system, e.g. the debian package build-essential

 The following software is installed by the ÅAC toolchain package

o GCC, C compiler for OpenRISC

o GCC, C++ compiler for OpenRISC

o GNU binutils and linker for OpenRISC

o Custom openocd binary designed for OpenRISC

For FPGA update capabilities

 Microsemi FlashPro Express v11.7, http://www.microsemi.com/products/fpga-

soc/design-resources/programming/flashpro#software

 FlashPro5 programmer

http://www.aacmicrotec.com/
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 12 of 135

3.2. Connecting cables to the Sirius products

Figure 3-1 – ÅAC Sirius OBC with connector naming

Figure 3-2 - ÅAC Sirius TCM with connector naming

The instructions below refer to the connector names in Figure 3-1 and Figure 3-2.

JTAG-RTL

DEBUG-SW

SPW1

SPW2

UART0-2

PWR

UART3-5

DIGITAL

ANALOG

JTAG-RTL

DEBUG-SW

UMBI

SPW1

UART0-2

PWR

TRX2-LVDS

TRX1-RS422

DIGITAL

PULSE

SPW2

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 13 of 135

 All products and ingoing material shall be handled with care to prevent damage of

any kind.

 ESD protection and other protective measures shall be considered. Handling

should be performed according to applicable ESD requirement standards such as

[RD12] or equivalent.

 Ensure that all mating connectors have the same zero reference (ground) before

connecting.

 Connect the nano-D connector to the PWR connector with 4.5 - 16 V DC. The units

will nominally draw about 260-300 mA @5V DC.

 The ÅAC debugger is mainly used for development of custom software for the

Sirius OBC or Sirius TCM and has both a debug UART for monitoring and a JTAG

interface for debug capabilities. It is also used for programming an image to the

system flash memory. For further information refer to Chapter 3.6. When it is to be

used, connect the 104452 ÅAC Debugger to the DEBUG-SW connector. Connect

the adapter USB-connector to the host PC.

 For FPGA updating only: Connect a FlashPro5 programmer to connector JTAG-

RTL using the 104470 FPGA programming cable assembly. For further information

how to update the SoC refer to Chapter 9.10.

 For connecting the SpaceWire interface, connect the nano-D connector to

connector SPW1 or SPW2.

For more detailed information about the connectors, see Chapter 9.

3.3. Installation of toolchain

This chapter describes instructions for installing the aac-or1k-toolchain.

3.3.1. Supported Operating Systems

 Debian 7 64-bit

 Debian 8 64-bit

When installing Debian, we recommend using the “netinst” (network install) method. Images

for installing Debian 8 are available via https://www.debian.org/releases/jessie/debian-

installer/ and images for installing Debian 7 are available via

https://www.debian.org/releases/wheezy/debian-installer/

In order to install the toolchain below a Debian package server mirror must be added, either

in the installation procedure (also required during network install) or after installation. For

adding a package server mirror after installation, follow the instructions at

https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

3.3.2. Installation Steps

1. Add the ÅAC Package Archive Server

Open a terminal and execute the following command:

sudo gedit /etc/apt/sources.list.d/aac-repo.list

This will open a graphical editor; add the following lines to the file and then save and

close it:

deb http://repo.aacmicrotec.com/archive/ aac/

http://www.aacmicrotec.com/
https://www.debian.org/releases/jessie/debian-installer/
https://www.debian.org/releases/jessie/debian-installer/
https://www.debian.org/releases/wheezy/debian-installer/
https://www.debian.org/doc/manuals/debian-faq/ch-uptodate.en.html

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 14 of 135

deb-src http://repo.aacmicrotec.com/archive/ aac/

Add the key for the package archive as trusted by issuing the following command:

wget -O - http://repo.aacmicrotec.com/archive/key.asc | sudo

apt-key add -

The terminal will echo "OK" on success.

2. Install the Toolchain Package

Update the package cache and install the toolchain by issuing the following commands:

sudo apt-get update

sudo apt-get install aac-or1k-toolchain

Note: The toolchain package is roughly 1GB uncompressed, downloading/installing it

will take some time.

3. Setup

In order to use the toolchain commands, the shell PATH variable needs to be set to

include them, this can be done either temporarily for the current shell via

source /opt/aac/aac-path.sh

or permanently by editing the ~/.profile file

gedit ~/.profile

and adding the following snippet at the end of the file, and then save and close it:

AAC OR1k toolchain PATH setup

if [-f /opt/aac/aac-path.sh]; then

 . /opt/aac/aac-path.sh >/dev/null

fi

3.4. Installing the Board Support Package (BSP)

The BSP can be downloaded from http://repo.aacmicrotec.com/bsp. Simply extract the

tarball aac-or1k-xxx-x-bsp-y.tar.bz2 to a directory of your choice (xxx-x depends on your

intended hardware target - Sirius OBC or Sirius TCM and y matches the current version

number of that BSP).

The newly created directory aac-or1k-xxx-x-bsp now contains the drivers for both bare-metal

applications and RTEMS. See the included README and chapter 4.1 for build instructions.

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Sirius products

The Sirius products are shipped with debuggers who connect to a PC via USB. To interface

the Sirius products, the Open On-Chip Debugger (OpenOCD) software is used. A script

called run_aac_debugger.sh is shipped with the toolchain package which starts an

OpenOCD server for gdb to connect to.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 15 of 135

1. Connect the Sirius products according to section 3.2 and switch on the power

supply.

2. Start the run_aac_debugger.sh script from a terminal.

3. If the printed message is according to Figure 3-3, the connection is working.

Figure 3-3 - Successful OpenOCD connection to the Sirius products

The line

target state: halted

must be displayed in the output, otherwise the OpenOCD connection has failed and the

board must be power-cycled.

3.5.2. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A serial communication terminal such as minicom or gtkterm is necessary to communicate

with the Sirius product, using these settings:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity: None

Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will appear

as /dev/ttyUSB1. However, the numbering may change when other USB devices are

connected and you have to make sure you're using the correct device number to

communicate to the board's debug UART.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 16 of 135

On Debian 8, a more foolproof way of identifying the terminal to use is the by-id mechanism.

Once you've identified the serial number of your debugger (see 3.5.4.), you can connect to it

using the autocreated path at /dev/serial/by-id/. The debug UART is identified as

usb-AAC_Microtec_JTAG_Debugger_FTZ7QCMF-if01-port0, where FTZ7QCMF is

the serial number in this case. Make sure you use the if01 number and not if00 as this is

consumed by the OpenOCD server later.

3.5.3. Loading an application

An application can either be loaded only to the volatile memory, which is easier and typically

used during the development stages, or to NAND flash (see section 3.6). This is done using

gdb.

1.a) Start gdb with the following command from a shell for a bare-metal environment

or1k-aac-elf-gdb

 or

1.b) Start gdb with the following command from a shell for an RTEMS environment

or1k-aac-rtems4.11-gdb

2. When gdb has opened successfully, connect to the hardware through the

OpenOCD server using the gdb command

target remote localhost:50001

3. To run an executable program in hardware, first specify its name using the gdb

command file. Make sure the application is in ELF format.

file path/to/binary_to_execute

4. Now it needs to be uploaded onto the target RAM

load

5. In the gdb prompt, type c to start to run the application

3.5.4. Using multiple debuggers on the same PC

In order to use multiple debuggers connected to the same PC, each instance of OpenOCD

must be configured to connect to the specific debugger serial number and to use unique

ports. Support for this is included in the run_aac_debugger.sh script.

In order to determine the serial number for a specific device, run the following command

before connecting the debugger

tail -f /var/log/kern.log

which initially prints the last 10 lines of the kernel log file (which can be ignored). When

plugging in the debugger USB cable into the PC, this should produce new output similar to

[363061.959120] usb 1-1.3.3.3: new full-speed USB device number 15

using ehci_hcd

[363062.058152] usb 1-1.3.3.3: New USB device found, idVendor=0403,

idProduct=6010

[363062.058176] usb 1-1.3.3.3: New USB device strings: Mfr=1,

Product=2, SerialNumber=3

[363062.058194] usb 1-1.3.3.3: Product: JTAG Debugger

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 17 of 135

[363062.058207] usb 1-1.3.3.3: Manufacturer: AAC Microtec

[363062.058220] usb 1-1.3.3.3: SerialNumber: FTZ7QCMF

where FTZ7QCMF is the serial number for the debugger.

The GDB, telnet and TCL ports must be set to a unique value in the Linux user-available

range 1025-65535, the defaults are GDB: 50001, telnet: 4444, TCL: 6666.

For example, two debuggers with serial numbers FTZ7QCMF and FTZ7IB10 can be setup

via

run_aac_debugger.sh -s FTZ7QCMF -g 50001 -t 4444 -p 6666

run_aac_debugger.sh -s FTZ7IB10 -g 50002 -t 4445 -p 6667

Two instances of GDB can then be opened, and connected to the different debuggers via

target remote localhost:50001

and

target remote localhost:50002

respectively. Only the GDB port is used when connecting from GDB.

3.6. Programming an application (boot image) to system flash

This chapter describes how to program the NAND flash memory with a selected boot image.

To achieve this, the boot image binary is bundled together with the NAND flash

programming application during the latter's compilation. The NAND flash programming

application is then uploaded to the target and started just as an ordinary application using

gdb. The maximum allowed size for the boot image for is 16 MB. The nandflash_program

application can be found in the BSP.

The below instructions assume that the toolchain is in the PATH, see section 3.3 for how to

accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Ensure that this image is in a binary-only format and not ELF. This can be

accomplished with the help of the GCC objcopy tool included in the toolchain:

Note that X is to be replaced according to what your application has been compiled

against, either elf for a bare-metal application or rtems4.11 for the RTEMS variant.

or1k-aac-X-objcopy -O binary boot_image.elf boot_image.bin

3. See chapter 3.4 for installing the BSP and enter

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/nandflash_program/src

4. Now, compile the nandflash-program application, bundling it together with the boot image

binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of gdb and

execute it, see section 3.5.3. Follow the instructions on screen and when it's ready,

reboot the board by a reset or power cycle.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 18 of 135

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 19 of 135

4. Software development

Applications to be deployed on the Sirius products can either use a bare-metal approach or

use the RTEMS OS. This corresponds to the two toolchain prefixes available: or1k-aac-elf-*

or or1k-aac-rtems4.11-*

Drivers for both are available in the BSP, see chapter 3.4 and the BSP README for more

information. However, the RTEMS OS is the recommended way and documentation for the

bare-metal layer is not included in this manual.

4.1. RTEMS step-by-step compilation

The BSP is supplied with an application example of how to write an application for RTEMS

and engage all the available drivers.

Please note that the toolchain described in chapter 3.3 needs to have been installed and the

BSP unpacked as described in chapter 3.4.

The following instructions detail how to build the RTEMS environment and a test application

1. Enter the BSP src directory

cd path/to/bsp/aac-or1k-xxx-x-bsp/src/

2. Type make to build the RTEMS target

make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems

directory

export RTEMS_MAKEFILE_PATH=path/to/librtems/or1k-aac-

rtems4.11/or1k-aac

5. Enter the example directory and build the test application by issuing

cd example

make

Load the resulting application using the debugger according to the instructions in chapter

3.5.

4.2. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or

merchantability. The author and/or distributors of this source code may have made

statements about this source code. Any such statements do not constitute warranties and

shall not be relied on by the user in deciding whether to use this source code.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 20 of 135

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. The Block diagram representing driver

functionality access via the RTEMS API is shown in Figure 5-1.

Figure 5-1 - Functionality access via RTEMS API

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 21 of 135

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device.

5.2.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, the errno value is set for determining the cause.

5.2.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in

The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME
(/dev/watchdog)

oflags int in

A bitwise”or” separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write).

Return value Description

> 0
A file descriptor for the device on
success

- 1 see errno values

errno values

EALREADY Device already opened.

5.2.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EPERM Device is not open.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 22 of 135

5.2.2.3. size_t write(…)

Any data is accepted as a watchdog kick.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

*
nNumber of bytes that were
written.

- 1 see errno values

errno values

EPERM Device was not opened

EBUSY Device is busy

5.2.2.4. int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Data to write

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL
1 = Enables the watchdog
0 = Disables the watchdog

WATCHDOG_SET_TIMEOUT_IOCTL 1 – 255 = Number of seconds until the watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EINVAL Invalid data sent

RTEMS_NOT_DEFINED Invalid I/O command

5.2.3. Usage

The watchdog is enabled and disabled using ioctl() calls.

The watchdog must be kicked using a write() call before the timeout occurs or else the

watchdog will bark. Notice that the value shall be set between 1 and 255 seconds. Set to

zero is a false value.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 23 of 135

Default value of the watch dog is enabled. When debugged it must be set disabled

otherwise the system restart occasionally.

5.2.3.1. RTEMS

The RTEMS driver must be opened before it can access the watchdog device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-2 - RTEMS driver usage description

Note: All calls to the RTEMS driver are blocking calls.

5.2.3.2. RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code structure

is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument)

{

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 24 of 135

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name

RTEMS_WATCHDOG_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER must be defined for using the

watchdog driver. By defining this as part of the RTEMS configuration, the driver will

automatically be initialized at boot up.

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage of the

error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device

5.3.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file. Instead,

register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt driven events such as power

loss, non-fatal multiple errors generated by the RAM EDAC mechanism.

5.3.2.1. int open(…)

Opens access to the device, it can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

Return value Description

fd A file descriptor for the device on
success

-1 see errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 25 of 135

errno values

EALREADY Device already opened

5.3.2.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.3. int ioctl(…)

Ioctl allows for disabling/enabling functionality of the error manager, setting of the timeout

and reading out counter values.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd uint32_t in Command to send

val uint32_t / uint32_t * in / out Value to write or a pointer to a buffer where
data will be written

Command table Description

ERRMAN_GET_SR_IOCTL Get the status register, see 5.3.2.3.1

ERRMAN_GET_CF_IOCTL Gets the carry flag register, see 5.3.2.3.2

ERRMAN_GET_SELFW_IOCTL Points to which boot firmware that will be loaded and
executed upon system reboot.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_RUNFW_IOCTL Gets the currently running firmware
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_SCRUBBER_IOCTL Gets the state of the memory scrubber.
0 = Scrubber is disabled
1 = Scrubber is enabled.

ERRMAN_GET_RESET_ENABLE_IOCTL Gets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 26 of 135

ERRMAN_GET_WDT_ERRCNT_IOCTL Gets the watchdog error count register.
This register can store a value up to 15 and then wraps.
After a wrap the WDT carry flag bit is set in the carry flag
register. see 5.3.2.3.2

ERRMAN_GET_EDAC_SINGLE_ERRCNT_IOCTL Gets the EDAC single error count.
See 5.3.2.3.3 for interpretation of the register.
After a wrap the EDAC single error count carry flag bit is
set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_EDAC_MULTI_ERRCNT_IOCTL Gets the EDAC multiple error count.
See 5.3.2.3.4 for interpretation of the register.
After a wrap the EDAC multiple error count carry flag bit
is set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_CPU_PARITY_ERRCNT_IOCTL Gets the CPU Parity error count register.
This register can store a value up to 15 and then wraps.
After a wrap the CPU parity error count carry flag bit is
set in the carry flag register. See 5.3.2.3.2

ERRMAN_GET_SYS_SINGLE_ERRCNT_IOCTL Gets the system flash single error (correctable) error
count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_SYS_MULTI_ERRCNT_IOCTL Gets the system flash multiple error (un-correctable)
error count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_MMU_SINGLE_ERRCNT_IOCTL Gets the mass memory single error (correctable) error
count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_MMU_MULTI_ERRCNT_IOCTL Gets the mass memory multiple error (un-correctable)
error count.
This register is 4 bit wide and will wrap upon overflow.

ERRMAN_GET_POWER_LOSS_ENABLE_IOCTL Gets the power loss detection enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

ERRMAN_SET_SR_IOCTL Sets the status register, see 5.3.2.3.1

ERRMAN_SET_CF_IOCTL Sets the carry flag register, see 5.3.2.3.2

ERRMAN_SET_SELFW_IOCTL Sets the next boot firmware.
0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_RESET_SYSTEM_IOCTL Performs a software reset.
The reset enable state is required to be 1 (On).

ERRMAN_SET_SCRUBBER_IOCTL Sets the state of the memory scrubber.
1 = On,
0 = Off.
The scrubber is a vital part of keeping the SDRAM free
from errors.

ERRMAN_SET_RESET_ENABLE_IOCTL Sets the reset enable state.
0 = Soft reset is disabled.
1 = Soft reset is enabled

ERRMAN_SET_WDT_ERRCNT_IOCTL Sets the watchdog error count register.
The counter width is 4 bits i. e. 15 is the maximum value
that can be written.

ERRMAN_SET_EDAC_SINGLE_ERRCNT_IOCTL Sets the EDAC single error count.
See 5.3.2.3.3 for register definition.

ERRMAN_SET_EDAC_MULTI_ERRCNT_IOCTL Sets the EDAC multiple error count register.
See 5.3.2.3.4 for register definition.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 27 of 135

ERRMAN_SET_CPU_PARITY_ERRCNT_IOCTL Sets the CPU Parity error count register.
The counter width is 4 bits i. e. 15 is the maximum value
that can be written.

ERRMAN_SET_SYS_SINGLE_ERRCNT_IOCTL Sets the system flash single (correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_SYS_MULTI_ERRCNT_IOCTL Sets the system flash multiple (un-correctable) error
counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_SINGLE_ERRCNT_IOCTL Sets the mass memory single (correctable) error counter.
This register is 4 bit wide.

ERRMAN_SET_MMU_MULTI_ERRCNT_IOCTL Sets the mass memory multiple (un-correctable) error
counter.
This register is 4 bit wide.

ERRMAN_SET_POWER_LOSS_ENABLE_IOCTL Sets the power loss enable state.
0 = Power loss detection disabled.
1 = Power loss detection enabled

5.3.2.3.1. Status register

Bit position Name Direction Description

31:12 RESERVED

11 ERRMAN_PULSEFLG R/W Pulse command flag bit is set.
Clear flag by write a ‘1’

10 ERRMAN_POWFLG R/W The power loss signal has been set.

9 ERRMAN_MEMCLR R The memory cleared signal is set from the
scrubber unit function from the memory
controller. Set when the memory has been
cleared and read by the bootrom to wait for
image.

8 RESERVED

7 ERRMAN_PARFLG R/W A previous CPU Register File Parity Error
Reset has been detected
Clear flag by write a ‘1’

6 ERRMAN_MEOTHFLG R/W A previous RAM EDAC Multiple Error Reset
has been detected for non-critical data
Clear flag by write a ‘1’

5 ERRMAN_SEOTHFLG R/W A previous RAM EDAC Single Error Reset has
been detected for critical data
Clear flag by write a ‘1’

4 ERRMAN_MECRIFLG R/W A previous RAM EDAC Multiple Error Reset
has been detected for non-critical data
Clear flag by write a ‘1’

3 ERRMAN_SECRIFLG R/W A previous RAM EDAC Single Error Reset has
been detected for critical data
Clear flag by write a ‘1’

2 ERRMAN_WDTFLG R/W A previous Watch Dog Timer Reset has been
detected
Clear flag by write a ‘1’

1 ERRMAN_RFLG R/W A previous Manual Reset has been detected
Clear flag by write a ‘1’

0 ERRMAN_IFLAG R/W Error Manager Interrupt Flag (multiple sources
i.e. read the whole status register)
Read:
‘0’ – No interrupt pending
‘1’ – Interrupt pending
Write:
‘0’ – Ignored
‘1’ – Clear

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 28 of 135

5.3.2.3.2. Carry flag register

Bit position Name Direction Description

31:8 RESERVED

7 ERRMAN_PARCFLG R/W Carry flag set when CPU Register File
Parity Error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write

‘1’)

6 ERRMAN_MEOFLG R/W Carry flag set when RAM EDAC
multiple other error counter overflow
has occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write

‘1’)

5 ERRMAN_SEOFLG R/W Carry flag set when RAM EDAC single
other error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow(Cleared by write
‘1’)

4 ERRMAN_MECFLG R/W Carry flag set when RAM EDAC
Multiple Error counter overflow has
occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

3 ERRMAN_SECFLG R/W Carry flag set when RAM EDAC Single
Error counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

2 ERRMAN_WDTCFLG R/W Carry flag set when Watch Dog Timer
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

1 ERRMAN_RFCFLG R/W Carry flag set when Manual Reset
counter overflow has occurred
‘0’ – No CF set
‘1’ – Counter overflow (Cleared by write
‘1’)

0 RESERVED -

5.3.2.3.3. Single EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_SENOCNT_SDRAM R/W SDRAM EDAC single error
counter for non-critical
errors

15:4 RESERVED -

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 29 of 135

3:0 ERRMAN_SECRICNT_SDRAM R/W SDRAM EDAC single error
counter for critical errors

5.3.2.3.4. Multiple EDAC error register

Bit
position

Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_MENOCNT R/W SDRAM EDAC multiple error
counter for non-critical errors

15:4 RESERVED -

3:0 ERRMAN_MECRICNT R/W SDRAM EDAC multiple error
counter for critical errors

Return value Description

0 Command executed
successfully

-1 See errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

INVAL Invalid value supplied to
IOCTL

5.3.3. Usage

5.3.3.1. RTEMS

The RTEMS driver must be opened before it can access the error manager device. Once

opened, all provided operations can be used as described in the RTEMS API defined in

subchapter 5.2.2. And, if desired, the access can be closed when not needed.

Figure 5-3 - RTEMS driver usage description

Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be

subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

This queue emits messages upon power loss and single correctable errors.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 30 of 135

A subscriber must inspect the message according to the following table to determine

whether to take action or not. Multiple subscribers are allowed and all subscribers will be

notified upon a message.

Message Description

ERRMAN_IRQ_POWER_LOSS A power loss has been detected

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER Multiple EDAC errors that are not critical have been
detected

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 31 of 135

5.3.3.2. RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/error_manager_rtems.h> is required for accessing error manager

device name RTEMS_ERROR_MANAGER_DEVICE_NAME.

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined for using

the error manager driver. By defining this as part of RTEMS configuration, the driver will

automatically be initialised at boot up.

5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing due to

the lack of mechanisms of injecting errors in this release.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/error_manager_rtems.h>

#define

CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored)

{}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 32 of 135

5.4. SCET

5.4.1. Description

The main purpose of the SCET IP and driver is to track the time since power on and to act

as a source of timestamps. The SCET has also been enhanced with General purpose

triggers and PPS signaling.

The SCET counts in seconds and subseconds, with a subsecond being 2
-16

th of a second,

roughly equivalent to 15.3 µs.

5.4.2. General purpose triggers

To be able to provide more accurate time stamping on external events, the SCET has a

number of general purpose triggers. When a trigger fires, the SCET will sample a subset (24

bits) of the current clock for later software readout, matching the external event to the SCET

time regardless of current software state. The exact functionality connected to each general

purpose trigger and the number available is dependent on the system mapping of the SCET,

e.g. in a System-On-Chip (SoC).

5.4.3. Pulse-Per-Second (PPS) signals

The SCET block is designed to be included in several different units in a system and for time

synchronization between these SCETs; each SCET has the ability to receive and/or transmit

PPS signals using two PPS signals which is intended for off-chip use. The first signal, pps0,

is an input only and intended to be used with a time-aware component such as a GPS

device for synchronizing the SCET counter to real time. The second signal, pps1, is

bidirectional and intended for use in a multi-drop PPS network. One unit in a system can act

as master on the multi-drop PPS network with the other units as slaves, with the ability to

switch master depending on the redundancy concept used.

When the SCET synchronizes the time counter with a PPS signal, it will also monitor this

PPS signal to make sure it arrives as expected within a user set timeframe (PPS threshold).

If input PPS is lost, it requires software interaction to resynchronize to the incoming PPS

pulse. This is to minimize the risk for sudden glitches in the SCET counter depending on the

incoming PPS accuracy and availability. The PPS monitoring will issue interrupts in bare-

metal or messages on the SCET message queue in RTEMS to notify the application if the

PPS has arrived, been lost or been found.

Exp PPS

OK PPS Missed PPSMissed PPS

Configured
threshold

(N + 1) s (N + 2) s

Time

Figure 4 PPS Threshold configuration

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 33 of 135

To differentiate between the uses of the PPS signal synchronization methods, the SCET can

be said to operate in a number of different modes: Free-running, Master, Master with time

synchronization and Slave. Please see the explanations below and 5.4.6 for an

implementation description.

5.4.3.1. Free-running mode

In this mode, the SCET doesn't use any PPS signals at all. It simply counts the current time

since power on without correlation with anyone else.

5.4.3.2. Master mode

In this mode, the SCET is still counting on its own, but now it also emits a pulse on pps1 for

every second tick, acting as a master on the bidirectional multi-drop PPS network.

5.4.3.3. Master mode with time synchronization

This mode is the same as the previous master mode, with the addition of also synchronizing

the time counter with the incoming pps0 signal. Should the PPS signal on pps0 disappear

for some reason, it will revert back to normal master mode and continue issuing PPS signals

on pps1.

5.4.3.4. Slave mode

In this mode, the SCET will synchronize the time counter with pps1, using the bidirectional

multi-drop PPS network as an input. Should the PPS pulse disappear for some reason, it will

revert to free running mode.

5.4.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

SCET counter accesses can be done by reading or writing to the device file, modifying the

second and subsecond counter values.

The SCET RTEMS driver also supports a number of different IOCTLs for other operations

which isn't specifically affecting the SCET counter registers.

For event signaling, the SCET driver has a number of message queues, allowing the

application to act upon different events.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 34 of 135

5.4.4.1. Function int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. SCET device is defined as

RTEMS_SCET_DEVICE_NAME.

oflags int in A bitwise OR-separated list of values that

determine the method in which the file is to be

opened (whether it should be read only,

read/write, etc.).

Return value Description

>0 A file descriptor for the device

on success

-1 see errno values

errno values

EALREADY Device already opened

5.4.4.2. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.4.4.3. Function ssize_t read(…)

Reads the current SCET value, consisting of second and subsecond counters. Both counter

values are guaranteed to be sampled at the same moment.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Pointer to a 6-byte buffer where the timestamp
will be stored. The first four bytes are the
seconds and the last two bytes are the
subseconds.

count size_t in Number of bytes to read, must be set to 6.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 35 of 135

Return value Description

>=0 Number of bytes that were

read.

-1 See errno values

errno values

EPERM Device not opened

EINVAL Number of bytes to read,

count is not 6

5.4.4.4. Function ssize_t write(…)

Adjusts the SCET value's second and subsecond counters using two's complement

difference values.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void * in Pointer to a 6-byte buffer where the adjustment
difference values are stored. The first four
bytes are the difference value for the seconds
and the last two bytes are the difference value
for the subseconds.

count size_t in Number of bytes to write, must be set to 6.

Return value Description

>=0 Number of bytes that were

written.

-1 See errno values

errno values

EPERM Device not open

EINVAL Number of bytes to write,

count is not 6

5.4.4.5. Function int ioctl(…)

Ioctl allows for any other SCET-related operation which isn't specifically aimed at reading

and/or writing the SCET time value.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val see command in/out Data according to the specific command.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 36 of 135

Command table Type Direction Description

SCET_SET_PPS_SOURCE_IOCTL uint32_t in Sets the PPS source.

0 = External PPS source

1 = Internal PPS source

(default)

SCET_GET_PPS_SOURCE_IOCTL uint32_t out Gets the current PPS source

0 = External PPS source

1 = Internal PPS source

(default)

SCET_SET_PPS_O_EN_IOCTL uint32_t in Input argument configures if
pps0 or pps1 is input and if
pps1 is input or output.
0 = pps1 is input (default)
1 = pps0 is input, pps1 is

output

SCET_GET_PPS_O_EN_IOCTL uint32_t out Returns wheter the pps0 or
pps1 is input and if pps1 is
input or output.
0 = pps1 is input (default)
1 = pps0 is input, pps1 is

output

SCET_SET_PPS_THRESHOLD_IOCTL uint16_t in Configures the PPS threshold
window where the PPS pulse
is allowed to arrive without
being deemed lost. Defined in
number of subseconds. (0 is
default)

SCET_GET_PPS_THRESHOLD_IOCTL uint16_t out Returns the currently

configured PPS threshold

window in subseconds. (0 is

default)

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL uint32_t out Returns 24 bits of the SCET

time sampled when PPS

arrived.

Bit 23:16 contains lower 8 bits

of second

Bit 15:0 contains subseconds

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 37 of 135

SCET_SET_GP_TRIGGER_LEVEL_IOCTL uint8_t in Configures the trigger level of

each trigger:

Bit 0 is trigger 0,

Bit N is trigger N,

Bit 7 is trigger 7.

Bit value 0 = trigger activates

on 0 to 1 transition (rising

edge)

Bit value 1 = trigger activates
on 1 to 0 transition (falling
edge).
(0 is default)

SCET_GET_GP_TRIGGER_LEVEL_IOCTL uint8_t out Returns the currently
configured level of all the GP
triggers as a bit field:
Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.
Bit value 0 = trigger activates
on 0 to 1 transition (rising
edge)
Bit value 1 = trigger activates
on 1 to 0 transition (falling
edge).
(0 is default)

SCET_SET_GP_TRIGGER_ENABLE_IOCTL uint8_t in Input argument selects which
GP trigger(s) to enable.
Input is a 8 bit field where bit 0
is trigger 0,
bit N is trigger N,
bit 7 is trigger 7.
All triggers are disabled by

default (0)

SCET_GET_GP_TRIGGER_ENABLE_IOCTL uint8_t out Returns which GP triggers
that are enabled.
Input is a 8 bit field where bit 0
is trigger 0,
bit N is trigger N,
bit 7 is trigger 7.
All triggers are disabled by

default (0)

SCET_GET_GP_TRIGGER_COUNTER_IOCTL uint32_t in Input argument selects which
GP trigger SCET counter
sample to read. Returns 24
bits of the SCET counter
sampled when the GP trigger
became active.
Bit 23:16 contains lower 8 bits
of second
Bit 15:0 contains subseconds

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 38 of 135

Return value Description

>=0 Return value on commands

that return these. 0 for success

in other cases.

-EINVAL Invalid value supplied to

IOCTL

-EIO Invalid IOCTL

5.4.5. Usage

5.4.6. PPS

The four described PPS modes can be obtained by setting the PPS output enable and PPS

source according to Table 5-1.

Table 5-1 Mapping between PPS modes and PPS settings

PPS mode PPS source PPS output enable
Free-running (default) Internal Input

Master Internal Output

Master with time
synchronization

External Output

Slave External Input

When PPS source is set to external and then lost, it will revert to internal setting.

Slave mode will fall back to Free-running mode and Master mode with time synchronization

will revert back to Master mode.

When in PPS source is set to internal: If an incoming PPS is detected the PPS found

interrupt is asserted. Typically a number of these PPS found interrupts should be

investigated by the application and once the PPS is deemed stable enough the PPS source

should be set to external (if external synchronization is sought after).

It is up to the application to decide and enforce if and when the external PPS source is to be

used again.

5.4.6.1. PPS Threshold

The PPS threshold has a 16 bit resolution and is used to define the subsecond range within

which incoming PPS that are deemed acceptable.

The range of acceptability is calculated as >= (65535 – threshold) to <= (65535 + 1 +

threshold) subseconds after the previous PPS.

If the PPS threshold is configured to 0 (min value) only incoming PPS that arrive within >=

subsecond 65535 of the current second to < subsecond 1 of the next second will be deemed

acceptable, (>= 0.65535 to <= 1.0).

If the PPS threshold is configured to 65535 (max value) all incoming PPS are deemed

acceptable. Lost events will not be detected at all.

5.4.7. Event callback via message queue

The SCET driver exposes message queues for event messaging from the driver to the

application. A single subscriber is allowed for each queue.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 39 of 135

‘S’, ‘P’, ‘P’, ‘S’ handles PPS related messages with a prefix of:

SCET_INTERRUPT_STATUS_*

Table 5-2 Driver message queue message types

Event name Description

PPS_ARRIVED An external PPS signal has arrived

PPS_LOST The external PPS signal is lost

PPS_FOUND The external PPS signal was found

‘S’, ‘G’, ‘T’, ‘n’ handles messages sent from the general purpose trigger n, with the number n

ranging from 0 to up to the maximum defined for the particular SoC configuration.

Table 5-3 General purpose trigger n message queue

Event name Description

TRIGGERn Trigger n was triggered

5.4.8. RTEMS application example

In order to use the SCET driver in the RTEMS environment, the following code structure is

suggested for use:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 40 of 135

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <assert.h>

#include <bsp/scet_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_MAXIMUM_DRIVERS 10

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static const int32_t secs_to_adjust = -10;

static const int16_t subsecs_to_adjust = 1000;

/* Adjust SCET time 10 seconds backwards and 1000

 * subseconds forwards */

rtems_task Init (rtems_task_argument ignored)

{

 int result;

 int scet_fd;

 uint32_t old_seconds;

 uint16_t old_subseconds;

 uint32_t new_seconds;

 uint16_t new_subseconds;

 uint8_t read_buffer[6];

 uint8_t write_buffer[6];

 scet_fd = open(RTEMS_SCET_DEVICE_NAME, O_RDWR);

 assert(scet_fd >= 0);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

memcpy(&old_seconds, read_buffer,

 sizeof(uint32_t));

memcpy(&old_subseconds, read_buffer +

 sizeof(uint32_t), sizeof(uint16_t));

 printf("\nOld SCET time is %lu.%u\n", old_seconds,

 old_subseconds);

 printf("Adjusting seconds with %ld, subseconds

 with %d\n",

 secs_to_adjust, subsecs_to_adjust);

 memcpy(write_buffer, &secs_to_adjust,

sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t),

&subsecs_to_adjust, sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 41 of 135

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/scet_rtems.h> is required for accessing SCET device name

RTEMS_SCET_DEVICE_NAME as well as other defines.

CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER must be defined for using the SCET

driver. By defining this as part of RTEMS configuration, the driver will automatically be

initialized at boot up.

 secs_to_adjust, subsecs_to_adjust);

 memcpy(write_buffer, &secs_to_adjust,

 sizeof(uint32_t));

 memcpy(write_buffer + sizeof(uint32_t),

&subsecs_to_adjust, sizeof(uint16_t));

 result = write(scet_fd, write_buffer, 6);

 assert(result == 6);

 result = read(scet_fd, read_buffer, 6);

 assert(result == 6);

 memcpy(&new_seconds, read_buffer,

 sizeof(uint32_t));

 memcpy(&new_subseconds, read_buffer +

 sizeof(uint32_t), sizeof(uint16_t));

 printf("New SCET time is %lu.%u\n", new_seconds,

 new_subseconds);

 result = close(scet_fd);

 assert(result == 0);

 rtems_task_delete(RTEMS_SELF);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 42 of 135

5.5. UART

5.5.1. Description

This driver is using the de facto standard interface for a 16550D UART given in [RD5] and

as such has an 8-bit interface, but has been expanded to provide a faster and more delay-

tolerant implementation.

5.5.1.1. RX/TX buffer depth

The RX and TX FIFOs have been expanded to 128 characters compared to the original

specification of 16 characters. To be backwards compatible as well as being able to utilize

the larger depth of the FIFOs, a new parameter has been brought in called buffer depth. The

set buffer depth decides how much of the FIFOs real depth it should base its calculations

on. Buffer depth affects both RX and TX FIFOs handling in the RTEMS driver.

5.5.1.2. Trigger levels

To be able to utilize the larger FIFOs, the meaning of the trigger levels have been changed.

In the specification in [RD5], it defines the trigger levels as 1 character, 4 characters, 8

characters and 14 characters. This has now been changed to instead mean 1 character, 1/4

of the FIFO is full, 1/2 of the FIFO is full and the FIFO is 2 characters from the given buffer

depth top. This results in the IP being fully backwards compatible, since a buffer depth of 16

characters would yield the same trigger levels as those given in [RD5].

5.5.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.5.2.1. Function int open(...)

Opens access to the requested UART. Only blocking mode is supported.

Upon each open call the device interface is reset to 115200 bps and its default mode

according to the table below.

Argument name Type Direction Description

pathname const char * in The absolute path to the file that is to be
opened.
See table below for uart naming.

flags Int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write etc). See below.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 43 of 135

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

ENODEV Device does not exist

EALREADY Device is already open

Device name Description

/dev/uart0 Ordinary UART, default mode RS422

/dev/uart1 Ordinary UART, default mode RS422

/dev/uart2 Ordinary UART, default mode RS422

/dev/uart3 Ordinary UART, default mode RS422

/dev/uart4 Ordinary UART, default mode RS422

/dev/uart_psu_control PSU Control, RS485 only

/dev/uart_safe_bus Safe bus, RS485 only

5.5.2.2. Function int close(...)

Closes access to the device and disables the line drivers.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function ssize_t read(…)

Read data from the UART. The call blocks until data is received from the UART RX FIFO.

Please note that it is not uncommon for the read call to return less data than requested.

Argument name Type Direction Description

fd int in File descriptor received at open

buf void * in Pointer to character buffer to write data to

count size_t in Number of characters to read

Return value Description

> 0 Number of characters that were
read.

0 A parity / framing / overflow
error occurred. The RX data
path has been flushed. Data
was lost.

- 1 see errno values

errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 44 of 135

EPERM Device not open

EINVAL Invalid number of characters to
be read

5.5.2.4. Function ssize_t write(…)

Write data to the UART. The write call is blocking until all data have been transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open

buf const void * in Pointer to character buffer to read data from

count size_t in Number of characters to write

Return value Description

>= 0 Number of characters that were
written.

- 1 see errno values

errno values

EINVAL Invalid number of characters to
be written.

5.5.2.5. Function int ioctl(…)

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.

RS422/RS485 mode selection is not applicable for safe bus and power ctrl UARTs.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

UART_IOCTL_SET_BITRATE uint32_t in Set the bitrate of the line interface.
Possible values:
UART_B375000
UART_B153600
UART_B115200 (default)
UART_B76800
UART_B57600
UART_B38400
UART_B19200
UART_B9600
UART_B4800
UART_B2400
UART_B1200

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 45 of 135

UART_IOCTL_MODE_SELECT uint32_t in Set the mode of the interface. Possible
values:
UART_RTEMS_MODE_RS422 (default)
UART_RTEMS_MODE_RS485
UART_RTEMS_MODE_LOOPBACK
(TX connected to RX internally)

UART_IOCTL_RX_FLUSH uint32_t in Flushes the RX software FIFO

UART_IOCTL_SET_PARITY uint32_t in Set parity. Possible values:
UART_PARITY_NONE (default)
UART_PARITY_ODD
UART_PARITY_EVEN

UART_IOCTL_SET_BUFFER_DEPTH uint32_t in Set the FIFO buffer depth. Possible
values:
UART_BUFFER_DEPTH_16 (default)
UART_BUFFER_DEPTH_32
UART_BUFFER_DEPTH_64
UART_BUFFER_DEPTH_128

UART_IOCTL_GET_BUFFER_DEPTH uint32_t* out Get the current buffer depth.

UART_IOCTL_SET_TRIGGER_LEVEL uint32_t in Set the RX FIFO trigger level. Possible
values:
UART_TRIGGER_LEVEL_1 = 1
character
UART_TRIGGER_LEVEL_4 = 1/4 full
UART_TRIGGER_LEVEL_8 = 1/2 full
UART_TRIGGER_LEVEL_14 =
buffer_depth - 2 (default)

UART_IOCTL_GET_TRIGGER_LEVEL uint32_t* out Get the current trigger level

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the UARTs:

CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

5.5.3.1. RTEMS application example

In order to use the uart driver in the RTEMS environment, the following code structure is

suggested to be used:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 46 of 135

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the internal

RX queue is flushed.

5.5.4. Limitations

8 data bits only.

1 stop bit only.

No hardware flow control support.

5.6. Mass memory

5.6.1. Description

This section describes the mass memory driver’s design and usability.

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of usage. In case

of failure on a function call, errno value is set for determining the cause.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument ignored){}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 47 of 135

5.6.2. Data Structures

5.6.2.1. Struct massmem_cid_t

This struct is used as the target for reading the mass memory chip IDs.

Type Name Purpose

Array of 5 uint8_t edac Byte array for EDAC chip ID

Array of 5 uint8_t chip0 Byte array for chip 0 ID

Array of 5 uint8_t chip1 Byte array for chip 1 ID

Array of 5 uint8_t chip2 Byte array for chip 2 ID

Array of 5 uint8_t chip3 Byte array for chip 3 ID

5.6.2.2. Struct massmem_error_injection_t

This struct is used as a specification when manually injecting errors when writing to the the

mass memory.

Type Name Purpose

uint8_t edac_error_injection Bits to be XOR:ed with generated EDAC byte

uint32_t data_error_injection Bits to be XOR:ed with supplied data

5.6.2.3. Struct massmem_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading from spare area and data

simultaneously.

Type Name Purpose

uint32_t page_num What page to read

uint32_t * data_buf Pointer to buffer in which the data is to be stored

uint8_t * edac_buf Pointer to buffer in which the EDAC data is to be stored

uint32_t size Size to read in bytes

5.6.2.4. Struct massmem_ioctl_error_injection_args_t

This structure is used by the RTEMS API in order to perform a special write call to inject

errors into the mass memory.

Type Name Purpose

uint32_t page_num What page to write

uint8_t * data_buf Pointer to data to write

uint32_t size Size of data to write in bytes

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 48 of 135

massmem_error_injection_t * error_injection Pointer to error injection struct. See 5.6.2.2 for definition

5.6.3. RTEMS API

5.6.3.1. int open(…)

Opens access to the driver. The device can only be opened once at a time.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be

opened. Mass memory device is defined as

MASSMEM_DEVICE_NAME.

oflags int in Device must be opened by exactly one of the

symbols defined in Table 5-4.

Return value Description

>0 A file descriptor for the

device.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

ENOENT Invalid filename

EEXIST Device already opened.

Table 5-4 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.6.3.2. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 49 of 135

-1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

5.6.3.3. off_t lseek(…)

Sets page offset for read/ write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number.

whence int in Must be set to SEEK_SET.

Return value Description

offset Page number

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

ESPIPE fd is associated with a pipe,

socket or FIFO.

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would

overflow off_t.

5.6.3.4. ssize_t read(…)

Reads requested size of bytes from the device starting from the offset set in lseek.

Note! For iterative read operations, lseek must be called to set page offset before each

read operation.

Note! The character buffer location handed to read must be 32-bit aligned.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data

nbytes size_t in Number of bytes to read into buf.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 50 of 135

Return value Description

>0 Number of bytes that were

read.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is out

of range or nbytes is too large

and reaches a page that is out

of range.

EBUSY Device is busy with previous

read/write operation.

5.6.3.5. ssize_t write(…)

Writes requested size of bytes to the device starting from the offset set in lseek.

Note! For iterative write operations, lseek must be called to set page offset before each

write operation.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to read data from

nbytes ssize_t in Number of bytes to write from buf.

Return value Description

>0 Number of bytes that were

written.

- 1 see errno values

errno values

EBADF The file descriptor fd is not an

open file descriptor

EINVAL Page offset set in lseek is out

of range or nbytes is too large

and reaches a page that is out

of range.

EAGAIN Driver failed to write data. Try
again.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 51 of 135

EIO Failed to write data. Block

should be marked as a bad

block.

5.6.3.6. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument
name

Type Direction Description

fd int in File descriptor received at open.

cmd ioctl_command_t in Command specifier

(varies) (varies) (varies) Command-specific argument

The following return and errno values are common for all commands except.

Return value Description

0 Operation successful (or block
is marked ok in case of bad
block check)

-EBUSY Device is busy with previous

read/write operation.

-1 See errno values

errno values

ENODEV Internal RTEMS error

EIO Internal RTEMS error

5.6.3.6.1. Reset mass memory device
Resets the mass memory device.

5.6.3.6.2. Read status data
Reads the status register value.

Command Value type Direction Description

MASSMEM_IO_RESET n/a n/a n/a

Command Value type Direction Description

MASSMEM_IO_READ_DATA_STATUS uint32_t* out Pointer to variable in which status data is to be
stored.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 52 of 135

5.6.3.6.3. Read control status data
Reads the control status register value.

5.6.3.6.4. Read EDAC register data
Reads the EDAC register value.

5.6.3.6.5. Read ID
Reads the chip IDs

5.6.3.6.6. Erase block
Erases a block

Return value Description

-EINVAL The block number is out of

range

-EIO Failed to erase block. Block

should be marked as a bad

block

Command Value type Direction Description

MASSMEM_IO_READ_CTRL_STATUS uint8_t* out Pointer to variable in which control status data is to

be stored.

Command Value type Direction Description

MASSMEM_IO_READ_EDAC_STATUS uint8_t* out Pointer to variable in which control status data is to

be stored.

Command Value type Direction Description

MASSMEM_IO_READ_ID massmem_cid_t.* out Pointer to struct in which ID is to be stored, see

5.6.2.1.

Command Value type Direction Description

MASSMEM_IO_ERASE_BLOCK uint32_t in Block number

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 53 of 135

5.6.3.6.7. Read spare area
Reads the spare area with given data.

Return value Description

-EINVAL Indicates one or more of:

 The page number is out of

range

 Size is 0

 Size is larger than page

size

 Size is not a multiple of 4

 The data or EDAC buffer is

NULL

The data or EDAC buffer is not

4-byte aligned

-EIO Reading timed out or read

status indicated failure.

5.6.3.6.8. Bad block check
Reads the factory bad block status from a block.

Note that this only gives information about factory bad blocks; subsequent bad block status

is not included in this information.

Return value Description

0 Block is marked ok.

1 Block is marked as bad.

-EINVAL The page number is out of

range, buffers are NULL or not

4-byte aligned.

Command Value type Direction Description

MASSMEM_IO_READ_SPARE_AREA massmem_ioctl_spare_area_args_t* in/out Pointer to struct with input

page number specifier, and

destination buffers where

spare area data is to be

stored, see 5.6.2.3

Command Value type Direction Description

MASSMEM_IO_BAD_BLOCK_CHECK uint32_t in Block number.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 54 of 135

5.6.3.6.9. Error Injection
Injects errors in page write command call. The purpose is to test error corrections (EDAC).

Return value Description

-EINVAL Indicates one or more of:

 The page number is out of

range

 Size is 0

 Size is larger than page

size

 Size is not a multiple of 4

 The data or EDAC buffer is

NULL

The data buffer is not 4-byte

aligned

-EIO The mass memory write

operation failed, the block

should be marked as a bad

block

5.6.4. Usage

5.6.4.1. RTEMS

5.6.4.1.1. Overview
The RTEMS driver accesses the mass memory by the reference a page number. There are

MASSMEM_BLOCKS blocks starting from block number 0 and

MASSMEM_PAGES_PER_BLOCK pages within each block starting from page 0. Each

page is of size MASSMEM_PAGE_SIZE bytes.

When writing new data into a page, the memory area must be in its reset value. If there is

data that was previously written to a page, the block where the page resides must first be

erased in order to clear the page to its reset value. Note that the whole block is erased, not

only the page.

Command Value type Direction Description

MASSMEM_IO_ERROR_INJECTION massmem_ioctl_error_injection_args_t* in Pointer to struct with

program page arguments

as defined in 5.6.2.4

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 55 of 135

It is the user application’s responsibility to make sure any data the needs to be preserved

after the erase block operation must first be read and rewritten after the erase block

operation, with the new page information.

5.6.4.1.2. Usage
The RTEMS driver must be opened before it can access the mass memory flash device.

Once opened, all provided operations can be used as described in the subchapters 5.6.3.3.

to 5.6.3.6. And, if desired, the access can be closed when not needed.

Figure 5-5 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 56 of 135

5.6.4.2. RTEMS application example

In order to use the mass memory flash driver in RTEMS environment, the following code

structure is suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, lseek, read and write and ioctl functions for accessing driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/massmem_flash_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

CONFIGURE_APPLICATION_NEEDS_MASSMEM_FLASH_DRIVER must be defined for using

the driver. This will automatically initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/massmem_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_MASS_MEMORY_FLASH_DRIVER

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

static uint8_t buf[MASSMEM_PAGE_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(MASSMEM_DEVICE_NAME, O_RDWR);

 .

 s = lseek(fd, page_number, SEEK_SET);

 .

 sz = write(fd, buf, MASSMEM_PAGE_SIZE);

 .

 lseek(fd, page_number, SEEK_SET)

 .

 sz = read(fd, buf, MASSMEM_PAGE_SIZE);

 .

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 57 of 135

5.6.5. Error injection

Error injection is used to verify the EDAC capabilities of the IP.

The IP always writes/reads 8 32-bit data words. If less or an uneven amount of data is

requested from the application the drivers pads this internally.

To ensure that the memory can withstand a full byte corruption of data the 8 words of data

are interleaved over the mass memory chips. This is done transparently from the user

perspective except when writing the error injection vector.

Looking at the massmem_error_injection_t struct defined in 5.6.2.2:

the data_error_injection member is an uint32_t.

Bit 0 of byte 0, 1, 2, 3 affects the first data word.

Bit 1 of byte 0, 1, 2, 3 affects the second data word.

…

Bit 7 of byte 0, 1, 2, 3 affects the eight data word.

To inject a correctible error in the third data word flip either bit 2, 10, 18 or 26.

To inject an uncorrectible in the third data word flip two bits of either 2, 10, 18, 26.

5.6.6. Limitations

The mass memory flash driver may only have one open file descriptor at a time.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 58 of 135

5.7. Spacewire

5.7.1. Description

This section describes the SpaceWire driver’s design and usability.

5.7.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case of

failure on a function call, errno value is set for determining the cause. Additional

functionalities are supported via POSIX Input/Output Control API as described in subchapter

5.7.2.5.

5.7.2.1. int open(…)

Registers the application to the device name for data transactions. Although multiple

accesses for data transaction is allowed, only one access per unique device name is valid.

Device name must be set with a logical number as described in usage description in

subchapter 5.7.3.1.

Argument name Type Direction Description

filename char * in Device name to register to for data transaction.

oflags int in
Device must be opened by exactly one of the
symbols defined in Table 5-5.

Return value Description

>0 A file descriptor for the device.

- 1 see errno values

errno values

ENOENT Invalid device name

EEXIST Device already opened.

EEGAIN
Opening of device failed due to internal
error. Try again.

Table 5-5 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.7.2.2. int close(…)

Deregisters the device name from data transactions.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 59 of 135

Return value Description

0 Device name deregistered successfully

-1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

5.7.2.3. size_t read(…)

Reads a packet when available.

Note! This call is blocked until a package for the logic address is received. In addition, only

one task must access one file descriptor at a time. Multiple task accessing the same file

descriptor is not allowed.

Note! buf reference must be aligned to a 32 bit aligned address.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in
Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>0
Received size of the actual packet. Can
be less than nbytes.

0 Buffer size was lower than received
packet size. Errno value is set to
EOVERFLOW.

- 1 see errno values

errno values

EBADF
The file descriptor fd is not an open file
descriptor

EINVAL
Packet size is 0 or larger than
SPWN_MAX_PACKET_SIZE

ETIMEDOUT Timeout received. Received packet is
incomplete.

5.7.2.4. size_t write(…)

Transmits a packet.

Note! This call is blocked till the package is transmitted.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in
Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 60 of 135

Return value Description

>0 Number of bytes that were transmitted.

≤0 see errno values

errno values

EBADF
The file descriptor fd is not an open file

descriptor

EINVAL
Packet size is 0 or larger than
SPWN_MAX_PACKET_SIZE.

ETIMEDOUT Failed to transmit the complete packet.

EIO Internal error

5.7.2.5. int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument name Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command defined in subchapter 5.7.2.5.1

value void * in
The value relating to command operation as
defined in subchapter 5.7.2.5.1.

5.7.2.5.1. Mode setting
Sets the device into the given mode.

Note! The mode setting affects the SpaceWire device and therefore all file descriptors

registered to it.

Return value Description

0 Given mode was set

- 1 see errno values

errno values

EINVAL Invalid mode.

5.7.3. Usage description

5.7.3.1. Overview

The driver provides SpaceWire link setup and data transaction via the SpaceWire device.

Each application that wants to communicate via the SpaceWire device must register with a

logical address.

Command Type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in

Modes available:

 SPWN_IOCTL_MODE_OFF: Turns off the
node.

 SPWN_IOCTL_MODE_LOOPBACK:
Internal loopback mode

SPWN_IOCTL_MODE_NORMAL: Normal
mode.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 61 of 135

The logical address is tied to a device number. To register to the device, the application

must use the predefined string SPWN_DEVICE_0_NAME_PREFIX with a chosen logical

address to register itself to the driver. See code example in subchapter 5.7.3.3. The

registration is done by function open and deregistered by the function close.

Only one logical address can be registered at a time yet multiple logical addresses can be

used at the same time within an application.

Logical addresses between 0 – 31 and 255 are reserved by the ESA’s ECSS SpaceWire

standard [RD2] and cannot be registered to.

Note! A reception packet buffer must be aligned to 4 bytes in order to handle the packet’s

reception correctly. It is therefore recommended to assign the reception buffer in the

following way:

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES))

buf_rx[PACKET_SIZE];

5.7.3.2. Usage

The application must first register to a device name before it can be accessed for data

transaction. Once registered via function open, all provided operations can be used as

described in the subchapter 5.7.2. If desired, the access can be closed when not needed.

Figure 5-6 - RTEMS driver usage description

Note! All calls to RTEMS driver are blocking calls.

Note! Data rate is dependent on the maximum packet size and packet transmission rate that

is limited by SpaceWire IP core. This simply results in effect to that the packet size is

proportionate to data rate i.e. the larger the packet size, the higher the data rate.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 62 of 135

5.7.3.3. RTEMS application example

In order to use the driver in RTEMS environment, the following code structure is suggested

to be used:

The above code registers the application for using the unique device name with the logical

address 42 (SPWN_DEVICE_0_NAME_PREFIX”42”) for data transaction.

Two buffers, buf_tx and buf_rx, are aligned with CPU_STRUCTURE_ALIGNMENT for

correctly handling DMA access regarding transmission and reception of a SpaceWire

packet.

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions

open, close, read and write and ioctl functions for accessing the driver.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spacewire_node_rtems.h> is required for driver related definitions.

Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spacewire_node_rtems.h>

.

.

#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

#define RESOURCES_MEM_SIZE (512*1024) /* 1 Mb */

#define CONFIGURE_EXECUTIVE_RAM_SIZE RESOURCES_MEM_SIZE

#define CONFIGURE_MAXIMUM_TIMERS 1 /* Needed by driver */

.

.

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

uint8_t __attribute__ ((aligned (SPWN_RX_PACKET_ALIGN_BYTES)))

 buf_rx[SPWN_MAX_PACKET_SIZE];

uint8_t buf_tx[SPWN_MAX_PACKET_SIZE];

rtems_task Init (rtems_task_argument ignored)

{

 .

 fd = open(SPWN_DEVICE_0_NAME_PREFIX”42”, O_RDWR);

 .

}

 .

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 63 of 135

CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER must be defined for using the

driver. This will automatically initialise the driver at boot up.

CONFIGURE_EXECUTIVE_RAM_SIZE must also be defined for objects needed by the

driver.

5.8. GPIO

5.8.1. Description

This driver software for the GPIO IP handles the setting and reading of general purpose

input/output pins. It implements the standard set of device file operations according to [RD7].

The GPIO IP has, apart from logical pin and input/output operations, also a number of other

features.

5.8.1.1. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the driver

software by the means of an interrupt.

5.8.1.2. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample the

current timer when a rising or falling edge is detected on a pin. Reading the time of the

timestamp requires interaction with the SCET and exact register address depends on the

current board configuration. One SCET sample register is shared by all GPIOs.

5.8.1.3. RTEMS differential mode

In RTEMS finally, a GPIO pin can also be set to operate in differential mode on output only.

This requires two pins working in tandem and if this functionality is enabled, the driver will

automatically adjust the setting of the paired pin to output mode as well. The pins are paired

in logical sequence, which means that pin 0 and 1 are paired as are pin 2 and 3 etc. Thus, in

differential mode it is recommended to operate on the lower numbered pin only to avoid

confusion. Pins can be set in differential mode on specific pair only, i.e. both normal single

ended and differential mode pins can operate simultaneously (though not on the same pins

obviously).

5.8.1.4. Operating on pins with pull-up or pull-down

For scenarios when one or multiple pins are connected to a pull-up or pull-down (for e.g.

open-drain operation), it's recommended that the output value of such a pin should always

be set to 1 for pull-down or 0 for pull-up mode. The actual pin value should then be selected

by switching between input or output mode on the pin to comply with the external pull

feature.

5.8.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 64 of 135

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of a failure on a function call, the errno value is set for determining the cause.

5.8.2.1. Function int open(...)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead

retains the settings from any previous access.

Argument name Type Direction Description

pathname const char * in The absolute path to the GPIO pin to be
opened. All possible paths are given by
"/dev/gpioX" where X matches 0-31. The actual
number of devices available depends on the
current hardware configuration.

flags int in Access mode flag, O_RDONLY, O_WRONLY
or O_RDWR.

Return value Description

Fildes A file descriptor for the device on
success

-1 See errno values

errno values

EALREADY Device is already open

EINVAL Invalid options

5.8.2.2. Function int close(...)

Closes access to the GPIO pin.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.8.2.3. Function ssize_t read(...)

Reads the current value of the specified GPIO pin. If no edge detection have been enabled,

this call will return immediately. With edge detection enabled, this call will block with a

timeout until the pin changes status such that it triggers the edge detection. The timeout can

be adjusted using an ioctl command, but defaults to zero - blocking indefinitely, see also

5.8.2.5.

Argument name Type Direction Description

fd int in File descriptor received at open.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 65 of 135

buf void* in Pointer to character buffer to put the read data
in.

count size_t in Number of bytes to read, must be set to 1.

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for the edge
detection to trigger

5.8.2.4. Function ssize_t write(...)

Sets the output value of the specified GPIO pin. If the pin is in input mode, the write is

allowed, but its value will not be reflected on the pin until it is set in output mode.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to character buffer to get the write data
from.

count size_t in Number of bytes to write, must be set to 1.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

5.8.2.5. Function int ioctl(...)

The input/output control function can be used to configure the GPIO pin as a complement to

the simple data settings using the read/write file operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val void * in/out Data according to the specific command.

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECTION uint32_t out Get input/output direction of the pin.
'0' output mode
'1' input mode

GPIO_IOCTL_SET_DIRECTION uint32_t in Set input/output direction of the pin.
'0' output mode
'1' input mode

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 66 of 135

GPIO_IOCTL_GET_FALL_EDGE_DETECTION uint32_t out Get falling edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_FALL_EDGE_DETECTION uint32_t in Set falling edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_RISE_EDGE_DETECTION uint32_t out Get rising edge detection status of
the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_SET_RISE_EDGE_DETECTION uint32_t in Set rising edge detection
configuration of the pin.
'0' detection disabled
'1' detection enabled

GPIO_IOCTL_GET_TIMESTAMP_ENABLE uint32_t out Get timestamp enable status of the
pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_SET_TIMESTAMP_ENABLE uint32_t in Set timestamp enable configuration
of the pin.
'0' timestamp disabled
'1' timestamp enabled

GPIO_IOCTL_GET_DIFF_MODE uint32_t out Get differential mode status of the
pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_SET_DIFF_MODE uint32_t in Set differential mode configuration of
the pin.
'0' normal, single ended, mode
'1' differential mode

GPIO_IOCTL_GET_EDGE_TIMEOUT uint32_t out Get the edge trigger timeout value in
ticks. Defaults to zero which means
wait indefinitely.

GPIO_IOCTL_SET_EDGE_TIMEOUT uint32_t in Set the edge trigger timeout value in
ticks. Zero means wait indefinitely.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.8.3. Usage description

5.8.3.1. RTEMS application example

The following #define needs to be set by the user application to be able to use the GPIO:

CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 67 of 135

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, read, write and ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

5.8.4. Limitations

Differential mode works on output only.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM

#define CONFIGURE_MAXIMUM_DRIVERS 15

#define CONFIGURE_MAXIMUM_SEMAPHORES 20

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int gpio_fd;

 uint32_t buffer;

 uint32_t config;

 ssize_t size;

 gpio_fd = open("/dev/gpio0", O_RDWR);

 config = GPIO_DIRECTION_IN;

 status = ioctl(gpio_fd, GPIO_IOCTL_SET_DIRECTION,

 &config);

 size = read(gpio_fd, &buffer, 1);

 status = close(gpio_fd);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 68 of 135

5.9. CCSDS

5.9.1. Description

This section describes the driver as a utility for accessing the CCSDS IP.

On the telemetry, the frames are encoded with Reed Solomon encoding that conforms to the

CCSDS standard with a (255-223) RS encoder implementation and an interleaving depth of

5. That makes a total frame length of 1115 bytes. The standard RS polynomial is used.

On the telecommands the BCH decoder (63-56) supports the error correcting mode.

The driver can be configured to handle all available interrupts from the CCSDS IP:

 Pulse commands (CPDU)

 Timestamping of telemetry sent on virtual channel 0

 DMA transfer finished.

 Telemetry transfer frame error.

 Telecommand rejection due to error in the incoming telecommand.

 Telecommand frame buffer errors.

 Telecommand frame buffer overflow.

 Telecommand successfully received.

Telemetry is sent as TM PUS packets of maximum size 65535 bytes.

5.9.2. RTEMS API

This API represents the driver interface from a user application’s perspective for the RTEMS

driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In case

of failure on a function call, errno value is set for determining the cause.

Access to the CCSDS-driver from an application is provided by different device-files:

 “/dev/ccsds” that is used for configuration and status for common TM and TC

functionality in the IP. Is defined as CCSDS_NAME

 “/dev/ccsds-tm” that is used for configuration and status of the TM path common for all

virtual channels. Is defined as CCSDS_NAME_TM

 “/dev/ccsds-tm0”, “/dev/ccsds-tm1”, …,”/dev/ccsds-tm6” that are used for sending

telemetry on virtual channel 0-6. The names are defined as CCSDS_NAME_TM_VC0,

CCSDS_NAME_TM_VC1, …, CCSDS_NAME_TM_VC6.

 “/dev/ccsds-tc” ” that is used for configuration and status of the TC path common for all

virtual channels. Is defined as CCSDS_NAME_TC

 “/dev/ccsds-tc0” that is used for functions related to handling of Telecommands. Is

defined as CCSDS_NAME_TC_VC0

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 69 of 135

The default configuration of the TM downlink is:

 FECF is included in TM transfer frames.

 Master Channel Frame counter is enabled for telemetry.

 Generation of Idle frames is enabled.

 Pseudo randomization of telemetry is disabled.

 Reed Solomon encoding of telemetry is enabled.

 Convolutional encoding of telemetry is disabled.

 Generation of telemetry is disabled.

 The divisor of the TM clock is set to 25.

 All available interrupts from the CCSDS IP are enabled.

 Generation of OCF/CLCW in TM Transfer frames is enabled.

 TM is disabled.

The default configuration of the TC uplink is:

 Derandomization of telecommands is disabled.

 All available interrupts are enabled.

5.9.3. Datatype dma_transfer_cb_t

For TM-devices operated in non-blocking mode (see 5.10.1) a message with content below

are send to a message queue for reporting of transfer status.

Element Type Description

adress uint32_t The start address in SDRAM that is
fetched during transfer

length uint16_t The length of the transfer. Can be
maximum 65535.

vc uint8_t The virtual channel of the transfer.
Can be 0,…,6

status uint_8 Status of transfer
0 – Not send
1 – Send finished
2 – Send error

5.9.4. Data type tm_config_t

This datatype is a struct for configuration of the TM path. The elements of the struct are

described below:

Element Type Description

clk_divisor uint8_t The divisor of the clock

tm_enabled uint8_t Enable/disable of telemetry
0 – Disable
1 – Enable

ocf_clcw_enabled uint8_t Enable/disable of OCF/CLCW in TM
Transfer frames
0 – Disable
1 – Enable

fecf_enabled uint8_t Enable/disable of FECF
0 – Disable
1 – Enable

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 70 of 135

mc_cnt_enabled uint8_t Enable/Disable of master channel
frame counter
0 – Disable
1 – Enable

idle_frame_enabled uint8_t Enable/disable of generation of Idle
frames
0 – Disable
1 – Enable

tm_conv_bypassed uint8_t Bypassing of the TM convolutional
encoder
0 - No bypass
1 - Bypass

tm_pseudo_rand_bypassed uint8_t Bypassing of the TM pseudo
randomizer encoder
0 - No bypass
1 - Bypass

tm_rs_bypassed uint8_T Bypassing of the TM Reed Solomon
encoder
0 - No bypass
1 - Bypass

5.9.5. Data type tc_config_t

This datatype is a struct for configuration of the TC path. The elements of the struct are

described below:

Element Type Description

tc_derandomizer_bypassed uint8_t Bypassing of TC derandomizer.
0 - No bypass
1 - Bypass

5.9.6. Data type tm_status_t

This datatype is a struct to store status parameters of the TM. The elements of the struct are

described below:

Element Type Description

dma_desc_addr uint8_t The LSB of the descriptor address
giving the DMA Finished interrupt

tm_fifo_err uint8_t Reports if an FIFO error occurred
during transmission of data
0 - No Error
1 - FIFO Error

tm_busy uint8_t Reports if a transfer is in progress.
0 – No transfer
1 – A transfer is in progress

5.9.7. Data type tc_error_cnt_t

This datatype is a struct to store error counters of the TC path. The elements of the struct

are described below:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 71 of 135

Element Type Description

tc_overflow_cnt uint8_t Indicates number of missed TC frames
due to overflow in TC Buffers.The
counter will wrap around after 2^8-1.

tc_cpdu_rej_cnt uint8_t Indicates number of rejected CPDU
commands. The counter will wrap
around after 2^8-1.

tc_buf_rej_cnt uint8_t Indicates number of rejected TC
commands. The counter will wrap
around after 2^8-1.

tc_par_err_cnt uint8_t Indicates number of CRC errors in TC
path. The counter will wrap around
after 2^8-1.

5.9.8. Data type tm_error_cnt_t

This datatype is a struct to store error counters of the TM path. The elements of the struct

are described below:

Element Type Description

tm_par_err_cnt uint8_t Indicates number of CRC errors in TC
path. The counter will wrap around
after 2^8-1.

5.9.9. Data type tc_status_t

This datatype is a struct to store status parameters of the TC path. The elements of the

struct are described below:

Element Type Description

tc_frame_cnt uint8_t Number of received TC frames. The
counter will wrap around after 2^8-1.

tc_buffer_cnt uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

cpdu_line_status uint16_t Bits 0-11 show if the corresponding
pulse command line was activated by
the last command.

cpdu_bypass_cnt uint8_t Indicates the number of accepted
commands. Wraps at 15.

5.9.10. Data type radio_status_t

This datatype is a struct to hold radio status. The elements of the struct are described below:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 72 of 135

Element Type Description

tc_sub_carrier uint8_t Number of received TC frames. The
counter will wrap around after 2^8-1.

tc_carrier uint16_t Actual length on the read TC buffer
data in bytes. MAX val 1024 bytes.

5.9.11. int open(…)

Opens the devices provided by the CCSDS RTEMS driver. Only one instance of every

device can be opened.

Argument name Type Direction Description

filename char * in The absolute path to the file that is to be
opened. The name of the descriptor is
described in 5.9.2.

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to be
opened (whether it should be read only,
read/write, whether it should be cleared when
opened, etc). See a list of legal values for this
field at the end.

mode int in A bitwise 'or' separated list of values that
determine the mode of the opened device. If
the flag LIBIO_FLAGS_NO_DELAY is set, the
device is opened in non-blocking mode.
Otherwise it is opened in blocking mode. For
further info see 5.10. Applies only to devices
/dev/ccsds-tm0,…, /dev/ccsds-tm6.

Return value Description

≥0 A file descriptor for the device
on success

- 1 see errno values

errno values

EBUSY If device already opened

5.9.12. int close(…)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 73 of 135

5.9.13. size_t write(…)

To send data on virtual channel 0-6, the device descriptor described in 5.9.2 shall be used. If

the device is opened in blocking mode, the write operation will wait until all data has been

transferred before returning. For devices opened in blocking mode and data has not been

transferred within 1500 msec, the write call is aborted and an error is reported. The timeout

value is based on expected time of writing 65535 bytes at lowest TM Bitrate. For devices

opened in non-blocking mode, the write call returns immediately and the status of the

transfer is returned by a message available in a message queue of the driver. See 5.10.1.

Argument name Type Direction Description

fd Int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes (0-65535) to write to the
device.

Return value Description

≥0 number of bytes that were
written.

- 1 see errno values

errno values

EIO Device not ready for write or
write operation is not supported
on device

ETIMEDOUT A write to a device in blocking
mode did not get a response
from IP within expected time.

5.9.14. size_t read(…)

To read a Telecommand Transfer frame a read-operation on device “/dev/ccsds-tc0” shall

be used. The read Telecommand Transfer frame is passed as a pointer to a variable of type

tc_frame_t. This call is blocking until a Telecommand Transfer Frame is received.

Argument name Type Direction Description

fd int in File descriptor received at open

buf void * in Character buffer where read data is returned

nbytes size_t in Number of bytes to write from the

Return value Description

≥0 nNumber of bytes that were
read.

- 1 see errno values

errno values

EIO A read operation is not
supported on the device.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 74 of 135

5.9.15. int ioctl(…)

The devices provided by the CCSDS driver support different IOCTL’s.

Argument name Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val void * in The parameter to pass is depended on which
IOCTL is called. Is described in table below.

Command table Device Parameter type Description
CCSDS_SET_TM_CONFIG /dev/ccsds-tm tm_config_t Sets a configuration

of the TM path.

CCSDS_GET_TM_CONFIG /dev/ccsds-tm tm_config_t * Returns the
configuration of the
TM path.

CCSDS_SET_TC_CONFIG /dev/ccsds-tc tc_config_t Sets a configuration
of the TC path.

CCSDS_GET_TC_CONFIG /dev/ccsds-tc tc_config_t * Returns the
configuration of the
TC path.

CCSDS_GET_RADIO_STATUS /dev/ccsds radio_status_t Gets radio status.

CCSDS_GET_TM_STATUS /dev/ccsds-tm tm_status_t* Gets status of TM
path.

CCSDS_GET_TM_ERR_CNT /dev/ccsds-tm tm_error_cnt_t* Gets the TM error
counter.

CCSDS_GET_TC_ERR_CNT /dev/ccsds-tc tc_error_cnt_t* Gets the TC error
counter.

CCSDS_GET_TC_STATUS /dev/ccsds-tc tc_status_t* Gets status of TC
path.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 75 of 135

CCSDS_SET_TC_FRAME_CTRL /dev/ccsds-tc uint32_t Set the TC frame
control register.

Bit 2-31 unused.

Bit 1:

0 – No effect

1 – Set to signal for

the CCSDS IP a

telecommand frame

has been read.

Bit 0:

0 – No effect

1 – Reset the buffer

function in the

CCSDS IP.

CCSDS_ENABLE_TM /dev/ccsds-tm N.A Enable TM

CCSDS_DISABLE_TM /dev/ccsds-tm N.A Disable TM.

CCSDS_INIT /dev/ccsds N.A. Sets a default
configuration of
CCSDS IP. See
5.9.2.

CCSDS_SET_CLCW /dev/ccsds-tm uint32_t Set the CLCW. See
RD8.

CCSDS_GET_CLCW /dev/ccsds-tm uint32_t* Get the CLCW. See
RD8.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 76 of 135

Return value Description

0 Command executed
successfully

-EIO Unknown IOCTL for device.

5.10. Non-blocking vs blocking transfers

5.10.1. Non-blocking

In non-blocking mode, a write access is done without waiting for a response from the IP

before returning from the write-call. During non-blocking transfer of a chunk of data with a

maximum size of four times the maximum descriptor length, the sequence below is

executed:

1. The address DMA transfer of next available descriptor is set.

2. DESC_LENGTH, TM_PRESENT, IRQ_EN, WRAP is set of next available

descriptor.

3. If the data to send needs several descriptors, steps 1 and 2 are repeated until all

data in the data-chunk has been transferred.

CCSDS_SET_TM_TIMESTAMP /dev/ccsds-tm uint32_t Set period of
timestamp
generation.

0x00 – No time

stamping

0x01 – Take a time

stamp every time

frame sent

0x02 – Take a time

stamp every 2
nd

 time

frame sent

…

0xFF – Take a time

stamp every 255
th

time frame sent

CCSDS_GET_TM_TIMESTAMP /dev/ccsds-tm uint32_t * Get period of
timestamp
generation.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 77 of 135

4. When a DMA transfer is finished, an interrupt is generated and the interrupt status

indicates which VC’s that were involved in the DMA transfers

5. The TM Status of the actual VC is read, which will get the last descriptor for the last

DMA transfer of that VC. When the TM Status is read, the interrupt is cleared.

6. The driver reads status of the descriptor transfers since the last DMA transfers on

the actual virtual channel and calls a callback function, where messages of the type

described in 5.9.3 is prepared and sent to a message queue, named “CCSQ”,

provided by the driver. The user-application of the ccsds-driver must implement a

listener of the message queue and take actions if an error occurred during transfer.

7. Steps 4 to 6 are repeated for all VC’s signaling an interrupt.

5.10.2. Blocking

For blocking devices, a DMA finished interrupt must occur before the write call is returned.

The user of the driver does not need to prepare any transfer list or implement a listener of

the message queue.

5.11. Usage description

5.11.1. RTEMS – Send Telemetry

1. Open the device “/dev/ccsds-tm0”,”/dev/ccsds-tm1”, …, “/dev/ccsds-tm6”, “/dev/ccsds-

tc0” and “/dev/ccsds”. Set up the TM path by ioctl-call CCSDS_SET_TM_CONFIG on

device “/dev/ccsds-tm” or ioctl CCSDS_INIT on device “/dev/ccsds”

2. Prepare the content in SDRAM that will be fetched by DMA-transfer by writing to the

device for the virtual channel to use.

5.11.2. RTEMS – Receive Telecommands

1. Open the device “/dev/ccsds-tm”, “/dev/ccsds-tc0” and “/dev/ccsds”. Set up the TC path

by ioctl-call CCSDS_SET_TC_CONFIG on device “/dev/ccsds-tc” or or ioctl

CCSDS_INIT on device “/dev/ccsds”

2. Do a read from “/dev/ccsds-tc0”. This call will block until a new TC has been received.

5.11.3. RTEMS – Application configuration

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions open(),

close(), read(), write() and ioctl() to access the CCSDS device.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/ccsds_rtems.h> is required for data-types, definitions of IOCTL of device

CCSDS.

CONFIGURE_APPLICATION_NEEDS_CCSDS_DRIVER must be defined to use the

CCSDS driver from the application.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 78 of 135

5.12. ADC

5.12.1. Description

This section describes the driver for accessing the ADC device.

The following ADC channels are available for the Sirius OBC:

Parameter Abbreviation ADC channel

Analog input ADC in 0 0

Analog input ADC in 1 1

Analog input ADC in 2 2

Analog input ADC in 3 3

Analog input ADC in 4 4

Analog input ADC in 5 5

Analog input ADC in 6 6

Analog input ADC in 7 7

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The following ADC channels are available for the Sirius TCM:

Parameter Abbreviation ADC channel

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The TCM-S FM board does not contain any input ADC channels.

When data is read from a channel, the lower 8 bits contains the channel status information,

and the upper 24 bits contains the raw ADC data.

To convert the ADC value into mV, mA or m°C, the formulas specified in the table below

shall be used. Note that this assumes a 24 bit ADC value which is what the ADC IP returns

on read. Should the raw bit value be truncated or scaled down, the scale factor (2^24) in the

equations need to be adjusted as well. Note also that the temperature equation require the

3V3 [mV] value.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 79 of 135

HK channel Formula

Temp [m°C] Temp_mV = (ADC_value*2500)/2^24
Temp_mC = (1000*(3V3_mV - Temp_mV) - Temp_mV*1210) / 0.00385*(Temp_mV - 3300)

Iin [mA] Iin_mA = (ADC_value*5000)/(2^24)

Vin [mV] Vin_mV = (ADC_value*20575)/(2^24)

3V3 [mV] 3V3_mV = (ADC_value*5000)/(2^24)

2V5 [mV] 2V5_mV = (ADC_value*5000)/(2^24)

1V2 [mV] 1V2_mV =(ADC_value*2525)/(2^24)

5.12.2. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.12.2.1. Enum adc_ioctl_sample_rate_e

Enumerator for the ADC sample rate.

Enumerator Description

ADC_IOCTL_SPS_31250 SPS 31250

ADC_IOCTL_SPS_15625 SPS 15625

ADC_IOCTL_SPS_10417 SPS 10417

ADC_IOCTL_SPS_5208 SPS 5208

ADC_IOCTL_SPS_2597 SPS 2597

ADC_IOCTL_SPS_1007 SPS 1007

ADC_IOCTL_SPS_503_8 SPS 503.8

ADC_IOCTL_SPS_381 SPS 381

ADC_IOCTL_SPS_200_3 SPS 200.3

ADC_IOCTL_SPS_100_5 SPS 100.5

ADC_IOCTL_SPS_59_52 SPS 59.52

ADC_IOCTL_SPS_49_68 SPS 49.68

ADC_IOCTL_SPS_20_01 SPS 20.01

ADC_IOCTL_SPS_16_63 SPS 16.63

ADC_IOCTL_SPS_10 SPS 10

ADC_IOCTL_SPS_5 SPS 5

ADC_IOCTL_SPS_2_5 SPS 2.5

ADC_IOCTL_SPS_1_25 SPS 1.25

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 80 of 135

5.12.2.2. Function int open(…)

Opens access to the ADC. Only one instance can be open at any time, only read access is

allowed and only blocking mode is supported.

Argument name Type Direction Description

Pathname const char * in The absolute path to the ADC to be opened.
ADC device is defined as
ADC_DEVICE_NAME.

Flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

Fd A file descriptor for the device
on success

-1 See errno values

errno values

EEXISTS Device not opened

EALREADY Device is already open

EINVAL Invalid options

5.12.2.3. Function int close(…)

Closes access to the device.

Argument name Type Direction Description

Fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EFAULT Device not opened

5.12.2.4. Function ssize_t read(…)

This is a blocking call to read data from the ADC.

Note! The size of the given buffer must be a multiple of 32 bit.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to buffer to write data into.

count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 81 of 135

Return value Description

>= 0 Number of bytes that were
read.

- 1 see errno values

errno values

EPERM Device not open

EINVAL Invalid number of bytes to be
read

ADC data buffer bit definition Description
31:8 ADC value

7:4 ADC status

3:0 Channel number

5.12.2.5. Function int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode, clock

divisor etc.

Argument name Type Direction Description

Fd int in File descriptor received at open

Cmd int in Command to send

Val uint32_t / uint32_t* in/out Value to write or a pointer to a buffer
where data will be written.

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC chip,
see [RD6].

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC chip,
see [RD6].

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock used
for communication with the ADC chip.
Minimum 4 and maximum 255.
Default is 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Get the clock divisor of the clock
used for communication with the
ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel number to
be included when sampling. Minimum
0 and maximum 15.

Return value Description

0 Command executed
successfully

-1 see errno values

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 82 of 135

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to
IOCTL

5.12.3. Usage description

The following #define needs to be set by the user application to be able to use the ADC:

CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.12.3.1. RTEMS application example

In order to use the ADC driver on RTEMS environment, the following code structure is

suggested to be used:

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument) {

 rtems_status_code status;

 int read_fd;

 uint32_t buffer;

 ssize_t size;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);

 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);

 size = read(read_fd, &buffer, 4);

 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 83 of 135

5.12.4. Limitations

Only one ADC channel can be enabled at a time. To switch channels, disabling the old and

enabling the new channel is required.

Setting the clk divisor to something else than the default (255) might yield that some ADC

reads returns 0.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 84 of 135

5.13. NVRAM

The NVRAM on the OBC and TCM is a 262,144-bit magnetoresistive random access

memory (MRAM) device organized as 32,768 bytes of 8 bits. EDAC is implemented on a

byte basis meaning that half the address space is filled with checksums for correction. It’s a

strong correction which corrects 1 or 2 bit errors on a byte and detects multiple. The table

below presents the address space defined as words (16,384 bytes can be used). The

address space is divided into two sub groups as product- and user address space.

5.13.1. Description

This driver software for the SPI RAM IP, handles the initialization, configuration and access

of the NVRAM.

The NVRAM is divided into a system memory area and a user memory area.

System memory area is protected and must be unlocked before each write.

5.13.2. EDAC mode

When in EDAC mode, which is the normal mode of operation, all write and read transactions

are protected by EDAC algorithms. All NVRAM addresses containing EDAC are hidden by

the IP. The address space is given by the table below:

Area Range start Range end

System 0x100 0x1FC

User 0x200 0x7FFC

5.13.3. Non-EDAC mode

Non-EDAC mode is a debug mode that allows the user to examine the EDAC bytes.

The purpose of this mode is to be able to insert errors into the memory for testing of the

EDAC algorithm.

When in Non-EDAC mode net data and EDAC data is interleaved on an 8 bit basis.

I.e. when reading a 32 bit word byte, 0, 2 contains the net data and byte 1, 3 contains EDAC

data. The address space is doubled when compared to EDAC mode, as is shown with the

table below:

5.13.4. RTEMS API

This API represents the driver interface of the module from an RTEMS user application's

perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage. In

case of a failure on a function call, the errno value is set for determining the cause.

5.13.4.1. Enum rtems_spi_ram_edac_e

Enumerator for the error correction and detection of the SPI RAM.

Enumerator Description

SPI_RAM_IOCTL_EDAC_ENABLE Error Correction and Detection
enabled.

SPI_RAM_IOCTL_EDAC_DISABLE Error Correction and Detection
disabled.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 85 of 135

5.13.4.2. Function int open(...)

Opens access to the requested SPI RAM.

Argument name Type Direction Description

pathname const char * in The absolute path to the SPI RAM to be
opened. SPI RAM device is defined as
SPI_RAM_DEVICE_NAME.

flags int in Access mode flag.

Return value Description

fd A file descriptor for the device
on success

-1 See errno values

errno values

EINVAL Invalid options

5.13.4.3. Function int close(...)

Closes access to the device.

Argument name Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.13.4.4. Function ssize_t read(...)

Read data from the SPI RAM. The call block until all data has been received from the SPI

RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
read.

-1 See errno values

errno values

EINVAL Invalid options

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 86 of 135

5.13.4.5. Function ssize_t write(...)

Write data into the SPI RAM. The call block until all data has been written into the SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to read data from.

count size_t in Number of bytes to write. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were
written.

-1 See errno values

errno values

EINVAL Invalid options

5.13.4.6. Function int lseek(...)

Set the address for the read/write operations.

Argument name Type Direction Description

fd int in File descriptor received at open.

offset void* in SPI RAM read/write byte offset. Must be a
multiple of 4.

whence int in SEEK_SET and SEEK_CUR are supported.

Return value Description

>=0 Byte offset

-1 See errno values

errno values

EINVAL Invalid options

5.13.4.7. Function int ioctl(...)

Input/output control for SPI RAM.

Argument name Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val int in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

SPI_RAM_SET_EDAC_IOCTL uint32_t in Configures the error correction and
detection for the SPI RAM, see
[5.13.4.1.]

SPI_RAM_SET_DIVISOR_IOCTL uint32_t in Configures the serial clock divisor.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 87 of 135

SPI_RAM_GET_EDAC_STATUS_IOCTL uint32_t out Get EDAC status for previous read
operations.

SPI_RAM_UNLOCK_MEMORY_IOCTL uint32_t in Unlocks system memory for writing.
The input value is ignored. Must be
called before every write operation (4
bytes) of the system memory.

EDAC Status Description

SPI_RAM_EDAC_STATUS_MULT_ERROR Multiple errors
detected.

SPI_RAM_EDAC_STATUS_DOUBLE_ERROR Double error
corrected.

SPI_RAM_EDAC_STATUS_SINGLE_ERROR Single error corrected.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.13.5. Usage description

The following #define needs to be set by the user application to be able to use the SPI RAM:

CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

5.13.5.1. RTEMS application example

In order to use the SPI RAM driver on RTEMS environment, the following code structure is

suggested to be used:

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 88 of 135

Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:

open, close, ioctl.

Inclusion of <errno.h> is required for retrieving error values on failures.

Inclusion of <bsp/spi_ram_rtems.h> is required for accessing the SPI_RAM.

#include <bsp.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <bsp/spi_ram_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

#include <bsp/bsp_confdefs.h>

#include <rtems/confdefs.h>

#define CONFIGURE_INIT

rtems_task Init (rtems_task_argument argument);

rtems_task Init (rtems_task_argument argument){

 rtems_status_code status;

 int dsc;

 uint8_t buf[8];

 ssize_t cnt;

 off_t offset;

 dsc = open(SPI_RAM_DEVICE_NAME, O_RDWR);

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = write(dsc, &buf[0], sizeof(buf));

 offset = lseek(dsc, 0x200, SEEK_SET);

 cnt = read(dsc, &buf[0], sizeof(buf));

 status = close(dsc);

}

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 89 of 135

6. Spacewire router

In both Sirius OBC and Sirius TCM products, a smaller router is integrated onto their relative

SoCs. The routers all use path addressing (see [RD2]) and given the topology illustrated in

Figure 6-1, the routing addressing can be easily calculated.

Figure 6-1 Integrated router location

In reference to the topology above, sending a package from the Sirius OBC to the Sirius

TCM
TM

 or vice versa, the routing address will be 1-3.

In addition to this, each end node, Sirius OBC or Sirius TCM, has one or more logical

address(es) to help distinguish between different applications or services running on the

same node. The logical address complements the path address and must be included in a

SpaceWire packet.

Example: If a packet is to be sent from Sirius OBC to the Sirius TCM
TM

 it needs to be

prepended with 0x01 0x03 XX.

0x01 routes the packet to port 1 of the Sirius OBC

router.

0x03 routes the packet to port 3 of the Sirius TCM

router.

XX is the logical address of the recipient application/service on the Sirius TCM.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 90 of 135

7. Sirius TCM

7.1. Description

The Sirius TCM handles receiving of Telecommands (TCs) and Telemetry (TM) as well as

Spacewire communication using the RMAP protocol.

TC, received from ground, can be of two command types; a pulse command or a

Telecommand. A pulse command is decoded directly in the hardware and the hardware then

sets an output pin according to the pulse command parameters. All other commands are

handled by the Sirius TCM

software. Any command not addressing the Sirius TCM will be

routed to other nodes on the SpaceWire network according to the current Sirius TCM

configuration.

TM is received from other nodes on the SpaceWire network. The Sirius TCM supports both

live TM transmissions directly to ground as well as storage of TM to the Mass Memory for

later retrieval or download to ground during ground passes.

The Sirius TCM is highly configurable to be adaptable to different customer needs and

missions and currently supports SpaceWire (SpW) using the Read Memory Access Protocol

(RMAP), UART interfaces, pulse commands as well as Telecommand and Telemetry using

CCSDS frame encodings and ECSS PUS packets.

Radio Clock

The TM clock and data symbol towards the radio has the following signal output shown in

the figure below:

The default configuration of the TM downlink is:

 FECF is included in TM transfer frames.

 Master Channel Frame counter is enabled for telemetry.

 Generation of Idle frames is enabled.

 Pseudo randomization of telemetry is enaled.

 Reed Solomon encoding of telemetry is enabled.

 Convolutional encoding of telemetry is disabled.

 The divisor of the TM clock is set to 25.

 All available interrupts from the CCSDS IP are enabled.

 Generation of OCF/CLCW in TM Transfer frames is enabled.

 TM is enabled.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 91 of 135

The default configuration of the TC uplink is:

 Derandomization of telecommands is disabled.

7.2. Block diagram

 TCM-S

S
P
A
C
E
W
I
R
E

SpaceWire

Router

0303

0101

0202

UARTs

RS422

/

RS485

RS422

/

RS485

UmbilicalUmbilical

RS422RS422

LVDSLVDS

RS422RS422

C
C
S
D
S

TRX

TRX

Mass memory NVRAM Watchdog

W
a
t
c
h
d
o
g

A
D
C

S
C
E
T

TCM core application

Error managerRAMSystem flash

Pulse commandsPulse commands
RS422RS422

1212

Figure 7-1 – Sirius TCM functionality layout with the external ports depicted

7.3. TCM-S application overview

The TCM-S application is partitioned into several software modules who each handles a

specific functional part. An overview of the software architecture of the TCM-S is presented

in Figure 7.2. A main design driver of the TCM-S software architecture is the ability to pass

along data between the different handlers without copying, since that would quickly

decrease the performance and throughput of the system. To help with the no-copy policy,

each peripheral handling larger amounts of data have DMA functionality, off-loading the

CPU from mere datashuffling tasks while at the same time increasing performance by at

least a magnitude. Data coming in on the SpaceWire interface intended for the mass

memory will thus be stored in RAM only once - in the handoff between the SpaceWire and

mass memory handlers.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 92 of 135

TM Handler

CCSDS

TC Handler

CCSDS

SF Handler

System Flash

MM Handler

Mass Memory

UART Handler

UART

SpW Handler

Spacewire

NVRAM Handler

NVRAM

HK Handler

Error Mgr

ADC

SCET

Driver Access
Function
Module

Helper
Module

Message

Router

Figure 7.2 TCM-S software application overview

7.4. Configuration

The TCM-S can be configured for specific missions by parameters in NVRAM described in

Table 7-1 to Table 7-7.

Partition configuration of mass memory is specified in Table 7-1.

Table 7-1: PARTITION_CFG

Data Type Description

size UINT64
Size in bytes of partition. The size must be set in
multiples of block-size, which is 2097152 B.

offset UINT32 Offset in blocks of partition

mode UINT8

The mode of partition
0 – FIFO Mode

data type UINT8
Type of data stored on partition
0 – PUS Packets
1 – RAW data

virtual channel UINT8
The virtual channel (0 or 1) the data will be
downloaded on

priority UINT8 Priority of partition for download

data source UINT16
Id of data-producer of data stored on actual
partion.

segment size UINT8

Segment size of partition.
1 – 16 KiB

2 – 32 KiB

3 – 48 KiB
4 – 64 KiB

Data from different sources can be routed to the SpW-network. Routing info is set by format

specified in

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 93 of 135

Table 7-2: UART_ROUTING

Data Type Description

uart UINT8

Source of message
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

address UINT32 The RMAP-address UART info is routed to

ext address UINT8
The extended RMAP-address UART info is routed
to

Path UINT16 The index of the SpW-path for the routing. See .

Configuration of UART-devices is done by below.

Table 7-3: UART_CONFIG

Data Type Description

uart UINT8

The UART device.
0 - UART0

1 - UART1

2 - UART2

3 - UART3

4 - UART4

5 - PSU Ctrl

6 - Safe Bus

Bitrate UINT8

UART bitrate:
10 = 375000 baud
9 = 153600 baud

8 = 115200 baud (default)

7 = 75600 baud
6 = 57600 baud
5 = 38400 baud
4 = 19200 baud
3 = 9600 baud
2 = 4800 baud
1 = 2400 baud
0 = 1200 baud

Mode UINT8

UART mode:
0 = RS422 mode
1 = RS485 mode
2 = Loopback

Reserved UINT8 Reserved for padding and future use

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 94 of 135

Paths on SpW-network are specified by table below:

Table 7-4: NVRAM SpW path storage

Data Type Description

Path Array of UINT8
A path on SpW network including the logic
address of the receiving node.

Telecommand can be routed to nodes on the SpW by APID as specified in below:

Table 7-5: NVRAM APID Routing

Byte Type Description

0-1

UINT16 APID or lower APID in APID range
Bit15: 0 – Single APID Routing, 1 – APID range

Bit14: 0 – Ext. APID, 1 – TCM-S APID

Bit13:11 Not used

Bit10:0 – APID

2-3

UINT16 Upper APID in APID range
Bit15: 0 – Single APID Routing, 1 – APID range

Bit14: 0 – Ext. APID, 1 – TCM-S APID

Bit13:11 – Not used

Bit10:0 - APID

4-5 UINT16 The index of the SpW-path of the APID. See .

6-7 UINT16 Reserved for future use and padding.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 95 of 135

Configuration of the TM path is described in Table 7-6 below:

Table 7-6: TM_CONFIG

Data Type Description

TM Clk divisor UINT16
The resulting TM bitrate is 0.5 * System Frequency/TM Clk
divisor

TM Config UINT16

Configuration of TM path.
Bit6: 0 – Disable RS Encoder, 1 – Enable RS Encoder

Bit5: 0 – Disable Conv. Encoder, 1 - Enable Conv. Encoder

Bit4: 0 – Disable Randomizer, 1 – Enable Randomizer

Bit3: 0 – Disable Idle Frames, 1 – Enable Idle Frames

Bit2: 0 – Disable MCFC, 1 – Enable MCFC

Bit1: 0 – Disable FECF, 1 – Enable FECF

Bit0: 0 – Disable CLCW, 1 – Enable CLCW

Configuration of the TC path is described in Table 7-7 below:

Table 7-7: TC_CONFIG

Data Type Description

TC Config UINT32

Configuration of TM path.
Bit1: 0 – Disable BCH Decoder, 1 – Enable BCH Decoder

Bit0: 0 – Disable Derandomizer, 1 – Enable Derandomizer

7.5. Telemetry

Telemetry is simultaneously sent on all the transceiver interfaces, i.e. the RS422 (TRX1),

the LVDS (TRX2) and umbilical (UMBI) interfaces. VC 0 and VC 1 are supported for TM

Data and VC 7 is reserved for idle-frames. The CCSDS IP generates complete TM Transfer

Frames from PUS packets. If a PUS packet does not fit in one TM Transfer Frame, the

CCSDS module splits the packet into several TM Transfer Frames. If a PUS packet not does

fill the whole TM Transfer Frame, an idle-packet is added as padding to fill the frame. The

following telemetry settings are configurable by RMAP-commands (see 7.11):

 Divisor of TM Clock

 Inclusion of CLCW of TM Transfer Frames

 Inclusion of Frame Error Control Field of TM Transfer Frames

 Updating of Master Channel Frame Counter

 Idle frame generation (sent on VC7 when no data is sent on VC0 or VC1)

 Convolutional encoding

 Pseudo randomization

The TCM-S supports the format of TM Transfer Frames described in [RD8].

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 96 of 135

7.6. Telecommands

Telecommands can be received on the RS422 (TRX1), the LVDS (TRX2) or the umbilical

(UMBI) interface.

The TCM actively searches for Command Link Transmission Units (CLTU), i.e.

telecommands, on all three inputs simultaneously (as long as they are enabled). When a

telecommand start sequence is detected, the other inputs are ignored during telecommand

reception. The search will restart once the entire telecommand is either received or a

reception error is detected. In short, the telecommand reception uses the following reception

logic, also illustrated in

• All incoming signals on the inputs are synchronized to the system clock domain.

• When the CLTU receptor has detected and decoded a start pattern, it sets an enable

signal for the active path, indicating that this CLTU receptor is now active.

• The telecommand path activated is set until the reception status changes, i.e. the

current telecommand is finished and a new start pattern is detected correctly on a

different CLTU path.

• The selected telecommand clock, data and enable signals are now forwarded through

the mux to the BCH decoder, rejecting data and clock on inactive data paths.

• When BCH has decoded the tail in the CLTU, all CLTU receptors are set in search

mode again, scanning for the start pattern ready to receive a new telecommand.

• The BCH interface does not “see” the data/clock until the start pattern is decoded

correctly and the enable signal is set.

Figure 7.3 – Telecommand Input Multiplexer

Derandomization of TC can be enabled/disabled by RMAP command (see 7.11)

The TCM-S supports the format of TC Transfer Frames described in [RD9].

7.6.1. Pulse commands

The CCSDS IP in the TCM has a built-in Command Pulse Distribution Unit (CPDU)

execution functionality with the possibility to execute up to twelve CPDUs without interaction

from software. A pulse command is decoded directly in hardware and it sets an output pin

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 97 of 135

according to the pulse command parameters. The CPDU_DURATION_UNIT is defined to

12.5 ms and the output is hence a multiple of this signal length.

The CPDU function can e.g. be used to reset modules in a spacecraft and also choose

which software image to boot, an updated version or the safe image. The last executed

pulse command can be read from the telecommand status data field.

For details about the format of pulse commands, see 7.10.2

7.6.2. COP-1

The CCSDS COP-1 functionality on the spacecraft is implemented mainly in software where

the command link control word (CLCW) is generated based on telecommand status. The

CLCW is inserted when the OCF_CLCW flag is set in the control register, otherwise user

data will be inserted instead. It will insert four bytes, and the CLCW is also included in the

CRC calculation for the master frame on both idle and data frames. The NO RF AVAILABLE

flag and NO BIT LOCK flag are set from external pins and will overwrite the respective bits

in the CLCW word which hence cannot be controlled by software.

7.7. Time Management

The TCM-S has an internal SCET timer that can be synchronised to an external time source.

In order for synchronisation to occur, a stable PPS input must first be provided for at least 7

seconds, after which the PPS will be considered “qualified” and the TCM-S will automatically

sync SCET subseconds to the external PPS arrival time. A received SCETTime write

command can then synchronise the seconds value, see 7.12.1.17.

If the PPS is not stable, the TCM-S will abort synchronisation to the external source and will

attempt to re-qualify the PPS. When the PPS is not qualified, neither subseconds nor

seconds synchronisation will occur.

The current criteria for stability is set to be extremely generous, and only after a PPS interval

of 2 seconds or more will the PPS be considered unstable by the TCM-S.

7.7.1. TM time stamps

A timestamp can be generated when a TM Transfer Frame is sent on VC0. The rate of

timestamp generation is configurable through an RMAP command and the latest timestamp

is readable on the same interface. See 7.12.1.11 and 7.12.1.12 for further info.

7.8. Error Management and System Supervision

The Error Manager in the TCM-S provides information about different errors and operational

status of the system such as:

 EDAC single error count

 EDAC multiple error count

 Watchdog trips

 CPU Parity errors.

Error Manager related information and housekeeping data is available by RMAP. See

7.12.1.16

The status of the TM Downlink and TC Uplink are available through RMAP. See 7.12.1.14

and 7.12.1.1

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 98 of 135

A watchdog is enabled in the TCM-S that must be kicked by the TCM-S Application or a

reset will occur.

7.9. Mass Memory Handling

The mass memory in TCM-S is intended for storage of telemetry data while awaiting transfer

to ground. To simplify divisions between different types of data with different configurations,

the mass memory is divided into logical partitions. All data stored to mass memory is in the

form of PUS packets ready for transmit to ground and are grouped together into segments.

Each segment is of a fixed size (configurable for each partition) and is defined as starting

with a PUS packet. If stored PUS packets won't match the segment size exactly, the

remaining bytes in each segment must be padded with a bit pattern of 0xF5 which will be

removed during download.

Writing/Reading of data to/from a partition is provided by RMAP-commands. Downloading of

data from a partition to ground is provided by a RMAP-command. See 7.12.1.19 and

7.12.1.25 for further info.

When a partition is full, there is no possibility to write data. When a partition is full, reading or

downloading of data from the partition must occur before new attempts to write data.

Operations to modify read and write pointers of the partitions are provided by RMAP. See

7.12.1.21 and 7.12.1.22 for further info.

As the mass memory is flash-based, each new block will require erasing before accepting

writes, but the TCM software will handle this automatically. For each 32-bit word stored in

mass memory, there are 8 bits stored as EDAC to be able to detect double errors and

correct single errors. During erases or writes, the operation may fail and the software will

then mark this block as bad and skip this in all future transactions. The bad block list is

stored in NVRAM and will thus survive a reboot and/or power cycling. This graceful

degradation behaviour of the mass memory implies that all partitions should be created with

some extra space to account for this phenomenon.

7.10. ECSS standard services

The TCM-S supports a subset of the services described in [RD4]

7.10.1. PUS-1 Telecommand verification service

The TCM-S performs a verification of APID of the incoming TC. If the verification fails, the

telecommand is rejected and a Telecommand Acceptance Failure - report (1,2) is

generated as described in [RD4]. On successful verification, the command is routed to the

receiving APID. The receiving APID performs further verification of packet length, checksum

of packet, packet type, packet subtype and application data and generates reports

accordingly (1,1) or (1,2). If specified by the mission, the APID shall implement services for

Telecommand Execution Started, Telecommand Execution Progress and Telecommand

Execution Complete.

Table 7-8: Telecommand Acceptance Report – Failure (1,2)

Packet ID Packet Sequence Control Code

UINT16 UINT16
UINT8.
0 – Illegal APID

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 99 of 135

7.10.2. PUS-2 Device Command Distribution Service

The TCM-S supports the command pulse distribution unit (CPDU) pulse commands in

hardware as defined in 7.2.2 in [RD4].

The CPDU listens on virtual channel 2, APID 2.

It has 12 controllable (0-11) output lines and can be toggled to supply different pulse lengths

according to the following scheme:

Table 7-9 CPDU Command (2, 3)

Output Line ID Duration

0-11
(1 octet)

0 – 7
(1 octet)

The duration is a multiple of the CPDU_DURATION_UNIT (D), defined to 12.5 ms, as

detailed below.

Table 7-10 CPDU Duration

Duration in bits Duration in time (ms)

000 1 x D = 12.5

001 2 x D = 25

010 4 x D = 50

011 8 x D = 100

100 16 x D = 200

101 32 x D = 400

110 64 x D = 800

111 128 x D = 1600

Note: The APIDs reserved for the CPDU are 1 – 9 for future use.

7.11. Spacewire RMAP

According to [RD3], a 40-bits address consisting of an 8-bit Extended Address field and a

32-bit Address field is used in RMAP. This has been utilized in the Sirius TCM according to

Table 7-11 to separate between configuration commands and mass memory storage of data

(partition handling).

Table 7-11: RMAP predefined fields

Field Value

Initiator Logical Address 0x42

Key 0x30

In addition, target address and reply address must be added to the RMAP header in

commands targeting the Sirius TCM to compensate for topology external to the Sirius TCM

and the embedded SpaceWire router. As can be seen Figure 7-1, if the Sirius TCM were to

be addressed from SpaceWire port 1, the example addresses below must be added to the

routing addresses in the RMAP header.

Table 7-12: RMAP predefined fields for routing

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 100 of 135

Field Value

Target Spw Address 0x01, 0x03

Reply Address 0x01, 0x03

7.11.1. Input

The RMAP commands supported by the Sirius TCM are specified in the table below. See

chapter Error! Reference source not found. for details on each specific command.

Note! The Sirius TCM uses the RMAP Transaction ID to separate between outstanding

replies to different units. When several nodes are addressing the Sirius TCM, they need to

be assigned a unique transaction id range to ensure correct system behaviour. To allow for

similar transaction identification throughout the system, the Sirius TCM uses the Transaction

ID range 0x0000-0x0FFF in all outgoing communication.

Table 7-13: RMAP commands to TCM

Name Ext. Addr Address Cmd Description

TMStatus 0xFF 0x00000000 R Reads latest telemetry status.

TMConfig 0xFF 0x00000200 R Reads telemetry configuration.

TMControl 0xFF 0x00000300 W Enable/Disable telemetry.

TMFEControl 0xFF 0x00000400 W
Enable/Disable Frame Error Control Field for
TM Transfer Frames.

TMMCFCControl 0xFF 0x00000500 W
Enable/Disable Master Channel Frame
Counter Control for TM Transfer Frames.

TMIFControl 0xFF 0x00000600 W Enable/Disable Idle Frames.

TMPRControl 0xFF 0x00000700 W
Enable/Disable Pseudo Randomization for
telemetry.

TMCEControl 0xFF 0x00000800 W
Enable/Disable Convolutional Encoding for
telemetry.

TMBRControl 0xFF 0x00000900 W Sets telemetry clock frequency divisor.

TMOCFControl 0xFF 0x00000A00 W
Enable/Disable inclusion of Operational
Control field in TM Frames.

TMTSControl 0xFF 0x00000B00 R/W Configures Timestamp of telemetry.

TMTSStatus 0xFF 0x00000C00 R
Latest timestamp of telemetry on virtual
channel 0.

TMSend 0xFF 0x00001000 W Sends telemetry on virtual channel 0.

TCStatus 0xFF 0x01000000 R Reads latest telecommand status.

TCDRControl 0xFF 0x01000100 W
Enables/Disables Derandomizer of
telecommands.

HKData 0xFF 0x02000000 R Reads houskeeping data.

SCETTime 0xFF 0x02000100 R/W Reads/Sets SCET time.

UARTCommand 0xFF 0x0400010x W

Sends a command to a specific UART
device x.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART45 - PSU Ctrl
6 - Safe Bus.

MMData 0x00-0x0F 0x00000000 R/W Reads and writes data of a partition.

MMStatus 0xFF 0x05000000 R Reads mass memory device status.

MMWritePointer 0xFF 0x0500010x R/W Position of the writepointer for partition x

MMReadPointer 0xFF 0x0500020x R/W Position of the readpointer for partition x

MMPartitionConfig 0xFF 0x0500030x R Configuration of partition x

MMPartitionSpace 0xFF 0x0500040x R Reads available space in partition x.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 101 of 135

MMDownloadPartitionData 0xFF 0x0500050x W Downloads partition x data via telemetry.

7.11.1. Output

The TCM-S publishes data to other nodes according to the address map below:

Note! All outgoing communication will use the Transaction ID range of 0x0000-0x0FFF.

Table 7-14: Published data from TCM

Name Ext. Addr. Address Cmd Description

TCCommand 0xFF 0x00000000 W Routed Telecommands

UARTData 0xFF 0x0400000x W

Data received on specified UART x.
0 - UART0
1 - UART1
2 - UART2
3 - UART3
4 - UART4
5 - PSU Ctrl
6 - Safe Bus

7.11.2. Status code in reply messages

In the status field of write/read, the values in table below can be returned.

 Table 7-15: Status code

Code Numeric value Comment

- 0 Operation success

EIO 5 Internal error occurred.

EINVAL 22 A provided parameter in command is invalid

ENOSPC 28
No space left on a partition or no data
available on a partition.

EALREADY 37 Operation already in progress

7.12. RMAP input address details

The chapters below contain the detailed information on the data accesses to the given

RMAP addresses.

7.12.1.1. TMStatus

Reads the latest telemetry status.

Table 7-16: TMStatus data

Byte Type Description

0 UINT8
0x00 – No Error
0x01 – FIFO error.

1 UINT8
0x00 – No transfer in progress.
0x01 – Transfer in progress.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 102 of 135

RMAP reply status:

Table 7-17: TMStatus reply status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.12.1.2. TMConfig

Reads the telemetry configuration.

Table 7-18: TMConfig data

Byte Type Description

0 UINT8 Telemetry clock bitrate divisor value, default 25.

1 UINT8
Telemetry Control
0x00 – Disabled
0x01 – Enabled (default)

2 UINT8
Frame Error Counter Field Control
0x00 – Disabled
0x01 – Enabled (default)

3 UINT8
Master Channel Frame Count Control
0x00 – Disabled
0x01 – Enabled (default)

4 UINT8
Idle Frame Control
0x00 – Disabled
0x01 – Enabled (default)

5 UINT8
OCF Control
0x00 – Disabled
0x01 – Enabled (default)

6 UINT8
Convolutional Encoding Control
0x00 – Disabled (default)
0x01 – Enabled

7 UINT8
Pseudo Randomization Control
0x00 – Disabled (default)
0x01 – Enabled

8 UINT8 Telemetry timestamp interval value, default 0.

RMAP reply status:

Table 7-19: TMConfig reply status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 103 of 135

EIO I/O error. The TM device cannot be accessed

7.12.1.3. TMControl

Controls generation of telemetry.

Table 7-20: TMControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-21: TMControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.1.4. TMFEControl

Controls Frame Error Control Field inclusion for transfer frames.

Table 7-22: TMFEControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-23: TMFEControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 104 of 135

7.12.1.5. TMMCFCControl

Controls the Master Channel Frame Counter generation for transfer frames.

Table 7-24: TMMCFCControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-25: TMMCFCControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.1.6. TMIFControl

Controls the Idle Frame generation for transfer frames.

Table 7-26: TMIFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is a requested):

Table 7-27: TMIFControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 105 of 135

7.12.1.7. TMPRControl

Controls the Pseudo Randomization for transfer frames.

Table 7-28: TMPRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-29: TMPRControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.1.8. TMOCFControl

Controls Operational Control Field inclusion in TM Transfer frames.

Table 7-30: TMOCFControl data

Byte Type Description

0 UINT8
0x00 – Disabled
0x01 – Enabled (default)

RMAP reply status (if a reply is requested):

Table 7-31: TMOCFControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.1.9. TMCEControl

Controls the Convolutional Encoding for transfer frames.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 106 of 135

Note! Convolutional encoding doubles both the amount of telemetry data sent and also the

telemetry clock frequency, keeping the same net datarate as without.

Table 7-32: TMCEControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-33: TMCEControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized

or the argument is out of range

EIO I/O error. The TM device cannot be accessed

7.12.1.10. TMBRControl

Sets the telemetry clock frequency divisor.

The telemetry clock is fed to the radio. The frequency of the telemetry clock is the system

clock (50 MHz) divided by the divisor. E.g. if the divisor value is set to 25, the telemetry clock

frequency is 2 MHz

Note! If the convolutional encoding is disabled, as defined in subchapter 7.12.1.9, the

telemetry clock is divided by two, i.e. 1 MHz from example above, to keep the net data rate

the same.

Table 7-34: TMBRControl data

Byte Type Description

0 UINT8 Bitrate divisor value (default 25). Minimum divisor is 4.

RMAP reply status (if a reply is requested):

Table 7-35: TMBRControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 107 of 135

7.12.1.11. TMTSControl

Configures the timestamping for transfer frames.

Table 7-36: TMTSControl data

Byte Type Description

0 UINT8

0x00 – No timestamping (default)
0x01 – Take a timestamp every time frame sent
0x02 – Take a timestamp every 2

nd
 time frame sent

…
0xFF – Take a timestamp every 255

th
 time frame sent

RMAP reply status (if a reply is requested):

Table 7-37: TMTSControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed.

7.12.1.12. TMTSStatus

The latest timestamp of telemetry sent on virtual channel 0. Timestamping needs to be

enabled before timestamps can be read. See7.12.1.14.

Table 7-38: TMTSStatus data

Byte Type Description

0 UINT32 Seconds counter sampled when the frame event triggered

4 UINT16 Subseconds counter sampled when the frame event triggered

RMAP reply status:

Table 7-39: TMTSStatus status codes

Status
code

Description

0 Success.

EINVAL Timestamping is not enabled. See 7.12.1.11

EIO I/O error. The TM device cannot be accessed

7.12.1.13. TMSend

Sends telemetry to the TM path on virtual channel 0. The data must contain at least one

telemetry PUS Packet.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 108 of 135

Table 7-40: TMSend data

Byte Type Description

0 - nn Array of UINT8 Data containing PUS packet(s).

RMAP reply status (if a reply is requested):

Table 7-41: TMSend status codes

Status
code

Description

0 Success.

EINVAL The driver for the TM device has not been initialized.

EIO I/O error. The TM device cannot be accessed

7.12.1.14. TCStatus

Reads current telecommand status.

Table 7-42: TCStatus data

Byte Type Description

0 UINT32 CLCW word of the last received telecommand.

4 UINT8
Number of missed TC frames due to overflow. Wraps after
0xFF.

5 UINT8 Number of rejected CPDU commands. Wraps after 0xFF.

6 UINT8 Number of rejected telecommands. Wraps after 0xFF.

7 UINT8
Number of parity errors generated by checksums in the
telecommand path. Wraps after 0xFF.

8 UINT8
Number of received telecommands. Both TC and CPDU are
counted. Wraps after 0xFF.

9 UINT16

Last CPDU pulse command. Logic 1 indicates the last activated
line.
Bit 15:12 – Unused
Bit 11:0 – Line 11:0

11 UINT8 Number of accepted CPDU commands. Wraps after 0x0F.

12 UINT8
Derandomizer setting
0x00 – Disabled.
0x01 – Enabled.

13 UINT16 Length of the last received TC frame

RMAP reply status:

Table 7-43: TCStatus status codes

Status
code

Description

0 Success.

EINVAL The driver for the TC device has not been initialized.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 109 of 135

EIO I/O error. The TC device cannot be accessed

7.12.1.15. TCDRControl

Configures derandomization for telecommand frames.

Table 7-44: TCDRControl data

Byte Type Description

0 UINT8
0x00 – Disabled (default)
0x01 – Enabled

RMAP reply status (if a reply is requested):

Table 7-45: TCDRControl status codes

Status
code

Description

0 Success.

EINVAL The driver for the TC device has not been initialized.

EIO I/O error. The TC device cannot be accessed

7.12.1.16. HKData

Reads the housekeeping data.

Table 7-46: HKData data

Byte Type Description

0 UINT16 Input voltage

2 UINT16 Regulated 3V3 voltage

4 UINT16 Regulated 2V5 voltage

6 UINT16 Regulated 1V2 voltage

8 UINT16 Input current

10 UINT16 Temperature

12 UINT32 SCET Seconds

16 UINT16 SCET Subseconds

18 UINT8 S/W version 0-padding

19 UINT8 S/W major version

20 UINT8 S/W minor version

21 UINT8 S/W patch version

22 UINT8 CPU Parity Errors

23 UINT8 Watchdog trips

24 UINT8 Critical (CPU) SDRAM EDAC Single Errors

25 UINT8 Other SDRAM EDAC Single Errors

26 UINT8 Critical (CPU) SDRAM EDAC Multiple Errors

27 UINT8 Other SDRAM EDAC Multiple Errors

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 110 of 135

RMAP reply status:

Table 7-47: HKData status codes

Status
code

Description

0 Success.

EINVAL The driver for the HK device has not been initialized.

EIO I/O error. The HK device cannot be accessed

7.12.1.17. SCETTime

Reads/sets the SCET time.

Setting the SCET time is only possible when the PPS is considered qualified, see 7.7 for

details. If set, the seconds value will be updated at the next PPS, hence the seconds value

should normally be the current seconds count + 1.

The subseconds value is ignored for write commands.

Table 7-48: SCETTime data

Byte Type Description

0 UINT32 SCETSeconds
4 UINT16 SCETSubSeconds

RMAP reply status (if a reply is requested):

Table 7-49: SCETTime status codes

Status code Description

0 Success.

EINVAL Insufficient command length.

EIO I/O error. Reading from the SCET device failed.

7.12.1.18. UARTCommand

Send a command on the specified UART interface.

Table 7-50: UARTCommand data

Byte Type Description

0 - nn Array of UINT8 UART command data

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 111 of 135

RMAP reply status (if a reply is requested):

Table 7-51: UARTCommand status codes

Status
code

Description

0 Success.

EINVAL The driver for the UART device has not been

initialized.

EIO I/O error. The UARTdevice cannot be accessed

7.12.1.19. MMData

Read or write data from/to a partition

Table 7-52: MMData data

Byte Type Description

0 - nn Array of UINT8 Data

RMAP reply status (if a reply is requested):

Table 7-53: MMData data status codes

Status
code

Description

0 Success.

ENOSPC Write: Not enough space on partition. Read: Not

enough data on partition.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 112 of 135

7.12.1.20. MMStatus

Reads mass memory status.

Table 7-54: MMStatus data

Byte Type Description

0 UINT8

Chip 3 status
Bit 7 - WP# (Write protect Off: 1/On: 0)
Bit 6 - RDY (Ready: 1/Busy: 0)
Bit 5 - ARDY (Ready: 1/Busy Array: 0)
Bit 1 - FAILC (Fail: 1/Pass: 0 – set if the previous
operation (program) failed)
Bit 0 - FAIL (Fail: 1/Pass: 0 – set if the most recently
finished operation (program, erase) on the selected die
failed).
Bits 2, 3, and 4 are reserved.

1 UINT8 Chip 2 status, see above

2 UINT8 Chip 1 status, see above

3 UINT8 Chip 0 status, see above

4 UINT8 EDAC-chip status, see above

5-6 UINT16

Controller status
Bits 9-15 are reserved.
Bit 8 – Set feature done
Bit 7 - Busy (command in progress when high)
Bit 6 - Reserved
Bit 5 - Reset done
Bit 4 - Read ID done
Bit 3 - Erase block done
Bit 2 - Read page setup done
Bit 1 - Read status done
Bit 0 - Program page done

7-11
Array of 5

UINT8
Chip ID: EDAC

12-16
Array of 5

UINT8
Chip ID: Chip 0

17-21
Array of 5

UINT8
Chip ID: Chip 1

22-26
Array of 5

UINT8
Chip ID: Chip 2

27-31
Array of 5

UINT8
Chip ID: Chip 3

RMAP reply status:

Table 7-55: MMStatus status codes

Status
code

Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 113 of 135

7.12.1.21. MMWritePointer

The writepointer of the specified partition is set/read by this command.

 Table 7-56: MMWritePointer data

Byte Type Description

0-7 UINT64 Pointer’s byte position in the partition.

RMAP reply status (if a reply is requested):

Table 7-57: MMWritePointer status codes

Status
code

Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.12.1.22. MMReadPointer

The readpointer of the specified partition is set/read by this command.

Table 7-58: MMReadPointer data

Byte Type Description

0-7 UINT64 Pointer’s byte position in the partition.

RMAP reply status (if a reply is requested):

Table 7-59: MMReadPointer status codes

Status
code

Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 114 of 135

7.12.1.23. MMPartitionConfig

The partition configuration of the specified partition is read by this command. The partition

configuration is set using the nvconfig utility.

Table 7-60: MMPartitionConfig data

Byte Type Description

0 UINT64
Size in bytes. Must be in multiples of mass memory block size
(2097152 bytes)

8 UINT32 The offset in blocks from the first block of the Mass Memory.

12 UINT8
Partition mode
0 – FIFO. Newest data is discarded when full.

13 UINT8
Specifies type of data stored on the partition
0 – PUS Packets
1 – Raw Data

14 UINT8
Specifies which Virtual Channel to be used for downloading of
the data in the partition.

15 UINT8 Priority during download. (0 – Highest priority)

16 UINT16
The data source identifier for the partition. Can be used to set a
custom identifier of a data producer to a partition. Setting of this
value is not required to successfully configure a partition.

18 UINT8 Segment size of partition.
1 – 16 KiB
2 – 32 KiB
3 – 48 KiB
4 – 64 KiB

RMAP reply status:

Table 7-61: MMPartitionConfig data status codes

Status
code

Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

7.12.1.24. MMPartitionSpace

Reads the space available in the specified partition. Please note that due to the nature of the

flash memory, as the read pointer advances, the space will become free only in leaps as the

read pointer crosses a flash block edge. This means that a partition can have a discrepancy

between reported free space and expected free space of maximum 1 block (2 MiB).

Table 7-62 MMPartitionSpace data

Byte Type Description

0-7 UINT64 Available size in bytes.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 115 of 135

RMAP reply status:

Table 7-63: MMPartitionSpace status codes

Status
code

Description

0 Success.

EINVAL Invalid argument. E.g. invalid partition number

7.12.1.25. MMDownloadPartitionData

Downloads the data from the specified partition. The Virtual Channel used for the download

is set by the partition configuration. The command is finished when as much data as

possible of the requested length has been downloaded. If an error occurred during

download, the command is aborted. If a download is already in progress when this

command is received, the current download session continues and a reply message with

status EALREADY is returned.

Table 7-64 MMDownloadPartitionData data.

Byte Type Description

0-3 UINT32 Length in bytes to download

RMAP reply status (if a reply is requested):

Table 7-65 MMDownloadPartitionData data status codes

Status
code

Description

0 Success.

ENOSPC Not enough data on partition.

EINVAL Invalid argument. E.g. invalid partition number

EIO I/O error. E.g. failed to access storage or nvram.

EALREADY A download session is already in progress.

EBADMSG Data was not successfully downloaded on downlink.

7.12.2. RMAP output address details

7.12.2.1. TCCommand

A fully formed PUS packet according to [RD4] containing a TC packet to be routed.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 116 of 135

7.12.2.2. UARTData

Routed data from UART.

Table 7-66: UARTData data

Byte Type Description

0 - nn Array of UINT8 Data received on UART

7.13. Handling of Rd/Wr-pointers and wrap-flags for partitions

When a power-loss occurs or the Sirius TCM is reset, the state of the Rd/Wr-pointers and

wrap-flags of the partitions must be restored to a state so access of the partitions data can

continue after the power-loss or reset.

During initialization of the Sirius TCM partition configuration, Rd/Wr-pointers and wrap-flags

are read from NVRAM and populate an area in RAM storing partition information.

Access to a partition of the Mass Memory is handled in two steps. In the first step data is

written or read to/from the partition. If the access is successful the Rd/Wr-pointers and wrap-

flags are updated in RAM.

For read-accesses, the read-pointers and wrap-flags in RAM are also always stored to

NVRAM.

Write accesses to a partition utilize a write-cache in RAM. When the write cache is full, the

content of the write-cache is written to a page on the Mass Memory. During write-accesses

to a partition the write-pointers and wrap-flags in RAM are also stored to NVRAM when a

page is written to the Mass Memory. Note that the pointer and wrap information in RAM

contains values for a previous access at this moment. By this strategy, the write-pointers

stored in NVRAM will always contain a value of a successful and complete write-operation

where all data has been stored on Mass Memory.

During initialization of the Sirius TCM, the write pointer and wrap flags of a partition are read

from NVRAM to point to the last successful write access prior the restart of the Sirius TCM.

The read-pointer of the partition is read from NVRAM. The read pointer is rewound to the

same position as the write pointer if the read pointer read from NVRAM points to data that

has not been written yet. The rewind might occur if a read-access occurred from the write

cache prior the restart of the Sirius TCM. The purpose of the rewinding is to restore every

partition in a pristine state, where pointers point to the last position data was written or read

from the Mass Memory.

When the values of the write- and read-pointers and wrap-flags have been restored, a read-

modify-write operation in the block of the last write operation for every partition is done to

prepare the write-cache for every partition.

7.14. Limitations

For performance reasons, the current Sirius TCM release calculates checksums on neither

the incoming nor the outgoing RMAP/SpaceWire packets.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 117 of 135

8. System-on-Chip definitions

In this section the peripherals, memory sections and interrupts defined for the SoC for the

Sirius OBC and Sirius TCM are described

8.1. Memory mapping

Table 8-1 - Sirius memory structure definition

Memory Base Address Function
0xF0000000 Boot ROM

0xE0000000 CCSDS (Sirius TCM only)

0xCB000000 Watchdog

0xCA000000 SpaceCraft Elapsed Time

0xC1000000 SoC info

0xC0000000 Error Manager

0xBD000000 - 0xBF000000 Reserved

0xBC000000 Reserved for SPI interface 1

0xBB000000 Reserved for SPI interface 0

0xBA000000 GPIO

0xB6000000 Reserved for ADC controller 1

0xB5000000 ADC controller 0

0xB4000000 Reserved

0xB3000000 Mass memory flash controller (Sirius TCM only)

0xB2000000 System flash controller

0xB1000000 Reserved

0xB0000000 NVRAM controller

0xAC000000 Reserved for PCIe

0xAB000000 Reserved for CAN

0xAA000000 Reserved for USB

0xA9000000 -0xA3000000 Reserved

0xA2000000 Reserved for redundant SpaceWire

0xA1000000 SpaceWire

0xA0000000 Reserved for Ethernet MAC

0x9C000000 -0x9F000000 Reserved

0x9B000000 Reserved for I2C interface 1

0x9A000000 Reserved for I2C interface 0

0x99000000 Reserved

0x98000000 UART 7 (Safe bus functionality, RS485)

0x97000000 UART 6 (PSU control functionality, RS485)

0x96000000 Reserved for High speed UART w. DMA

0x95000000 UART 4 (Routed to LVDS HK on Sirius TCM)

0x94000000 UART 3 (Routed to RS422 HK on Sirius TCM)

0x93000000 UART 2

0x92000000 UART 1

0x91000000 UART 0

0x90000000 UART Debug (LVTTL)

0x80000000 - 0x8F000000 Reserved for customer IP

0x00000000 SDRAM memory including EDAC (64 MB)

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 118 of 135

8.2. Interrupt sources

The following interrupts are available to the processor:

Table 8-2 - Sirius interrupt assignment

Interrupt no. Function Description
0-1 Reserved Internal use

2 UART Debug UART interrupt signal

3 UART 0 UART interrupt signal

4 UART 1 UART interrupt signal

5 UART 2 UART interrupt signal

6 UART 3 UART interrupt signal

7 UART 4 UART interrupt signal

8 UART 5 UART interrupt signal

9 UART 6 UART interrupt signal

10 UART 7 UART interrupt signal

11 ADC controller 0 ADC controller 0 interrupt signal

12 - Avaliable (reserved for ADC controller 1)

13 - Available (reserved for I2C interface 0)

14 - Avaliable (reserved for I2C interface 1)

15 - Avaliable

16 - Avaliable

17 SCET SCET interrupt signal

18 Error manager Error manager interrupt signal

19 - Available (reserved for redundant SpaceWire)

20 System flash System flash controller interrupt signal

21 Mass memory Mass memory flash controller interrupt signal

22 Spacewire SpaceWire interrupt signal

23 CCSDS CCSDS interrupt signal

24 - Available (reserved for Ethernet)

25 GPIO GPIO interrupt signal

26 - Available (reserved for SPI 0)

27 - Available (reserved for SPI 1)

28 - Avaliable (reserved for custom adaptation)

29 - Avaliable (reserved for custom adaptation)

30 - Avaliable (reserved for custom adaptation)

8.3. SCET timestamp trigger sources

Some of the peripherals in the SoC have the capability of sending a timestamp trigger signal

on specific events. These signals are routed to the SCET which has a number of general

purpose trigger registers (GP) where a snapshot of the SCET counter is stored for later

retrieval by application software, see chapter 5.4. The tables below detail the mapping

between the trigger signals and the general purpose trigger registers in the two products.

Table 8-3 General purpose trigger map

GP number Trigger source Description

0 power_loss
Triggered when the voltage drops below a certain level, i.e. power is
lost to the board

1 ccsds
Triggered when telemetry sending on virtual channel 0 starts
(Sirius TCM only)

2 gpio
Triggered when one of the pins input changes states and edge
detection and timestamping are enabled

3 adc Triggered when an ADC conversion is started

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 119 of 135

8.4. Boot images and boot procedure

8.4.1. Description

The bootrom is a small piece of software built into a read-only memory inside the System-

on-Chip. Its main function is to load a software image from the system flash to RAM and

start it by jumping to the reset vector (0x100). To make the system fault tolerant, there are

two logical images of the main software, designated Updated and Safe. Each logical image

is stored in three physical copies distributed over the system flash. By default the bootrom

will first try to load the Updated image and if that fails fall back to the Safe image. The image

to load can also be selected by setting the Next FW register in the Error Manager and doing

a soft reset (see section 5.3 for more details). Boot order of the logical images and their

physical copies is shown in Figure 8-1.

8.4.2. Block diagram

Figure 8-1 Software images in flash

8.4.3. Usage description

The locations in the system flash where the bootrom looks for software images are given in

Table 8.4. The first two 32-bit words of the image are expected to be a header with image

size and an XOR checksum, see Table 8.5. If the size falls within the accepted range, the

bootrom loads the image to RAM while verifying the checksum.

The bootrom loads a table of bad blocks from the NVRAM. If a flash block within the range

to load from is marked as bad in the table, that block is assumed to have been skipped

when the image was programmed, so the bootrom continues reading from the next block. If

the image could be loaded from flash without error and its checksum is correct, the bootrom

jumps to the reset vector in RAM. If there is a flash error when loading, if the checksum is

incorrect, or if the image has an invalid size, the bootrom steps to the next image by

changing the Next FW field in the Error Manager and doing a soft reset. If the image being

loaded is the last available the bootrom will ignore errors and attempt to start it anyway, in

order to always have a chance of a working system. To indicate to the software which image

and copy is loaded, the Running FW field in the Error Manager is updated before handing

over execution.

Table 8.4 Software image locations

Image Flash page number

Safe copy #1 0x00000

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 120 of 135

Safe copy #2 0x20000

Safe copy #3 0x40000

Updated copy #1 0x80000

Updated copy #2 0xA0000

Updated copy #3 0xC0000

Table 8.5 Software image header

Field Size Description

Image size 32 bits

The size in bytes of the software image, not
including the header, stored as a 32-bit
unsigned integer. A software image can be
264 Bytes – 63 MB.

Checksum 32 bits

A cumulative XOR of all 32-bit words in the
image including the size, so that a cumulative
XOR of the whole image and header (including
checksum) shall evaluate to 0.

8.4.4. Limitations

If the image size is out of range for Safe image copy #1 (the final fallback image), the

bootrom will not be able to load it and the fallback option of handing execution to a damaged

software image if no other is available cannot be used.

8.5. Reset behaviour

The SoC has a clock and reset block that synchronizes the external asynchronous reset to

each clock domain. The internal soft reset, which can be commanded by software, follows

the same design philosophy i.e. is also synchronized into the clock domain where it’s used.

8.6. General synchronize method

All signals passing clock domain crossings are either handled via asynchronous two port

FIFOs or synchronized into the other clock domain. Two flip-flops in series are used to

reduce possible metastability effects. All external signals are synchronized into its clock

domain following the above method.

8.7. Pulse command inputs

The pulse command inputs on the Sirius products can be used to force a board to reboot

from a specific image. Paired with the ability of the Sirius TCM to decode PUS-2 CPDU

telecommands without software interaction and issue pulse commands, this provides a

means to reset malfunctioning boards by direct telecommand from ground as a last resort.

Each board has two pulse command inputs. Input 0 resets the board and loads the updated

image while input 1 resets the board and loads the safe image. Both require an active-high

pulse length between 20 - 40 ms to be valid. If, for some reason, both pulse command

inputs would be active at the same time, the pulse on input 0 takes precedence.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 121 of 135

8.8. SoC information map

The information included in the SoC info block for the Sirius products can be found in Table

8-6. This information must be fetched from the gdb prompt and can be used as a check of

which SoC version that is flashed on the board. In a connected gdb prompt type:

x/3xw 0xC1000000

Table 8-6 Sirius SoC info

Base address
number

Function Description

0x0 TIME_STAMP
When building the SoC, a Unix timestamp is taken and put into the
system. It is made as a 32 bit vector indicating seconds since 1970-01-
01 (UTC).

0x4 PRODUCT_ID

 0x00

 0x01

OBC S BB
OBC SR – With SPW router 3 ports

 0x08

 0x09

OBC S FM
OBC SR FM – With SPW router 3 ports

 0x10

 0x11

TCM S BB
TCM S R – With SPW router 3 ports

 0x18

 0x19

TCM S FM
TCM SR FM – With SPW router 3 ports

 0x20-
0xFF

 Reserved

0x8 SOC_VERSION

Follows the methodology release 0.1.0 = Release-X.Y.Z,
First eight bits are reserved: 0x00XXYYZZ
X represents a major number, 8 bits
Y represents a minor number, 8 bits
Z represents a patch number, 8 bits
Representated in 32 bits.

Example: 0x00010203 = 1.2.3
Major version 1
Minor version 2
Patch number 3

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 122 of 135

9. Connector interfaces

9.1. JTAG-RTL, FPGA-JTAG connector

The following pins are available on the ST60-10P connector, see Table 9-1.

Table 9-1 - JTAG pin-outs

Pin # Signal name Description

Pin 1 GND Ground

Pin 2 RTL-JTAG-TDI Test Data In, data shifted into the device.

Pin 3 RTL-JTAG-TRSTB Test Reset

Pin 4 VCC_3V3 Power supply

Pin 5 VCC_3V3 Power supply

Pin 6 RTL-JTAG-TMS Test Mode Select

Pin 7 Not connected -

Pin 8 RTL-JTAG-TDO Test Data Out, data shifted out of the device

Pin 9 GND Ground

Pin 10 RTL-JTAG-TCK Test Clock

9.2. DEBUG-SW

The following pins are available on the ST60-18P, connector. See Table 9-2.

Table 9-2 - Debug SW pin-outs

Pin # Signal name Description

Pin 1 ETH-DEBUG-RESET Reset

Pin 2 GND Ground

Pin 3 ETH-DEBUG-SYNC Not available

Pin 4 ETH-DEBUG-TX Not available

Pin 5 ETH-DEBUG-RX Not available

Pin 6 ETH-DEBUG-MDC Not available

Pin 7 ETH-DEBUG-MDIO Not available

Pin 8 ETH-DEBUG-CLK Not available

Pin 9 GND Ground

Pin 10 DEBUG-JTAG-TDI Debug Test data in

Pin 11 DEBUG-JTAG-RX Debug UART RX

Pin 12 DEBUG-JTAG-TX Debug UART TX

Pin 13 VCC_3V3 Power supply

Pin 14 DEBUG-JTAG-TMS Debug Test mode select

Pin 15 VCC_3V3 Power supply

Pin 16 DEBUG-JTAG-TDO Debug Test data out

Pin 17 ETH-DEBUG-DETECT Detect signal for the debugger

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 123 of 135

Pin 18 DEBUG-JTAG-TCK Debug Test clock

9.3. PWR – Power

The following pins are available on the nano-D9 socket connector, see Table 9-4

Table 9-3 - Power pin-outs

Pin # Signal name Description

Pin 1 VBUS+
Power input

Pin 2 VBUS+

Pin 3 UART7_RXTX_RS485_P
Safebus

Pin 4 UART7_RXTX_RS485_N

Pin 5 PPS_RS422_P
PPS Distribution

Pin 6 PPS_RS422_N

Pin 7 UART6_RXTX_RS485_P
PSU Control Interface

Pin 8 UART6_RXTX_RS485_N

Pin 9 GND

Ground Pin 10 GND

Pin 11 GND

Pin 12 PULSE0_I_RS422_P
Pulse Command 0

Pin 13 PULSE0_I_RS422_N

Pin 14 PULSE1_I_RS422_P
Pulse Command 1

Pin 15 PULSE1_I_RS422_N

9.4. SPW1 – Spacewire 1

The following pins are available on the nano-D9 socket connector, see Table 9-4

Table 9-4 - SPW1 pin-outs

Pin # Signal name Description

Pin 1 SPW1_DIN_LVDS_P Data in, Positive

Pin 2 SPW1_SIN_LVDS_P Strobe in, Positive

Pin 3 CGND Chassis ground

Pin 4 SPW1_SOUT_LVDS_N Strobe out, Negative

Pin 5 SPW1_DOUT_LVDS_N Data out, Negative

Pin 6 SPW1_DIN_LVDS_N Data in, Negative

Pin 7 SPW1_SIN_LVDS_N Strobe in, Negative

Pin 8 SPW1_SOUT_LVDS_P Strobe out, Positive

Pin 9 SPW1_DOUT_LVDS_P Data out, Positive

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 124 of 135

9.5. SPW2 – Spacewire 2

The following pins are available on the nano-D9 socket connector, see Table 9-5

Table 9-5 – SPW2 pin-outs

Pin # Signal name Description

Pin 1 SPW2_DIN_LVDS_P Data in, Positive

Pin 2 SPW2_SIN_LVDS_P Strobe in, Positive

Pin 3 CGND Chassis ground

Pin 4 SPW2_SOUT_LVDS_N Strobe out, Negative

Pin 5 SPW2_DOUT_LVDS_N Data out, Negative

Pin 6 SPW2_DIN_LVDS_N Data in, Negative

Pin 7 SPW2_SIN_LVDS_N Strobe in, Negative

Pin 8 SPW2_SOUT_LVDS_P Strobe out, Positive

Pin 9 SPW2_DOUT_LVDS_P Data out, Positive

9.6. ANALOG, Analog input and 3xGPIO (Sirius OBC only)

The following pins are available on the nanoD25 socket connector, see Table 9-5

Table 9-6 – ANALOGS, 4xGPIO pin-outs

Pin # Signal name Description

Pin 1 ADC_IN_0 Analog input channel

Pin 2 ADC_IN_1 Analog input channel

Pin 3 ADC_IN_2 Analog input channel

Pin 4 ADC_IN_3 Analog input channel

Pin 5 ADC_IN_4 Analog input channel

Pin 6 ADC_IN_5 Analog input channel

Pin 7 ADC_IN_6 Analog input channel

Pin 8 ADC_IN_7 Analog input channel

Pin 9 BIAS 2.5V bias voltage

Pin 10 BIAS 2.5V bias voltage

Pin 11 GPIO12 3.3V Digital I/O

Pin 12 GPIO13 3.3V Digital I/O

Pin 13 GPIO14 3.3V Digital I/O

Pin 14 GND Ground

Pin 15 GND Ground

Pin 16 GND Ground

Pin 17 GND Ground

Pin 18 GND Ground

Pin 19 GND Ground

Pin 20 GND Ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 125 of 135

Pin 21 GND Ground

Pin 22 BIAS 2.5V bias voltage

Pin 23 BIAS 2.5V bias voltage

Pin 24 GPIO15 3.3V Digital I/O

Pin 25 GND Ground

9.7. DIGITAL, PPS input and 12xGPIO

The following pins are available on the nanoD25 socket connector, see Table 9-6

Table 9-7 DIGITALS pinouts

Pin # Signal name Description

Pin 1 GPIO0 Digital input/output

Pin 2 GPIO1 Digital input/output

Pin 3 GPIO2 Digital input/output

Pin 4 GPIO3 Digital input/output

Pin 5 GPIO4 Digital input/output

Pin 6 GPIO5 Digital input/output

Pin 7 GPIO6 Digital input/output

Pin 8 GPIO7 Digital input/output

Pin 9 GPIO8 Digital input/output

Pin 10 GPIO9 Digital input/output

Pin 11 GPIO10 Digital input/output

Pin 12 GPIO11 Digital input/output

Pin 13 GND Board ground

Pin 14 Not used Not used

Pin 15 Not used Not used

Pin 16 Not used Not used

Pin 17 Not used Not used

Pin 18 Not used Not used

Pin 19 Not used Not used

Pin 20 Not used Not used

Pin 21 Not used Not used

Pin 22 Not used Not used

Pin 23 PPS_INPUT_RS422_N Pulse per second, differential RS422 signal for time
synchronization Pin 24 PPS_INPUT_RS422_P

Pin 25 GND Board ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 126 of 135

9.8. UART0-2 - RS422/485

The following pins are available on the nanoD15 socket connector, see Table 9-7

Table 9-8 COM02_RS4XX pinouts

Pin # Signal name Description

Pin 1 UART0_RX_RS4XX_P
UART 0 RX

Pin 2 UART0_RX_RS4XX_N

Pin 3 UART0_TX_RS4XX_P
UART 0 TX

Pin 4 UART0_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART1_RX_RS4XX_P
UART 1 RX

Pin 8 UART1_RX_RS4XX_N

Pin 9 UART1_TX_RS4XX_P
UART 1 TX

Pin 10 UART1_TX_RS4XX_N

Pin 11 UART2_RX_RS4XX_P
UART 2 RX

Pin 12 UART2_RX_RS4XX_N

Pin 13 UART2_TX_RS4XX_P
UART 2 TX

Pin 14 UART2_TX_RS4XX_N

Pin 15 GND Ground

9.9. UART3-5 - RS422/485 (Sirius OBC only)

The following pins are available on the nanoD15 socket connector, see Table 9-8

Table 9-9 COM35_RS4XX pin-outs

Pin # Signal name Description

Pin 1 UART3_RX_RS4XX_P
UART 3 RX

Pin 2 UART3_RX_RS4XX_N

Pin 3 UART3_TX_RS4XX_P
UART 3 TX

Pin 4 UART3_TX_RS4XX_N

Pin 5 GND
Ground

Pin 6 GND

Pin 7 UART4_RX_RS4XX_P
UART 4 RX

Pin 8 UART4_RX_RS4XX_N

Pin 9 UART4_TX_RS4XX_P
UART 4 TX

Pin 10 UART4_TX_RS4XX_N

Pin 11 UART5_RX_RS4XX_P
UART 5 RX

Pin 12 UART5_RX_RS4XX_N

Pin 13 UART5_TX_RS4XX_P
UART 5 TX

Pin 14 UART5_TX_RS4XX_N

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 127 of 135

Pin 15 GND Ground

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 128 of 135

9.10. TRX1 - RS422 Transceiver interface (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, see Table 9-9. This

connector can, for instance, be used for an S-BAND radio.

Table 9-10 TRX1 pin-outs

Pin # Signal name Description

Pin 1 TRX1_DOUT_RS422_P
RS422 output

Pin 2 TRX1_DOUT_RS422_N

Pin 3 TRX1_COUT_RS422_P
RS422 output

Pin 4 TRX1_COUT_RS422_N

Pin 5 TRX1_DIN_RS422_P
RS422 Input

Pin 6 TRX1_DIN_RS422_N

Pin 7 TRX1_CIN_RS422_P
RS422 Input

Pin 8 TRX1_CIN_RS422_N

Pin 9 TRX1_SCAL_IN_RS422_P
RS422 Input

Pin 10 TRX1_SCAL _IN_RS422_N

Pin 11 TRX1_C_LOCK_IN_RS422_P
RS422 Input

Pin 12 TRX1_C_LOCK_IN_RS422_N

Pin 13 GND Ground

Pin 14 GND Ground

Pin 15 GND Ground

Pin 16 GND Ground

Pin 17 GND Ground

Pin 18 GND Ground

Pin 19 GND Ground

Pin 20 UART4_TX_RS422_P
RS422 output

Pin 21 UART4_TX_RS422_N

Pin 22 UART4_RX_RS422_P
RS422 input

Pin 23 UART4_RX_RS422_N

Pin 24 TRX1_DETECT Transceiver detect input

Pin 25 GND Ground

9.11. TRX2 - LVDS Transceiver interface (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, see Table 9-9. This

connector can, for instance, be used for an X-BAND or S-BAND radio.

Table 9-11 TRX2 pin-outs

Pin # Signal name Description

Pin 1 TRX2_DOUT_LVDS_P
Baseband data out, LVDS

Pin 2 TRX2_DOUT_LVDS_N

Pin 3 TRX2_COUT_LVDS_P Baseband clock out, LVDS

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 129 of 135

Pin 4 TRX2_COUT_LVDS_N

Pin 5 TRX2_DIN_LVDS_P
Baseband data in, LVDS

Pin 6 TRX2_DIN_LVDS_N

Pin 7 TRX2_CIN_LVDS_P
Baseband clock in, LVDS

Pin 8 TRX2_CIN_LVDS_N

Pin 9 TRX2_SCAL_IN_LVDS_P
Sub-carrier lock in, LVDS

Pin 10 TRX2_SCAL_IN_LVDS_N

Pin 11 TRX2_CAL_IN_LVDS_P
Carrier lock in, LVDS

Pin 12 TRX2_CAL_IN_LVDS_N

Pin 13 GND Ground

Pin 14 UART3_TX_LVDS_P
LVDS output

Pin 15 UART3_TX_LVDS_N

Pin 16 UART3_RX_LVDS_P
LVDS input

Pin 17 UART3_RX_LVDS_N

Pin 18 GND
Ground

Pin 19 GND

Pin 20 UART3_TX_RS422_P
RS422 output

Pin 21 UART3_TX_RS422_N

Pin 22 UART3_RX_RS422_P
RS422 input

Pin 23 UART3_RX_RS422_N

Pin 24 TRX2_DETECT Transceiver detect input

Pin 25 GND Ground

9.12. UMBI – Baseband Umbilical (Sirius TCM only)

The following pins are available on the nano-D15 socket connector, see Table 9-10

Table 9-12 UMBI pin-outs

Pin # Signal name Description

Pin 1 UMBI_DOUT_RS422_P
Baseband data out

Pin 2 UMBI_DOUT_RS422_N

Pin 3 UMBI_COUT_RS422_P
Baseband clock out

Pin 4 UMBI_COUT_RS422_N

Pin 5 UMBI_DIN_RS422_P
Baseband data in

Pin 6 UMBI_DIN_RS422_N

Pin 7 UMBI_CIN_RS422_P
Baseband clock in

Pin 8 UMBI_CIN_RS422_N

Pin 9 UMBI_SC_LOCK_IN_RS422_P
Sub-carrier lock in

Pin 10 UMBI_SC_LOCK_IN_RS422_N

Pin 11 UMBI_C_LOCK_IN_RS422_P
Carrier lock in

Pin 12 UMBI_C_LOCK_IN_RS422_N

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 130 of 135

Pin 13 UMBI_DETECT Umbilical detect input

Pin 14 GND Ground (reference)

Pin 15 GND Ground (reference)

9.13. Pulse Command Outputs (Sirius TCM only)

The following pins are available on the nano-D25, socket connector, see Table 9-10

Table 9-13 Pulse command pin-outs

Pin # Signal name Description

Pin 1 PULSE1_O_RS422_P
RS422 output

Pin 2 PULSE1_O_RS422_N

Pin 3 PULSE2_O_RS422_P
RS422 output

Pin 4 PULSE2_O_RS422_N

Pin 5 PULSE3_O_RS422_P
RS422 output

Pin 6 PULSE3_O_RS422_N

Pin 7 PULSE4_O_RS422_P
RS422 output

Pin 8 PULSE4_O_RS422_N

Pin 9 PULSE5_O_RS422_P
RS422 output

Pin 10 PULSE5_O_RS422_N

Pin 11 PULSE6_O_RS422_P
RS422 output

Pin 12 PULSE6_O_RS422_N

Pin 13 GND Ground

Pin 14 PULSE7_O_RS422_P
RS422 output

Pin 15 PULSE7_O_RS422_N

Pin 16 PULSE8_O_RS422_P
RS422 output

Pin 17 PULSE8_O_RS422_N

Pin 18 PULSE9_O_RS422_P
RS422 output

Pin 19 PULSE9_O_RS422_N

Pin 20 PULSE10_O_RS422_P
RS422 output

Pin 21 PULSE10_O_RS422_N

Pin 22 PULSE11_O_RS422_P
RS422 output

Pin 23 PULSE11_O_RS422_N

Pin 24 PULSE12_O_RS422_P
RS422 output

Pin 25 PULSE12_O_RS422_N

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 131 of 135

10. Updating the Sirius FPGA

To be able to update the SoC on the Sirius OBC

and Sirius TCM you need the following

items.

10.1. Prerequisite hardware

 Microsemi FlashPro5 unit

 104470 FPGA programming cable assembly

10.2. Prerequisite software

 Microsemi FlashPro Express v11.7 or later

 The updated FPGA firmware

10.3. Step by step guide

The following instructions show the necessary steps that need to be taken in order to

upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable

assembly to connector 4 in Figure 3-1

2. Connect the power cables according to Figure 3-1

3. The updated FPGA firmware delivery from ÅAC should contain at least two files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

4. Start the FlashPro Express application, click “Open…” in the “Job Projects” box

(see Figure 10-1) and select the supplied .pro file.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 132 of 135

Figure 10-1 - Startup view of FlashPro Express

5. Once the file has loaded (warnings might appear), click RUN (see Figure 10-2).

Please note that the connected FlashPro5 programmed ID should be shown.

Figure 10-2 - View of FlashPro Express with project loaded.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 133 of 135

6. The FPGA should now be loaded with the new firmware, which might take a few

minutes. Once it is finalized the second last message should be “Chain

programming PASSED”, see Figure 10-3.

Figure 10-3 - View of FlashPro Express after program passed.

The Sirius FPGA image is now updated

11. Mechanical data

The total size of the Sirius board is 183x136 mm.

Mounting holes are ø3.4 mm with 4.5 mm pad size.

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 134 of 135

12. Glossary

ADC Analog Digital Converter
APID Application Process ID

BSP Board Support Package
CCSDS The Consultative Committee for Space Data Systems
EDAC Error Detection and Correction
EM Engineering model
FIFO First In First Out
FLASH Flash memory is a non-volatile computer storage chip that can be electrically erased and

reprogrammed
FPGA Field Programmable Gate Array
GCC GNU Compiler Collection program (type of standard in Unix)
GPIO General Purpose Input/Output
Gtkterm Is a terminal emulator that drives serial ports
I
2
C Inter-Integrated Circuit, generally referred as “two-wire interface” is a multi-master serial single-

ended computer bus invented by Philips.
JTAG Joint Test Action Group, interface for debugging the PCBs
LVTTL Low-Voltage TTL
Minicom Is a text based modem control and terminal emulation program
NA Not Applicable
NVRAM Non Volatile Random Access Memory
OBC On Board Computer
OS Operating System
PCB Printed Circuit Board
PCBA Printed Circuit Board Assembly
POSIX Portable Operating System Interface
PUS Packet Utilization Standard
RAM Random Access Memory, however modern DRAM has not random access. It is often associated

with volatile types of memory
ROM Read Only Memory
RTEMS Real-Time Executive for Multiprocessor Systems
SCET SpaceCraft Elapsed Timer
SoC System-on-Chip
SPI Serial Peripheral Interface Bus is a synchronous serial data link which sometimes is called a 4-

wire serial bus.
TC Telecommand
TCL Tool Command Language, a script language
TCM Mass memory
TM Telemetry
TTL Transistor Transistor Logic, digital signal levels used by IC components
UART Universal Asynchonous Receiver Transmitter that translates data between parallel and serial

forms.
USB Universal Serial Bus, bus connection for both power and data

http://www.aacmicrotec.com/

 Document number 205065
 Version Rev. F
 Issue date 2017-04-18

Sirius OBC and TCM User Manual

 www.aacmicrotec.com Page 135 of 135

http://www.aacmicrotec.com/

