
Sirius OBC User Manual
v1.15.0

© AAC Clyde Space 2024

AAC Clyde Space AB owns the copyright of this document which is supplied in confidence and which
shall not be used for any purpose other than for which it is supplied and shall not in whole or in part
be reproduced, copied, or communicated to any person without written permission from the owner.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 1 of 153

https://www.aac-clyde.space

TABLE OF CONTENTS

1. INTRODUCTION . 9

1.1. Applicable releases . 9

1.2. Intended users . 9

1.3. Getting support. 9

1.4. Reference documents . 10

2. SYSTEM OVERVIEW . 11

2.1. Description. 11

2.2. OBC/TCM peripherals . 12

2.3. Fault tolerant design . 12

2.4. Usage and concept . 13

2.4.1. Combined setup . 13

2.4.2. OBC concept . 14

2.4.3. TCM concept. 14

2.4.3.1. Use with pre-programmed flight software . 14

2.4.3.2. Use without pre-programmed flight software . 15

2.5. Manual chapters overview . 15

3. SETUP AND OPERATION . 16

3.1. User prerequisites . 16

3.2. Connecting cables to the Sirius products . 17

3.3. Installation of toolchain . 18

3.3.1. Supported Operating Systems . 18

3.3.2. Installation Steps . 18

3.3.2.1. Store the key for the AAC package archive. 18

3.3.2.1.1. Old AAC package archive key in global trusted apt keyring . 19

3.3.2.2. Add the package archive as a source . 19

3.3.2.3. Install the packages . 19

3.3.2.4. Setup PATH . 20

3.3.3. AAC toolchain is RTEMS-only . 20

3.4. Installing the Board Support Package (BSP) . 20

3.5. Deploying a Sirius application . 21

3.5.1. Establish a debugger connection to the Sirius products . 21

3.5.2. JTAG connection . 21

3.5.3. Setup a serial terminal to the device debug UART . 21

3.5.4. Using multiple debuggers on the same PC . 22

3.5.5. Alternative USB library for GRMON . 23

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 2 of 153

https://www.aac-clyde.space

3.5.6. Loading an application on LEON3 . 23

3.5.7. Debugging software . 24

3.6. Programming an application (boot image) to system flash . 25

3.7. Re-initialising the NVRAM . 26

4. SOFTWARE DEVELOPMENT. 27

4.1. RTEMS step-by-step compilation . 27

4.1.1. Compiling the BSP and compiling an example . 27

4.1.2. Compiling the BSP with debug output removed . 28

4.2. RTEMS floating-point considerations . 28

4.3. Software disclaimer of warranty . 29

5. RTEMS . 30

5.1. Introduction . 30

5.2. Watchdog . 31

5.2.1. Description. 31

5.2.2. API . 31

5.2.2.1. Function: int open(…). 31

5.2.2.2. Function: int close(…). 32

5.2.2.3. Function: ssize_t write(…). 32

5.2.2.4. Function: int ioctl(…). 32

5.2.3. Usage description . 33

5.2.3.1. RTEMS application example. 34

5.3. Error Manager . 35

5.3.1. Description. 35

5.3.2. API . 35

5.3.2.1. Struct: errman_latest_reset_info_t. 35

5.3.2.2. Function: int open(…). 35

5.3.2.3. Function: int close(…). 36

5.3.2.4. Function: int ioctl(…). 36

5.3.2.4.1. Status register. 41

5.3.2.4.2. Carry flag register . 44

5.3.2.4.3. Register for correctable errors in CPU working memory . 47

5.3.2.4.4. Register for uncorrectable errors in CPU working memory. 47

5.3.2.4.5. Latest boot status register . 48

5.3.3. Usage description . 49

5.3.3.1. Interrupt message queue . 49

5.3.3.2. RTEMS application example. 49

5.3.4. Limitations . 50

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 3 of 153

https://www.aac-clyde.space

5.4. SCET . 51

5.4.1. Description. 51

5.4.1.1. Overview. 51

5.4.1.2. Timing modes . 52

5.4.1.3. Threshold . 53

5.4.1.4. Synchronization . 54

5.4.1.5. Losing synchronization . 55

5.4.1.6. Input filter . 57

5.4.1.7. PPS output. 57

5.4.1.8. General-purpose triggers . 57

5.4.2. API . 57

5.4.2.1. Function: int open(…). 58

5.4.2.2. Function: int close(…). 58

5.4.2.3. Function: ssize_t read(…). 59

5.4.2.4. Function: ssize_t write(…). 59

5.4.2.5. Function: int ioctl(…). 60

5.4.2.5.1. Alternative PPS input/output control . 63

5.4.2.6. Event callback via message queue . 64

5.4.3. Usage description . 65

5.4.3.1. PPS synchronization procedure . 65

5.4.3.2. RTEMS application example. 65

5.5. UART. 68

5.5.1. Description. 68

5.5.1.1. Driver. 68

5.5.1.2. RX/TX buffer depth . 68

5.5.1.3. Trigger levels . 68

5.5.1.4. Modes. 68

5.5.2. API . 69

5.5.2.1. Function: int open(…). 69

5.5.2.2. Function: int close(…). 70

5.5.2.3. Function: ssize_t read(…). 70

5.5.2.4. Function: ssize_t write(…). 71

5.5.2.5. Function: int ioctl(…). 71

5.5.3. Usage description . 74

5.5.3.1. RTEMS application example. 74

5.5.3.2. Parity, framing and overrun error notification. 74

5.5.4. Limitations . 75

5.6. SpaceWire . 76

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 4 of 153

https://www.aac-clyde.space

5.6.1. Description. 76

5.6.2. API . 76

5.6.2.1. Function: int open(…). 76

5.6.2.2. Function: int close(…). 77

5.6.2.3. Function: ssize_t read(…). 77

5.6.2.4. Function: ssize_t write(…). 79

5.6.2.5. Function: int ioctl(…). 80

5.6.2.5.1. Mode setting . 80

5.6.2.5.2. Spacewire timeout . 80

5.6.2.5.3. Timing mode and Timecodes . 81

5.6.2.5.4. Write with Hardware RMAP CRC Support . 82

5.6.2.5.5. Read with Hardware RMAP CRC Support . 85

5.6.2.5.6. Supported Features Information . 88

5.6.3. Usage description . 89

5.6.3.1. Normal Operation. 89

5.6.3.2. Promiscuous Mode . 89

5.6.3.3. Buffer Alignment . 90

5.6.3.4. Usage . 90

5.6.3.5. Application Usage Example . 90

5.6.3.6. Hardware RMAP CRC Examples . 92

5.7. GPIO . 95

5.7.1. Description. 95

5.7.1.1. Driver. 95

5.7.1.2. Falling and rising edge detection . 95

5.7.1.3. Time stamping in SCET . 95

5.7.1.4. RTEMS differential mode . 95

5.7.1.5. Operating on pins with pull-up or pull-down . 96

5.7.2. API . 96

5.7.2.1. Function: int open(…). 96

5.7.2.2. Function: int close(…). 97

5.7.2.3. Function: ssize_t read(…). 97

5.7.2.4. Function: ssize_t write(…). 98

5.7.2.5. Function: int ioctl(…). 98

5.7.3. Usage description . 100

5.7.3.1. RTEMS application example. 100

5.7.4. Limitations. 101

5.8. ADC . 102

5.8.1. Description. 102

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 5 of 153

https://www.aac-clyde.space

5.8.1.1. Channels . 102

5.8.1.2. Data format . 103

5.8.2. API . 103

5.8.2.1. Enum: adc_ioctl_sample_rate_e . 103

5.8.2.2. Function: int open(…) . 104

5.8.2.3. Function: int close(…) . 105

5.8.2.4. Function: ssize_t read(…). 105

5.8.2.5. Function: int ioctl(…) . 106

5.8.3. Usage description . 107

5.8.3.1. RTEMS application example. 108

5.8.4. Limitations. 108

5.9. NVRAM . 110

5.9.1. Description. 110

5.9.1.1. Driver. 110

5.9.1.1.1. EDAC mode . 110

5.9.1.1.2. Non-EDAC mode . 110

5.9.2. API . 111

5.9.2.1. Enum: rtems_spi_ram_edac_e . 111

5.9.2.2. Function: int open(…) . 111

5.9.2.3. Function: int close(…) . 112

5.9.2.4. Function: ssize_t read(…). 112

5.9.2.5. Function: ssize_t write(…). 112

5.9.2.6. Function: int lseek(…) . 113

5.9.2.7. Function: int ioctl(…) . 113

5.9.3. Usage description . 114

5.9.3.1. RTEMS Example . 115

5.10. System flash . 117

5.10.1. Description. 117

5.10.1.1. Overview . 117

5.10.1.2. Debug detect . 117

5.10.2. Data Structures . 117

5.10.2.1. Type: sysflash_cid_t . 117

5.10.2.2. Type: sysflash_ioctl_spare_area_args_t . 118

5.10.3. API . 118

5.10.3.1. Function: int open(…) . 118

5.10.3.2. Function: int close(…) . 119

5.10.3.3. Function: size_t lseek(…) . 119

5.10.3.4. Function: size_t read(…) . 120

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 6 of 153

https://www.aac-clyde.space

5.10.3.5. Function: size_t write(…) . 121
5.10.3.6. Function: int ioctl(…) . 122

5.10.3.6.1. Reset System flash. 122

5.10.3.6.2. Read chip status. 122

5.10.3.6.3. Read controller status . 122

5.10.3.6.4. Read ID . 122

5.10.3.6.5. Erase block . 123

5.10.3.6.6. Read spare area . 123

5.10.3.6.7. Write spare area . 123

5.10.3.6.8. Factory bad block check . 124

5.10.4. Usage Description. 124

5.10.4.1. RTEMS application example . 125

5.10.5. Limitations. 126

6. SPACEWIRE ROUTER . 127

7. NVRAM AREAS . 128

8. BOOT PROCEDURE . 129

8.1. Description . 129

8.2. Usage description . 129

8.3. Limitations. 130

8.4. Cause of last reset . 131

8.5. Pulse commands . 131

9. SOFTWARE UPLOAD . 132

9.1. Description . 132

9.2. CCSDS API – custom PUS service 130. 133

9.2.1. Description. 133

9.2.2. Subtype 1 – Image transfer start. 134

9.2.3. Subtype 2 – Image data . 135

9.2.4. Subtype 3 – Verify uploaded image . 136

9.2.5. Subtype 4 – Write uploaded image . 136

9.2.6. Subtype 5 – Calculate CRC in flash . 137

9.3. Software API . 138

9.3.1. Function: int32_t swu_init(…) . 138

9.3.2. Function: int32_t swu_segment_add(…) . 138

9.3.3. Function: int32_t swu_check(…) . 139

9.3.4. Function: int32_t swu_update(…) . 139

9.3.5. Function: int32_t swu_flash_check(…) . 140

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 7 of 153

https://www.aac-clyde.space

9.4. Usage description . 140

9.5. Limitations. 140

10. DEATH REPORTS . 141

10.1. Description . 141

10.2. Trap types . 141

10.2.1. Floating point traps . 142

10.3. Format . 143

10.4. NVRAM . 145

10.5. Usage Description . 146

11. UPDATING THE SIRIUS FPGA . 147

11.1. Generation of encryption key . 147

11.2. Step-by-step guide . 147

12. MECHANICAL DATA . 150

13. GLOSSARY . 151

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 8 of 153

https://www.aac-clyde.space

1. Introduction

The AAC Clyde space Sirius line of products, which will be referred to as "the Sirius
products" in this document, consist of:

• Sirius OBC

• Sirius TCM

• Sirius TCM - with TCM Core Application

This manual describes the functionality and usage of the Sirius Leon3 OBC.

The Sirius OBC or Sirius TCM differ in certain areas such as the SoC, interfaces etc. see
the electrical and mechanical ICD documents, [RD1] and [RD2], for details on the
interfaces.

1.1. Applicable releases

This version of the manual is applicable to the following software releases:

Sirius Leon3 OBC: v1.15.0

1.2. Intended users

This manual is written for software engineers writing their own application software
for the AAC Clyde Space Sirius Leon3 OBC. The electrical and mechanical interface is
described in more detail in the electrical and mechanical ICD document [RD1] .

1.3. Getting support

If you encounter any problem using the Sirius products or another AAC Clyde Space
product, please use the following address to get help:

Email: support@aac-clydespace.com

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 9 of 153

mailto:support@aac-clydespace.com
https://www.aac-clyde.space

1.4. Reference documents

[RD1] “Sirius OBC electrical and mechanical ICD,” 205-088. AAC Clyde Space.

[RD2] “Sirius TCM electrical and mechanical ICD,” 205-089. AAC Clyde Space.

[RD3] “GRLIB IP Core User’s Manual,” GRIP, May 2019, Version 2019.2.

[RD4] “Sirius TCM Application User Manual,” 206-308. AAC Clyde Space.

[RD5] “Electrostatics - Part 5-1: Protection of electronic devices from electrostatic
phenomena - General requirements,” SS-EN 61340-5-1.

[RD6] “ GRMON3 User’s Manual,” GRMON3-UM, June 2019, Version 3.1.0.

[RD7] “RTEMS C User Manual,” Edition 4.11.

[RD8] “Sirius SoC Configuration Document,” 206-222. AAC Clyde Space.

[RD9] “Asynchronous Receiver/Transmitter with FIFOs,” SNLS378B.

[RD10] “SpaceWire - Links, nodes, routers and networks,” ECSS-E-ST-50-12C.

[RD11] “RTEMS BSP and Device Driver Development Guide,” Edition 4.11.

[RD12] “RTEMS POSIX User Manual,” Edition 4.11.

[RD13] “Space engineering - Telemetry and telecommand packet utilization,” ECSS-E-
ST-70-41C.

[RD14] “The SPARC Architecture Manual,” sparcv8, SAV080SI9308, Version 8.

[RD15] “TM Space Data Link Protocol,” CCSDS 132.0-B-2.

[RD16] “TC Space Data Link Protocol,” CCSDS 232.0-B-2.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 10 of 153

https://www.aac-clyde.space

2. System overview

2.1. Description

The Sirius OBC and Sirius TCM products are depicted in Figure 3.1 and Figure 3.2.

In addition to the external interfaces, the Sirius products also include both a debugger
interface for downloading and debugging software applications and a JTAG interface
for programming the FPGA during manufacturing.

The FPGA firmware implements a SoC built around a LEON3FT processor [RD3]
running at a system frequency of 50 MHz and with the following key peripherals:

• Error manager - error handling, tracking and log of e.g. memory error detection.

• SDRAM controller - 64 MB data + 64 MB EDAC running @100MHz.

• Spacecraft Elapsed Timer (SCET) - including a PPS (Pulse Per Second) time
synchronization interface for accurate time measurement with a resolution of 15
µs.

• SpaceWire - including a three-port SpaceWire router, for communication with
external peripheral units.

• UARTs - RS422 and RS485 line drivers on the board with line driver mode set by
software.

• GPIOs

• Watchdog - a fail-safe mechanism to prevent a system lockup

• System flash - 2 GB of EDAC-protected flash for storing boot images in multiple
copies.

• Pulse command inputs - for reset to a specific software image

• NVRAM - for storage of metadata and other data that requires a large number of
writes that shall survive loss of power.

For the Sirius TCM the following additional peripherals are included in the SoC:

• CCSDS - communications IP with RS422/LVDS interfaces for radio communication
and an UMBI interface for communication with EGSE.

• Mass memory - 32GB of EDAC-protected NAND flash based, for storage of mission
critical data.

For the Sirius OBC:

• An analog interface is included for external analog measurements.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 11 of 153

https://www.aac-clyde.space

The input power supply provided to the Sirius products shall be between +4.5 and +16
VDC. Power consumption is highly dependent on activities and peripheral loads and
ranges from 1.2 W to 2 W.

2.2. OBC/TCM peripherals

Figure 2.1 shows an overview of the System-on-Chip (SoC) together with the
peripheral circuitry of the Sirius OBC and Sirius TCM products. The color coding in
the figure shows what parts are included for which products. The CPU is a LEON3FT.

Figure 2.1 - The Sirius OBC / Sirius TCM SoC Overview

2.3. Fault tolerant design

The Sirius OBC and Sirius TCM are both fault tolerant by design to withstand the
environmental loads that the modules are subjected to when used in space
applications. The following error mitigation techniques are used.

• Continuous EDAC scrubbing of SDRAM data with at least 1 bit error correction
and 2 bit error detection for each 16-bit word. Non-correctable errors cause a
processor interrupt to allow the software to handle the error differently
depending on in which section of the memory it appeared, unless the error
appear in the execution path (see below).

• EDAC checking of instructions before execution and on data used in the

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 12 of 153

https://www.aac-clyde.space

instruction (at least 1 bit error correction and 2 bit error detection as described in
the previous point). Non-correctable errors cause automatic reboot.

• Parity checking of Instruction and Data caches when they are enabled. Errors
cause a processor interrupt with a cache reload as the default error handling.

• Parity checking of peripheral FIFOs. Errors cause processor interrupt.

• EDAC checking on system flash with double bit error correction and extended bit
error detection in combination with interleaving that corrects bursts with up to
16 bits in error.

• Triple Modular Redundancy (TMR) on all FPGA flip-flops

• All software stored in boot flash is, in addition to the EDAC protection of the flash
data, encoded with a header for checksum and length. Each boot image is stored
in three copies to allow for an automatic fallback option if the ECC and/or length
check fails on one copy.

• Watchdog, tripping leads to automatic reboot of the device.

• Advanced Error Manager keeping the detected failures during reset/reboot for
later analysis.

2.4. Usage and concept

This section describes the concept and normal intended use for the Sirius OBC and
Sirius TCM in the default product configuration.

2.4.1. Combined setup

The OBC and TCM are intended to be used together to form the data processing and
data handling portion of an on-board satellite system.

The OBC and TCM connect via spacewire, which provides the main interface for both
commanding and data transfers.

Figure 2.2 shows an overview of an example setup with the OBC, TCM, a radio, and a
pair of payloads in a suggested normal setup.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 13 of 153

https://www.aac-clyde.space

Figure 2.2 - Conceptual design of an on-board data handling system

2.4.2. OBC concept

The OBC provides a platform for hosting mission-specific flight software developed by
the user, it is intended to handle the overall command and control handling of the on-
board satellite system.

The OBC is also intended to handle the main data processing, and several interfaces
for connecting to payloads and other on-board modules are provided.

The OBC Board Support Package (BSP) contains the RTEMS operation system along
with drivers (see Chapter 5). for use when developing its software.

2.4.3. TCM concept

2.4.3.1. Use with pre-programmed flight software

The TCM contains pre-programmed flight software [RD4]. This software is
conceptually passive and relies on external command and control, intended to be
provided by the OBC.

The TCM is intended to be connected to a radio and provide a TM/TC communications
interface for use by the OBC. The TCM also provides a data storage interface which
can be used by the OBC for both custom data and pre-prepared telemetry for later
downlinking.

The TCM is configured by the user to fit the specific mission parameters [RD4].

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 14 of 153

https://www.aac-clyde.space

2.4.3.2. Use without pre-programmed flight software

The TCM may be used without the pre-programmed flight software and a TCM BSP is
provided to allow the user to develop mission-specific software on the TCM, in a
similar procedure as is normal for the OBC.

Using the TCM without the pre-programmed flight software is normally not the main
intended use.

2.5. Manual chapters overview

Information on how to connect to the Leon3 processor to load/debug software can be
found in Section 3.5. An introduction to how to build software for the boards is in
Chapter 4.

Different aspects of how to use the System Flash and the board bootloader can be
found in Chapters 3.6, 7, 5.10, 8 and 9.

Non-volatile RAM structure and usage is detailed Chapters 7 and 5.9.

How to use the different peripheral units in the System-on-Chip in an RTEMS
application can be found in the subsections of Chapter 5.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 15 of 153

https://www.aac-clyde.space

3. Setup and operation

3.1. User prerequisites

The following hardware and software are needed for the setup and operation of the
Sirius products.

PC computer

• 1 GB free space for installation (minimum)

• Debian 10 or Debian 11 64-bit with super user rights

• USB 2.0

JTAG debugger

• AAC JTAG debugger hardware including harness (104452)

Recommended applications and software packages

• Installed serial communication terminal, e.g. gtkterm or minicom

• GPG for encryption/decryption of files containing sensitive data

• Host build system, e.g. the debian package build-essential

• AAC toolchain for LEON3 with RTEMS 4.11

• BCC2 bare metal toolchain from Frontgrade Gaisler

For FPGA update capabilities

• Microsemi FlashPro Express v11.9 (www.microsemi.com/products/fpga-soc/
design-resources/programming/flashpro#software)

• FlashPro5 programmer

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 16 of 153

http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
http://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#software
https://www.aac-clyde.space

Figure 3.1 - Sirius OBC with connector naming

Figure 3.2 - Sirius TCM with connector naming

3.2. Connecting cables to the Sirius products

• All products and ingoing material shall be handled with care to prevent damage
of any kind.

• ESD protection and other protective measures shall be considered. Handling
should be performed according to applicable ESD requirement standards such as
[RD5] or equivalent.

• Ensure that all mating connectors have the same zero reference (ground) before
connecting.

• Connect the nano-D connector to the PWR connector with 4.5 - 16 V DC. The units
will nominally draw about 260-300 mA @5V DC.

• The AAC debugger is mainly used for development of custom software for the
Sirius OBC or Sirius TCM and has both a debug UART for monitoring and a JTAG

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 17 of 153

https://www.aac-clyde.space

interface for debug capabilities. It is also used for programming an image to the
system flash memory. For further information refer to Section 3.6. When it is to
be used, connect the 104452 AAC Debugger to the DEBUG-SW connector. Connect
the adapter USB-connector to the host PC.

• For FPGA updating only: Connect a FlashPro5 programmer to the JTAG-RTL
connector using the 104470 FPGA programming cable assembly. For further
information how to update the SoC refer to Chapter 11.

• For connecting the SpaceWire interface, connect the nano-D connector to
connector SPW1 or SPW2.

For more detailed information about the connectors, see [RD1] .

3.3. Installation of toolchain

This chapter describes instructions for installing the AAC toolchains.

3.3.1. Supported Operating Systems

• Debian 10 64-bit

• Debian 11 64-bit

When installing Debian, we recommend using the “netinst” (network install) method.
Images for installing are available via www.debian.org/releases/bullseye/debian-
installer/

To install the toolchain below, a Debian package server mirror must be added, either
in the installation procedure (also required during network install) or after
installation.

On Debian 11 some packages required to build the BSP have been noted to not be
installed by default. These need to be installed in order to configure and build:

sudo apt-get update
sudo apt-get install m4 autoconf

3.3.2. Installation Steps

3.3.2.1. Store the key for the AAC package archive

In order to obtain the key to verify the packages, run the following commands

wget -O key.asc http://repo.aacmicrotec.com/archive/key.asc
gpg --dearmor --yes --output key.gpg key.asc
sudo mkdir -p /etc/apt/keyrings

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 18 of 153

https://www.debian.org/releases/bullseye/debian-installer/
https://www.debian.org/releases/bullseye/debian-installer/
https://www.aac-clyde.space

sudo cp key.gpg /etc/apt/keyrings/aac-repo.gpg

3.3.2.1.1. Old AAC package archive key in global trusted apt keyring

Previous toolchain instructions described installing the AAC package archive key in
the global trusted apt keyring, this is no longer recommended practise in Debian. If
the AAC package key has previously been added to the global trusted apt keyring, it
can be removed via

sudo apt-key del "39D5 F87E 457C 8EA5 0DEE B148 FA81 C4F9 0257 7CF0"

where the argument string is the fingerprint of the AAC package archive key.

NOTE

If the key is deleted from the global trusted apt keyring it must
instead be available in an individual keyring and the package
archive source files must be rewritten to use it via the signed-by
option, as described in Section 3.3.2.1 and Section 3.3.2.2.

3.3.2.2. Add the package archive as a source

In order to add the AAC package archive as a source; create a new repository source
file and open it, for example via

sudoedit /etc/apt/sources.list.d/aac-repo.list

add the following lines to the file

1 deb [signed-by=/etc/apt/keyrings/aac-repo.gpg]
 http://repo.aacmicrotec.com/archive/ aac/
2 deb-src [signed-by=/etc/apt/keyrings/aac-repo.gpg]
 http://repo.aacmicrotec.com/archive/ aac/

then save and close the file.

3.3.2.3. Install the packages

In order to install the packages, run the following commands

sudo apt update

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 19 of 153

https://www.aac-clyde.space

sudo apt install aac-sparc-toolchain

3.3.2.4. Setup PATH

The toolchain PATH setup file can be sourced manually to use the toolchain in the
current instance of the shell via

. /opt/aac-sparc/aac-path.sh

In order to make the toolchain available automatically in all instances of the bash
shell, which is recommended for convenience; open the bash run commands file for
the current user in an editor, for example via

editor ~/.bashrc

add the following lines to the end of the file

AAC LEON3 toolchain PATH setup
if [-f /opt/aac-sparc/aac-path.sh]; then
. /opt/aac-sparc/aac-path.sh >/dev/null
fi

then save and close the file.

New instances of the bash shell will now automatically have access to the toolchain.

3.3.3. AAC toolchain is RTEMS-only

NOTE

The AAC toolchain for LEON3 only supports RTEMS application
development, for bare metal software the BCC2 toolchain from
Cobham Gaisler is recommended (available at www.gaisler.com/
index.php/downloads/compilers).

3.4. Installing the Board Support Package (BSP)

Board support packages can be found at repo.aacmicrotec.com/bsp. Download the file
aac-<cpu>-<board>-bsp-<version>.tar.bz2, where <cpu> is the processor type (currently
only leon3); <board> is obc-s or tcm-s; and <version> is the wanted version number of
that BSP; and extract it to a directory of your choice.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 20 of 153

https://www.gaisler.com/index.php/downloads/compilers
https://www.gaisler.com/index.php/downloads/compilers
http://repo.aacmicrotec.com/bsp
https://www.aac-clyde.space

The extracted directory aac-<cpu>-<board>-bsp now contains the drivers for both bare-
metal applications and RTEMS. See the included README and Section 4.1 for build
instructions.

3.5. Deploying a Sirius application

3.5.1. Establish a debugger connection to the Sirius products

The Sirius products are shipped with debuggers that connect to a PC via USB and have
two interfaces towards the board:

• One JTAG interface to the SoC debug unit.

• One debug UART to exchange information with the running software.

3.5.2. JTAG connection

To communicate with the debug unit in LEON3 based SoC’s the program GRMON from
Frontgrade Gaisler is used. This is not included in the AAC toolchain package as it
requires a special license and thus needs to be installed separately.

GRMON3 Pro version 3.0.10 or higher is required. This can be downloaded from
Gaisler at www.gaisler.com/index.php/downloads/debug-tools. For further
instructions please refer to the GRMON3 manual, which is available at
www.gaisler.com/doc/grmon3.pdf.

GRMON3 can be used as a standalone debug monitor to load and run applications, set
breakpoints and read/write system registers and memory, and it is scriptable using
TCL. It can also run as a server for the GNU Debugger if that interface is preferred.

3.5.3. Setup a serial terminal to the device debug UART

The device debug UART may be used as a debug interface for printf output etc.

A serial communication terminal such as minicom or gtkterm is necessary to
communicate with the Sirius product, using these settings:

Baud rate: 115200
Data bits: 8
Stop bits: 1
Parity: None
Hardware flow control: Off

On a clean system with no other USB-to-serial devices connected, the serial port will
appear as /dev/ttyUSB1. However, the numbering may change when other USB
devices are connected, and the user must make sure to use the correct device number

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 21 of 153

https://www.gaisler.com/index.php/downloads/debug-tools
https://www.gaisler.com/doc/grmon3.pdf
https://www.aac-clyde.space

to communicate to the board’s debug UART.

On Debian, a more foolproof way of identifying the terminal to use is the by-id
mechanism using the serial number of the debugger obtained in Section 3.5.4. When
the AAC debugger is connected the system automatically creates named symbolic
links to the device files under /dev/serial/by-id. The interface to use is usb-
AAC_Microtec_JTAG_Debugger_FTZ7QCMF-if01-port0, where FTZ7QCMF is the serial number
in this case. The debug UART is on if01, while if00 is used for the JTAG interface (any
serial device created for if00 should disappear when a debug monitor is started).

3.5.4. Using multiple debuggers on the same PC

In order to use multiple debuggers connected to the same PC, each instance of
run_aac_debugger.sh must be configured to connect to the specific debugger serial
number and to use unique ports.

To determine the serial number for a specific device, run the following command
before connecting the debugger:

sudo tail -f /var/log/kern.log

This initially prints the last 10 lines of the kernel log file, which can be ignored. When
plugging in the debugger USB cable into the PC, this should produce new output
similar to:

[363061.959120] usb 1-1.3.3.3: new full-speed USB device number 15 using
ehci_hcd
[363062.058152] usb 1-1.3.3.3: New USB device found, idVendor=0403,
idProduct=6010
[363062.058176] usb 1-1.3.3.3: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[363062.058194] usb 1-1.3.3.3: Product: JTAG Debugger
[363062.058207] usb 1-1.3.3.3: Manufacturer: AAC Microtec
[363062.058220] usb 1-1.3.3.3: SerialNumber: FTZ7QCMF

where FTZ7QCMF is the serial number for the debugger.

For GRMON3 the port to use for the GDB server needs to be unique. The default is
50001.

For example, two debuggers with serial numbers FTZ7QCMF and FTZ7IB10 can be setup
via

run_aac_debugger.sh -s FTZ7QCMF -g 50001
run_aac_debugger.sh -s FTZ7IB10 -g 50002

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 22 of 153

https://www.aac-clyde.space

Two instances of GDB can then be opened and connected to the different debuggers
through the chosen ports.

3.5.5. Alternative USB library for GRMON

Some versions of GRMON have had issues communicating with the USB connected
debugger hardware, particularly when dumping memory. This shows as error
messages at the GRMON3 prompt noting “usb bulk write failed”, “usb bulk read
failed” or similar. These come from the open source libftdi and libusb libraries
included with GRMON. In case of such issues a workaround is to use the proprietary
D2XX library from FTDI instead.

To install the library, download the D2XX driver package for linux from FTDI:
ftdichip.com/drivers/d2xx-drivers/

The package contains a lot of examples and things needed to build applications that
communicate with FTDI USB devices, but the only thing needed here is the file
libftd2xx.so.<version>. This can be extracted and copied to a suitable directory on
the computer running GRMON, for example /usr/local/lib. Then a symbolic link
should be created in the same directory so that there appears to be a file without the
version:

sudo ln -s libftd2xx.so.1.2.27 libftd2xx.so

GRMON can then be started with this library instead of the included open source
libftdi:

LD_LIBRARY_PATH=/usr/local/lib /opt/grmon-pro-3.3.2/linux/bin64/grmon -v -abaud
115200 -ftdi d2xx -ftdigpio 0x08100000 -gdb 50001 -stack 0x04000000

To handle multiple debugger units connected to the same computer when using the
D2XX library, the user can select the unit to use by serial number by adding the
command line switch -jtagserial FTZ7QCMF, or alternatively listing the available
debuggers using

LD_LIBRARY_PATH=/usr/local/lib /opt/grmon-pro-3.3.2/linux/bin64/grmon -ftdi d2xx
-jtaglist

and selecting the wanted unit using -jtagcable <num>.

3.5.6. Loading an application on LEON3

An application can either be loaded only to the board SDRAM, which is easier and
typically used during the development stages, or to the system flash (see Section 3.6).
In this manual it is done using GDB, but it could also be done using only GRMON (see
sections 3.4.2 and 3.4.3 in the GRMON3 User’s Manual [RD6]). From GDB the user can
also pass commands to GRMON by prefixing them with the GDB command monitor.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 23 of 153

https://ftdichip.com/drivers/d2xx-drivers/
https://www.aac-clyde.space

1. Start GDB with the following command from a shell to debug RTEMS executables:

sparc-aac-rtems4.11-gdb

2. When GDB has opened successfully, connect to the hardware through the GRMON
server using the GDB command target.

target extended-remote localhost:50001

3. Specify the executable file for GDB to work with. Make sure the file is in ELF
format.

file <path/to/executable>

4. Transfer into the target RAM

load

5. Start the application.

run

3.5.7. Debugging software

Halting and reloading software via GRMON or GDB may leave peripheral units in an
unknown state, and thus give unexpected behavior, especially if there is
communication running on SpaceWire and UARTs. When working with software
through the debugger it is good to start from a system reset, preferably with a very
simple software in flash.

The Watchdog timer is enabled by default and can only be disabled when the
debugger is connected. To avoid unexpected resets while debugging it is good to have
a prepared command in GRMON or GDB to disable the Watchdog as soon as possible
after software is halted. See Section 5.2 for more details about the Watchdog.

In GRMON: wmem 0xCB000000 0x0

In GDB: set *(unsigned int) 0xCB000000 = 0

A manual reset can be triggered through the Error Manager (see Section 5.2).

In GRMON: wmem 0xC0000000 0xFFFFFFFF

In GDB: set *(unsigned int) 0xC0000000 = 0xFFFFFFFF

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 24 of 153

https://www.aac-clyde.space

If GRMON gives the error “CPU not in debug mode” when executing a command, that
usually means that the board has reset, and the Debug Support Unit in the SoC is not
in control of the CPU. To take back control the attach command is used.

In GRMON: attach

In GDB: monitor attach

This should be immediately followed by disabling the Watchdog to avoid losing the
connection again.

3.6. Programming an application (boot image) to system flash

To have an application start automatically when the board is powered the application
image must be programmed to the system flash. This is done by taking the boot image
binary and building it into the NAND flash programming application. The NAND flash
programming application is then uploaded to the target and started using GDB, as
described in the previous section. The maximum recommended size for the boot
image is 16 MB. The nandflash_program application can be found in the BSP.

The below instructions assume that the toolchain is in the PATH, see Section 3.3 for
how to accomplish this.

1. Compile the boot image binary according to the rules for that program.

2. Ensure that this image is in a binary-only format and not ELF. This can be
accomplished with the help of the GCC objcopy tool included in the toolchain:

sparc-aac-rtems4.11-objcopy -O binary boot_image.elf boot_image.bin

3. See Section 3.4 for installing the BSP and enter

cd path/to/bsp/aac-<cpu>-<board>-bsp/src/nandflash_program/src

4. Now, compile the nandflash-program application, bundling it together with the
boot image binary.

make nandflash-program.elf PROGRAMMINGFILE=/path/to/boot_image.bin

5. Load the nandflash-program.elf onto the target RAM with the help of GDB and
execute it, see Section 3.5.6. The programmer application will output progress
information on the debug UART.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 25 of 153

https://www.aac-clyde.space

3.7. Re-initialising the NVRAM

In some situations, it may be desirable to clear and re-initialise the NVRAM from
scratch, for example if a test application has written data to the NVRAM which does
not match the expected format for the system flash bad block table.

Clearing the NVRAM will cause loss of the following data, which should be read out,
backed up, and written back after re-initialising if critical:

• Bad block markings for discovered bad blocks in the system flash (Both OBC and
TCM), may degrade reliability if cleared.

• Bad block markings for discovered bad blocks in the mass memory (TCM with the
TCM core application software), may degrade reliability if cleared.

• Ongoing operation markers for the mass memory handler (TCM with TCM core
application), may cause partial loss of stored partition data if cleared.

• Internal write pointers for the mass memory handler (TCM with TCM core
application), may case loss of start and end location in a completely full partition
if cleared.

The following steps are required in order to clear and re-initialise the NVRAM:

1. Compile and run the nvram_clear application using the debugger. This
application is located in the src/example/ directory in the OBC or TCM BSP; the
steps for compiling it are described in Section 4.1. This will clear the NVRAM.

2. Program a boot image to the system flash as described in Section 3.6. This will
initialize the system flash bad block table in the NVRAM.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 26 of 153

https://www.aac-clyde.space

4. Software development

The RTEMS OS is the recommended way to develop and deploy applications to the
Sirius products.

The toolchain (see Section 3.3) provides RTEMS development tools with the <arch>-
aac-rtems4.11- prefix, and the BSP provides drivers with the _rtems postfix for use
with RTEMS. The BSP also provides RTEMS application code examples in the
src/example/ directory.

The RTEMS drivers are documented in Chapter 5 in this manual.

Bare-metal toolchain and bare-metal drivers in the BSP are also available, but these
are currently not supported for general application development, and documentation
for these drivers is not included in this manual.

4.1. RTEMS step-by-step compilation

4.1.1. Compiling the BSP and compiling an example

The BSP is supplied with an example of how to write an application for RTEMS and
engage all the available drivers.

Please note that the toolchain described in Section 3.3 needs to be installed and the
BSP unpacked as described in Section 3.4.

The following instructions detail how to build the RTEMS environment and a test
application

1. Enter the BSP src directory
cd path/to/bsp/aac-<cpu>-<board>-bsp/src/

2. Run make to build the RTEMS target
make

3. Once the build is complete, the build target directory is librtems

4. Set the RTEMS_MAKEFILE_PATH environment variable to point to the librtems
directory containing Makefile.inc:
export RTEMS_MAKEFILE_PATH=path/to/librtems/sparc-aac-rtems4.11/leon3/

5. Enter the example directory and build the test application by issuing
cd example
make

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 27 of 153

https://www.aac-clyde.space

Load the resulting application using the debugger according to the instructions in
Section 3.5.

4.1.2. Compiling the BSP with debug output removed

During development, debug output from the RTEMS drivers can be very useful for
detecting errors. During flight, debug output is unlikely to be useful (it is expected
that the debug UART will be disconnected) and may decrease performance in case of
large amounts of warnings/errors.

The RTEMS BSP can be compiled without debug output by replacing the make
command in step 2. above with instead:

make clean
make BSP_AAC_DISABLE_DEBUG_OUTPUT=y

(The make clean command is only required if the BSP has previously been compiled
with a different configuration.)

4.2. RTEMS floating-point considerations

For LEON3, RTEMS saves the FPU (Floating Point Unit) register file and FSR (Floating
Point Status Register) register across context switches and disables the FPU
temporarily during interrupts to avoid that a faulty ISR (Interrupt Service Routine)
thrashes the FPU state. If an ISR needs to use FPU it is responsible to save and restore
the FPU context itself using the RTEMS API. Due to the SPARC ABI the OS only needs to
save the FPU context on interrupts since the ABI states that FPU context is clobbered
on function calls.

When creating RTEMS classic tasks the RTEMS_FLOATING_POINT option must be set if the
task will execute FP instructions. Otherwise the CPU will generate a fp_disabled trap
(trap type tt=0x04) on the first FP instruction executed by the task.

The RTEMS Init() task is by default configured without the RTEMS_FLOATING_POINT
option. To enable RTEMS_FLOATING_POINT in the Init() task, the following configuration
statement can be used:

#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

Note that the RTEMS BSPs for the Sirius products are built using the floating-point
instructions. This means RTEMS libraries may contains floating point instructions
which require the calling task to have a floating-point context (RTEMS_FLOATING_POINT)
to avoid an exception.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 28 of 153

https://www.aac-clyde.space

For more information about floating-point usage in RTEMS, please refer to section
7.2.7 in [RD7]. For details about the floating-point unit in the LEON3 systems see [RD
3].

4.3. Software disclaimer of warranty

This source code is provided "as is" and without warranties as to performance or
merchantability. The author and/or distributors of this source code may have made
statements about this source code. Any such statements do not constitute warranties
and shall not be relied on by the user in deciding whether to use this source code.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 29 of 153

https://www.aac-clyde.space

5. RTEMS

5.1. Introduction

This section presents the RTEMS drivers. Figure 5.1 shows a block diagram
representing the driver functionality access via the RTEMS API.

Figure 5.1 - Functionality acces via RTEMS API

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 30 of 153

https://www.aac-clyde.space

5.2. Watchdog

5.2.1. Description

This section describes the driver as one utility for accessing the watchdog device. The
watchdog is enabled from boot and cannot be disabled unless the debugger is
connected. If the watchdog device file is not written to within a set time, it will trigger
a reset of the board.

5.2.2. API

This API represents the driver interface from a user application’s perspective for the
RTEMS driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case
of failure on a function call, the errno value is set for determining the cause.

NOTE
The watchdog is enabled by default and can only be disabled if the
debugger is connected.

5.2.2.1. Function: int open(…)

Opens access to the driver.

Argument Type Direction Description

filename char * in The absolute path to the file that is to be
opened. Watchdog device is defined as
RTEMS_WATCHDOG_DEVICE_NAME (/dev/watchdog)

oflags int in A bitwise 'or' separated list of values that
determine the method in which the file is to
be opened (whether it should be read only,
read/write).

Return value Description

>0 A file descriptor for the device on success

-1 see errno values

errno values

ENFILE File descriptor limit reached

ENOENT Invalid path

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 31 of 153

https://www.aac-clyde.space

5.2.2.2. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF Invalid file descriptor

5.2.2.3. Function: ssize_t write(…)

Any data is accepted as a watchdog kick.

Argument Type Direction Description

fd int in File descriptor received at open

buf void * in Character buffer to read data from

nbytes size_t in Number of bytes to write

Return value Description

* n Number of bytes that were written.

-1 see errno values

errno values

EBADF Invalid file descriptor

EINVAL Invalid buf argument (NULL)

5.2.2.4. Function: int ioctl(…)

Ioctl allows for disabling/enabling of the watchdog and setting of the timeout.

Argument Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val int in Data to write

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 32 of 153

https://www.aac-clyde.space

Command table Val interpretation

WATCHDOG_ENABLE_IOCTL 1 = Enables the watchdog (default)
0 = Disables the watchdog

NOTE: It’s only possible to disable the
watchdog when the debugger is
connected.

WATCHDOG_SET_TIMEOUT_IOCTL 0 - 255 = Number of seconds until the
watchdog barks

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EBADF Invalid file descriptor

EINVAL Invalid data in val argument or invalid cmd
argument

5.2.3. Usage description

The following #define needs to be set by the user application to be able to use the
watchdog:

• CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER

The RTEMS driver must be opened before it can access the watchdog device. Once
opened, all provided operations can be used as described in the RTEMS API defined in
Section 5.2.2 and, if desired, the access can be closed when not needed.

Figure 5.2 - RTEMS driver usage description

NOTE All calls to RTEMS driver are blocking calls.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 33 of 153

https://www.aac-clyde.space

5.2.3.1. RTEMS application example

In order to use the watchdog driver on the RTEMS environment, the following code
structure is suggested to be used:

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <bsp/wdt_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_WDT_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_MAXIMUM_DRIVERS
#define CONFIGURE_MAXIMUM_TASKS 2 /* Idle & Init */
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 1
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

rtems_task Init(rtems_task_argument ignored)
{
 int fd = open(RTEMS_WATCHDOG_DEVICE_NAME, O_WRONLY);
 ioctl(fd, WATCHDOG_ENABLE_IOCTL, WATCHDOG_DISABLE);
 ioctl(fd, WATCHDOG_SET_TIMEOUT_IOCTL, 10);
 ioctl(fd, WATCHDOG_ENABLE_IOCTL, WATCHDOG_ENABLE);
 while (1) {
 sleep(9);
 const unsigned char payload = WATCHDOG_KICK;
 write(fd, &payload, sizeof(payload));
 }
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions
open, close, lseek, read and write.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/wdt_rtems.h> is required for accessing watchdog device name
RTEMS_WATCHDOG_DEVICE_NAME.

If the application is run directly via GDB (not via the bootrom),
CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER must be defined in order to
initialise the error manager and enable board reset on watchdog timeout.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 34 of 153

https://www.aac-clyde.space

5.3. Error Manager

5.3.1. Description

The error manager driver is a software abstraction layer meant to simplify the usage
of the error manager for the application writer.

This section describes the driver as one utility for accessing the error manager device.

5.3.2. API

This API represents the driver interface from a user application’s perspective for the
RTEMS driver.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage.
In case of failure on a function call, the errno value is set for determining the cause.

The error manager driver does not support writing nor reading to the device file.
Instead, register accesses are performed using ioctls.

The driver exposes a message queue for receiving interrupt-driven events such as
some non-fatal uncorrectable errors found in the CPU working memory.

5.3.2.1. Struct: errman_latest_reset_info_t

Type Name Purpose

uint32_t scet_seconds The SCET seconds at time of latest reset. Zero
following a hard reset or power-up.

uint16_t scet_subseconds The SCET subseconds at time of latest reset. Zero
following a hard reset or power-up.

uint8_t cause Latest cause of reset, encoded as:

0x0 - Power-Up
0x1 - Watchdog
0x2 - Manual (SW initiated)
0x3 - CPDU (safe image)
0x4 - CPDU (default image)
0x5 - Uncorrectable error found by CPU

uint8_t RESERVED

5.3.2.2. Function: int open(…)

Opens access to the device. The device driver allows multiple readers but only one

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 35 of 153

https://www.aac-clyde.space

writer at a time.

Argument Type Direction Description

filename char* in The absolute path to the file that is to be
opened. Error manager device is defined as
RTEMS_ERRMAN_DEVICE_NAME.

oflags int in Specifies one of the access modes in the
following table.

Access mode Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

Return value Description

fd A file descriptor for the device on success

-1 see errno values

errno values

EALREADY Device already opened

5.3.2.3. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.3.2.4. Function: int ioctl(…)

Ioctl allows for disabling/enabling functionality of the error manager, setting of the
timeout and reading out counter values.

Argument Type Direction Description

fd int in File descriptor received at open

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 36 of 153

https://www.aac-clyde.space

Argument Type Direction Description

cmd uint32_t in Command to send

val uint32_t /
uint32_t*

in / out Value to write or a pointer to a buffer where
data will be written

Command table Val type Description

ERRMAN_GET_SR_IOCTL uint32_t* Get the status register. This register is
defined in Table 5.1

ERRMAN_GET_CF_IOCTL uint32_t* Gets the Carry flag register. This register
is defined in Table 5.2

ERRMAN_GET_SELFW_IOCTL uint32_t* Points to which boot firmware that will
be loaded and executed upon system
reboot.

0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_RUNFW_IOCTL uint32_t* Gets the currently running firmware

0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_GET_SCRUBBER_IOCTL uint32_t* Gets the state of the memory scrubber.

0 = Scrubber is disabled
1 = Scrubber is enabled.

ERRMAN_GET_RESET_ENABLE_IOC
TL

uint32_t* Gets the reset enable state.

0 = Soft reset is disabled.
1 = Soft reset is enabled

The command is deprecated and might
be removed in future releases.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 37 of 153

https://www.aac-clyde.space

Command table Val type Description

ERRMAN_GET_WDT_ERRCNT_IOCTL uint32_t* Gets the count of watchdog resets. This
register can store a value up to 15 and
then wraps.

After a wrap, the corresponding carry-
flag bit is set in the carry flag register, see
Table 5.2.

ERRMAN_GET_EDAC_SINGLE_ERRC
NT_IOCTL

uint32_t* Gets the error counts of the correctable
errors in the CPU working memory. See
Table 5.3 for interpretation of the
register.

After a wrap to any of the error counters,
the corresponding carry-flag bit is set in
the carry-flag register, see Table 5.2

ERRMAN_GET_EDAC_MULTI_ERRCN
T_IOCTL

uint32_t* Gets the error counts of the
uncorrectable errors in the CPU working
memory. See Table 5.4 for interpretation
of the register.

After a wrap to any of the error counters,
the corresponding carry-flag bit is set in
the carry-flag register, see Table 5.2

ERRMAN_GET_CPU_PARITY_ERRCN
T_IOCTL

uint32_t* Gets the CPU Parity error count
register.

Always reads 0. The command is
deprecated and might be removed in
future releases.

ERRMAN_GET_SYS_SINGLE_ERRCN
T_IOCTL

uint32_t* Gets the error count of the correctable
errors in the System Flash. This register is
4 bit wide and will wrap upon overflow.

ERRMAN_GET_SYS_MULTI_ERRCNT
_IOCTL

uint32_t* Gets the error count of the uncorrectable
errors in the System Flash. This register is
4 bit wide and will wrap upon overflow.

ERRMAN_GET_MMU_SINGLE_ERRCN
T_IOCTL

uint32_t* Gets the error count of the correctable
errors in the Mass Memory. This register
is 4 bit wide and will wrap upon
overflow.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 38 of 153

https://www.aac-clyde.space

Command table Val type Description

ERRMAN_GET_MMU_MULTI_ERRCNT
_IOCTL

uint32_t* Gets the error count of the uncorrectable
errors in the Mass Memory. This register
is 4 bit wide and will wrap upon
overflow.

ERRMAN_GET_NVRAM_SINGLE_ERR
CNT_IOCTL

uint32_t* Gets the error count of the correctable
single-bit errors in the NVRAM. This
register is 4 bit wide and will wrap upon
overflow

ERRMAN_GET_NVRAM_DOUBLE_ERR
CNT_IOCTL

uint32_t* Gets the error count of the correctable
double-bit errors in the NVRAM. This
register is 4 bit wide and will wrap upon
overflow

ERRMAN_GET_NVRAM_MULTI_ERRC
NT_IOCTL

uint32_t* Gets the error count of the uncorrectable
errors in the NVRAM. This register is 4 bit
wide and will wrap upon overflow

ERRMAN_GET_LAST_RESET_CAUSE
_IOCTL

errman_late
st_reset_in

fo_t*

Gets the last reset cause and its
corresponding timestamp.

ERRMAN_GET_LATEST_BOOT_STAT
US_IOCTL

uint32_t* Gets the latest boot status.

See Table 5.5 for details.

ERRMAN_SET_SR_IOCTL uint32_t Sets the status register. See Table 5.1 for
register definition.

ERRMAN_SET_CF_IOCTL uint32_t Sets the carry flag register, see Table 5.2
for register definition.

ERRMAN_SET_SELFW_IOCTL uint32_t Sets the next boot firmware.

0x0: Programmable FW from Power on
0x1: Programmable FW, Backup copy
0x2: Programmable FW, Backup copy
0x3: Safe FW
0x4: Safe FW, Backup copy
0x5: Safe FW, Backup copy

ERRMAN_RESET_SYSTEM_IOCTL uint32_t Performs a software reset (value
ignored.)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 39 of 153

https://www.aac-clyde.space

Command table Val type Description

ERRMAN_SET_SCRUBBER_IOCTL uint32_t Sets the state of the memory scrubber.

1 = On,
0 = Off.

The scrubber is a vital part of keeping the
SDRAM free from errors.

ERRMAN_SET_RESET_ENABLE_IOC
TL

uint32_t* Sets the reset enable state.

0 = Soft reset is disabled.
1 = Soft reset is enabled

The command is deprecated and might
be removed in future releases.

ERRMAN_SET_WDT_ERRCNT_IOCTL uint32_t Sets the error count of watchdog resets.
The counter width is 4 bits i. e. 15 is the
maximum value that can be written.

ERRMAN_SET_EDAC_SINGLE_ERRC
NT_IOCTL

uint32_t Sets the error count of the correctable
errors in the CPU working memory. See
Table 5.3 for register definition.

ERRMAN_SET_EDAC_MULTI_ERRCN
T_IOCTL

uint32_t Sets the error count of the uncorrectable
errors in the CPU working memory. See
Table 5.4 for register definitions.

ERRMAN_SET_CPU_PARITY_ERRCN
T_IOCTL

uint32_t* Sets the CPU Parity error count
register.

The command is deprecated and might
be removed in future releases.

ERRMAN_SET_SYS_SINGLE_ERRCN
T_IOCTL

uint32_t Sets the error count of the correctable
errors in the System Flash. This register is
4 bit wide.

ERRMAN_SET_SYS_MULTI_ERRCNT
_IOCTL

uint32_t Sets the error count of the uncorrectable
errors in the System Flash. This register is
4 bit wide.

ERRMAN_SET_MMU_SINGLE_ERRCN
T_IOCTL

uint32_t Sets the error count of the correctable
errors in the Mass Memory. This register
is 4 bit wide.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 40 of 153

https://www.aac-clyde.space

Command table Val type Description

ERRMAN_SET_MMU_MULTI_ERRCNT
_IOCTL

uint32_t Sets the error count of the uncorrectable
errors in the Mass Memory. This register
is 4 bit wide.

ERRMAN_SET_NVRAM_SINGLE_ERR
CNT_IOCTL

uint32_t Sets the error count of the correctable
single-bit errors in the NVRAM. This
register is 4 bit wide

ERRMAN_SET_NVRAM_DOUBLE_ERR
CNT_IOCTL

uint32_t Sets the error count of the correctable
double-errors in the NVRAM. This
register is 4 bit wide

ERRMAN_SET_NVRAM_MULTI_ERRC
NT_IOCTL

uint32_t Sets the error count of the uncorrectable
errors in the NVRAM. This register is 4 bit
wide

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EBADF File descriptor not opened for writing.

EINVAL Invalid IOCTL command.

5.3.2.4.1. Status register

Table 5.1 - Status register

Bit pos. Name Direction Description

31:23 RESERVED

22:20 ERRMAN_RESET_CAUSE R Cause of reset encoded as:

0x0 – Power-Up
0x1 – Watchdog
0x2 – Manual (SW initiated)
0x3 – CPDU (safe image)
0x4 – CPDU (default image)
0x5 - Uncorrectable error found
by CPU

19 RESERVED

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 41 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

18 ERRMAN_MNVERRFLG R/W An uncorrectable error has been
detected in the NVRAM.

Clear flag by writing a 1.

17 ERRMAN_DNVERRFLG R/W A correctable double-bit error
has been detected in the NVRAM.

Clear flag by writing a 1.

16 ERRMAN_SNVERRFLG R/W A correctable single-bit error has
been detected in the NVRAM.

Clear flag by writing a 1.

15 ERRMAN_MMMERRFLG R/W An uncorrectable error in the
Mass Memory has been detected.

Clear flag by writing a 1.

14 ERRMAN_SMMERRFLG R/W A correctable error in the Mass
Memory has been detected.

Clear flag by writing a 1.

13 ERRMAN_MSYSERRFLG R/W An uncorrectable error in the
System Flash has been detected.

Clear flag by writing a 1.

12 ERRMAN_SSYSERRFLG R/W A correctable error in the System
Flash has been detected.

Clear flag by writing a 1.

11 ERRMAN_PULSEFLG R/W A pulse command has been
received and caused a reset.

Clear flag by writing a 1

10 RESERVED

9 ERRMAN_MEMCLR R This signal is set from the
scrubber unit function in the
memory controller. This bit is set
when memory has been cleared
after reset.

8 RESERVED

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 42 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

7 RESERVED

6 ERRMAN_MEOTHFLG R/W An uncorrectable error has been
detected in the CPU working
memory, by the scrubber or as
part of a DMA access.

Clear flag by writing a 1

5 ERRMAN_SEOTHFLG R/W A correctable error has been
detected in the CPU working
memory, by the scrubber or as
part of a DMA access. The error
was corrected before returning
the data, but it has not been
corrected in memory.

Clear flag by writing a 1.

4 ERRMAN_MECRIFLG R/W An uncorrectable error has been
detected by the CPU when
reading instructions or data
from the CPU working memory.

Clear flag by writing a 1.

3 ERRMAN_SECRIFLG R/W A correctable error has been
detected by the CPU when
reading instructions or data
from the CPU working memory.
The error was corrected before
returning the data, but it has not
been corrected in memory.

Clear flag by writing a 1

2 ERRMAN_WDTFLG R/W A watchdog timer reset has been
detected.

Clear flag by writing a 1

1 ERRMAN_RFLG R/W A manual reset has been
detected.

Clear flag by writing a 1

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 43 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

0 ERRMAN_IFLAG R/W Error Manager Interrupt Flag:

0 = No interrupt pending
1 = Interrupt pending

Clear flag by writing a 1

5.3.2.4.2. Carry flag register

Table 5.2 - Carry flag register

Bit pos. Name Direction Description

31:19 RESERVED

18 ERRMAN_MNVERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for uncorrectable errors
in the NVRAM

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

17 ERRMAN_DNVERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable double-
bit errors in the NVRAM

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

16 ERRMAN_SNVERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable single-bit
errors in the NVRAM

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 44 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

15 ERRMAN_MMMERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for uncorrectable errors
in the Mass Memory

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

14 ERRMAN_SMMERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable errors in
the Mass Memory

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

13 ERRMAN_MSYSERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for uncorrectable errors
in the System Flash

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

12 ERRMAN_SSYSERRCFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable errors in
the System Flash

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

11:7 RESERVED

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 45 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

6 ERRMAN_MEOFLG R/W Carry flag set when an overflow
has occurred to the error
counter for uncorrectable errors
found during scrubbing, or
through a DMA access to, the
CPU working memory

0 – No CF set
1 – Counter overflow (Cleared by
writing 1)

5 ERRMAN_SEOFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable errors
found during scrubbing, or
through a DMA access to, the
CPU working memory

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

4 ERRMAN_MECFLG R/W Carry flag set when an overflow
has occurred to the error
counter for uncorrectable errors
found during CPU access to
working memory

0 – No CF set
1 – Counter overflow (Cleared by
writing 1)

3 ERRMAN_SECFLG R/W Carry flag set when an overflow
has occurred to the error
counter for correctable errors
found during CPU access to
working memory

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 46 of 153

https://www.aac-clyde.space

Bit pos. Name Direction Description

2 ERRMAN_WDTCFLG R/W Carry flag set when an overflow
has occurred to the counter for
watchdog resets

0 – No CF set
1 – Counter overflow (Cleared by
writing a 1)

1:0 RESERVED -

5.3.2.4.3. Register for correctable errors in CPU working memory

Table 5.3 - Register for correctable errors in CPU working memory

Bit pos. Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_SENOCNT_SDRAM R/W Error counter for correctable
errors found by the scrubber, or
through a DMA access, in CPU
working memory

15:4 RESERVED -

3:0 ERRMAN_SECRICNT_SDRAM R/W Error counter for correctable
errors found during CPU access
to working memory

5.3.2.4.4. Register for uncorrectable errors in CPU working memory

Table 5.4 - Register for uncorrectable errors in CPU working memory

Bit pos. Name Direction Description

31:20 RESERVED -

19:16 ERRMAN_MENOCNT R/W Error counter for uncorrectable
errors found by the scrubber, or
through a DMA access, in CPU
working memory

15:4 RESERVED -

3:0 ERRMAN_MECRICNT R/W Error counter for uncorrectable
errors found during CPU access
to working memory

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 47 of 153

https://www.aac-clyde.space

5.3.2.4.5. Latest boot status register

Indicates the status of the latest failed boot (if any, otherwise latest successful boot).
Will be cleared upon read. The format is defined by the bootrom but is reproduced
here for convenience.

Table 5.5 - Latest boot status register

Bit pos. Description

31:28 The first SW image in the current boot sequence which failed to boot. If
none failed to boot, the current successfully booted SW image.

0x0 – Updated image copy #3
0x1 – Updated image copy #2
0x2 – Updated image copy #1
0x3 – Safe image copy #3
0x4 – Safe image copy #2
0x5 – Safe image copy #1

27:8 Reserved

7:0 Latest boot step successfully passed for the given SW image. If an SW
image failed to boot, the subsequent step is the step which failed.

0x01 – Init
0x02 – Init timer
0x03 – Init UART
0x04 – Read SoC info
0x05 – Wait for scrubber
0x06 – Read bad-block table
0x07 – Set image
0x08 – Check bad-block table
0x09 – Get SCET before load
0x0A – Init sysflash
0x0B – Load image
0x0C – Compute load time
0x0D – Verify checksum
0x0E – Handover to boot image

For example:

• 0x0000000E indicates a successful boot of updated image copy #3.

• 0x30000005 indicates a failed boot of safe image copy #3, where an error occurred
during the read of the bad block table.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 48 of 153

https://www.aac-clyde.space

5.3.3. Usage description

The following #define needs to be set by the user application to be able to use the
error manager:

• CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER

By defining this as part of RTEMS configuration, the driver will automatically be
initialised at boot up.

The RTEMS driver must be opened before it can access the error manager device.
Once opened, all provided operations can be used as described in the RTEMS API
defined in Section 5.3.2. And, if desired, the access can be closed when not needed.

Figure 5.3 - RTEMS driver usage description

5.3.3.1. Interrupt message queue

The error manager RTEMS driver exposes a message queue service which can be
subscribed to. The name of the queue is “’E’, ‘M’, ‘G’, ‘R’”.

A subscriber must inspect the message according to the following table to determine
whether to take action or not. Multiple subscribers are allowed, and all subscribers
will be notified upon a message.

Message Description

ERRMAN_IRQ_EDAC_MULTIPLE_ERR_OTHER An uncorrectable error has been detected
in the CPU working memory, by the
scrubber or as part of a DMA access.

5.3.3.2. RTEMS application example

In order to use the error manager driver on RTEMS environment, the following code
structure is suggested to be used:

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 49 of 153

https://www.aac-clyde.space

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <bsp/error_manager_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ERROR_MANAGER_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30
#define CONFIGURE_MAXIMUM_DRIVERS 10
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_MAXIMUM_TASKS 20
#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20

#define CONFIGURE_INIT
#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

rtems_task Init(rtems_task_argument ignored)
{
 int fd;
 uint32_t status_register;

 fd = open(RTEMS_ERRMAN_DEVICE_NAME, O_RDONLY);

 /* Get the status register */
 ioctl(fd, ERRMAN_GET_SR_IOCTL, &status_register);
 /* Previous watch dog timer reset detected? */
 if (status_register & ERRMAN_WDTFLAG) {
 printf("Watchdog barked.\n");
 } else {
 printf("Watchdog did not bark.\n");
 }
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/error_manager.h> is required for accessing error manager device
name RTEMS_ERROR_MANAGER_DEVICE_NAME.

5.3.4. Limitations

Many of the error mechanisms are currently unverifiable outside of radiation testing
due to the lack of mechanisms of injecting errors in this release.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 50 of 153

https://www.aac-clyde.space

5.4. SCET

5.4.1. Description

The scet driver is a software abstraction layer meant to simplify the usage of the scet
for the application writer. This section describes the driver as one utility for accessing
the scet device.

5.4.1.1. Overview

The main purpose of the SCET IP and driver is to track the time since power on and to
act as a source of timestamps. It is designed to be included in several different units in
a system and for time synchronization between these units. Each SCET have the
ability to receive and/or transmit PPS signals. The SCET has also been enhanced with
general-purpose triggers and PPS signaling. Figure 5.4 shows an overview of SCET. It
is shortly described below the figure.

FilterMux
PPS in [8]

Qualify

Measure

Synchronize

Counter Output
PPS out [8]

Figure 5.4 - A simplified block diagram of the SCET.

The mux allows the selection of one of several PPS inputs to use as synchronization
reference (Section 5.2.2.4). The filter is configured to only allow PPS input pulses of 1
µs or longer (Section 5.4.1.6). The measure component measures the interval of the
incoming PPS in order to be able to generate an output of the same interval, and to
qualify the PPS to a user-defined window. Qualify performs this qualification by
evaluating the incoming PPS pulse in relation to this window. Synchronize makes sure
to, once, synchronize the internal timing to the incoming PPS and to align the PPS
output with the PPS input. Counter keeps track of the internal timing based on the
reference interval measured, and output outputs a PPS of length 1 ms (Section 5.4.1.7)
on the enabled PPS outputs (Section 5.2.2.4).

The SCET counts in seconds and subseconds, with a subsecond being one 2-16th of a
second, roughly equivalent to 15.3 µs.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 51 of 153

https://www.aac-clyde.space

5.4.1.2. Timing modes

The SCET can either be free running or synchronize to one of several input PPS
signals. In the free-running (or internal) mode, the SCET does not synchronize to any
external signal. It simply keeps track of the relative time since power on without
correlation with anything else.

In external mode, the SCET attempts to synchronize the internal time to one of
several external PPS signals. When it does so, it will also monitor this PPS signal to
make sure it arrives as expected within a user-set window. If synchronization to this
input PPS is lost (the PPS arrives ahead of the window, or the window expires), it will
fall back to internal mode and output PPS signals (if configured) with the latest
measured PPS interval. This requires software interaction to resynchronize to the
incoming PPS pulse, possibly by qualifying a number of PPS pulses and then
switching back to external mode. The PPS monitoring will issue messages on the SCET
message queue in RTEMS (Section 5.4.2.6) to notify the application if the PPS is
qualified or not, but also if the window expired.

The synchronization of the internal relative time (start/end of a second) is based on an
incoming PPS pulse that nominally arrives once per second. Once synchronized, the
SCET supports adjusting the current seconds so as to also get an understanding of the
absolute time (Section 5.2.2.3). To increase the resolution of this time, the concept of
subseconds is used. The reference of how long a subsecond is depends on how long
the actual second is, as determined by this external PPS signal, which is subjected to
jitter. There are two different methods to handle this.

1. Truncate the count of a second (wrap subseconds earlier than 216 - 1) or extend
the count of a second (wrap subseconds later than 216 - 1, which reduces
resolution).

2. Adjust the length of a subsecond such that there are always 216 subseconds in a
second.

The second example is the method implemented, which requires continuous
measurement of the incoming PPS interval as we at the start of the internal second
need to know the length of it. This also has the effect of delaying reaction of PPS out to
changes in PPS in, which causes a constant offset (with a constant incoming interval)
in the alignment. A varying incoming interval (e.g. due to jitter) will however cause a
kind of oscillation in the alignment offset. This offset is believed to be limited to ± 4J,
where J is the cycle-to-cycle jitter. An example is illustrated in Figure 5.5.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 52 of 153

https://www.aac-clyde.space

Timing ahead
C – A = T

Timing ahead
C – A = T

A C C A A

A C A

SW switch to
external synch.

B B

B

PPS in

PPS out

Timing synchronized

T = Threshold
A = C – T
B = C + T
C = 1 sec

A < C < B

2T

C A

Timing match
Timing ahead
2(C – A) = 2T

Timing ahead
4(C – A) = 4T

A

Timing ahead
2(C – A) = 2T

Figure 5.5 - Illustration of how the input PPS jitter affects the output PPS alignment.

5.4.1.3. Threshold

In order to synchronize to an external PPS signal the PPS threshold needs to be
configured. This sets the tolerable limits for the variation of the PPS input. An
incoming PPS will either be located in this window (qualified) or outside this window
(unqualified). In addition, the window can also expire causing an expired notification
(Section 5.4.2.6). Note that these messages are generated independently of the actual
mode configured, and that the PPS threshold is also used before attempting to
synchronize to the external PPS. Figure 5.6 illustrates how to interpret the PPS
threshold.

Configured threshold
(steps of +/- 10.24 us)

Nominally 1 sec Nominally 1 sec

Configured window
(steps of +/- 20.48 us)

Figure 5.6 - Illustration of how to interpret the PPS threshold.

The qualification window resulting from different threshold values is show in Table
5.6.

Table 5.6 - Threshold values and resulting qualification window

Value Window size

0 (default) ±10.24μs

1 ±20.48μs

N ±(1 + N)10.24μs

65535 ~ ±0.67s

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 53 of 153

https://www.aac-clyde.space

5.4.1.4. Synchronization

In order to ensure that the PPS input is stable it should be verified that a sufficient
number of consecutive qualified interrupts (without unqualified or expired in
between) have been observed/received. Consider the example given in Figure 5.7,
which is further explained below it.

SW switch to
external synchronization

Timing synchronized

Qualified Qualified Unqualified Qualified Expired
Unqualified

Qualified Qualified Qualified Qualified Qualified Qualified

Qualification criteria
PPS in

Messages

PPS out

Expired

Window

Window related to early PPS (will not trigger expired message)

Expired window

1 2 3

A B C

4

D E F G

5 6 7 8 9 10 11

H I
Incoming PPS

Figure 5.7 - Illustrates an example synchronization sequence.

A qualification criterium of 3 PPS pulses is used. The threshold has been configured to
an acceptable value. Ignoring the first pulse, which is just illustrated to create a
reference point for the rest, there is the following sequence:

1. PPS signal 1 is input as expected, within the configured window. It is thus
qualified.

2. PPS signal 2 is also qualified.

3. PPS signal 3 is input ahead of the window and thus gives rise to an unqualified
message. The reference to where the next PPS is expected to be located is still in
relation to this early PPS, which is why point A is not causing the window to
expire (the window is now located between point B and C). There are now zero
consecutive qualified PPS signals.

4. PPS signal 4 is again qualified as it arrives in the window.

5. There is then no PPS input between point D and E, nor between F and G. Each of
these causes the generation of expired messages. There are now, again, zero
consecutive qualified PPS signals.

6. Suddenly the PPS returns at an arbitrary point, so PPS signal 5 falls outside of the
orange window between point H and I and is thus unqualified.

7. PPS signals 6, 7 and 8 are then all input inside the window and there are thus 3
consecutive qualified PPS signals, which is the qualification criterium in this
example.

8. The application switches to external mode.

9. PPS signal 9 is also qualified as it arrives in the window. This causes the internal
time to synchronize. Note however that a PPS pulse is not generated at the time of

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 54 of 153

https://www.aac-clyde.space

synchronization, but the following PPS signals will be synchronized.

10. PPS signal 10 is also qualified, and on the arrival of it the timing will be
synchronized and the PPS output aligned to the PPS input.

11. PPS signals 11 and onwards continue to arrive within the window and are thus
qualified. The time is synchronized.

5.4.1.5. Losing synchronization

The synchronization can be lost in three different ways, although there are variations
in exactly how they occur. Figure 5.8 illustrates an incoming PPS with an overall fixed
interval, subjected to jitter.

Synchronization lost

Qualified Qualified Unqualified

PPS in

Messages

PPS out

Expired Qualified
Unqualified

Qualified

Figure 5.8 - Illustration of synchronization lost due to a PPS pulse determined to early.

The loss of synchronization is shown, caused by an incoming PPS pulse that is
determined to be to early. It can be seen that qualified messages are generated when
synchronized and then an unqualified message when the PPS arrives early (ahead of
the window indicated in orange). This causes a loss of synchronization and revert to
internal timing. As the next window is relative to the previously received PPS signal
(qualified or not), the window for the next pulse is the red window (which is at the
same distance from the PPS input as the distance between the blue windows, before
losing synchronization). Since the synchronization was lost due to jitter, this example
illustrates the next PPS to arrive at the nominal distance, without jitter. The window
thus expires before the PPS arrives, which causes an expired message. The late PPS
(actually determined to early, since the previous window expired) then causes an
unqualified message. Again, the window is aligned based on the previous PPS input
and thus the next PPS falls inside the window (again, assuming nominal interval).
Within the illustrated time frame it continues to enter qualified. Synchronization is
again found, but the application SW needs to actively change to external mode in
order to actually synchronize the timing and the PPS output.

Figure 5.9 illustrates the sudden disconnect of the external PPS source.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 55 of 153

https://www.aac-clyde.space

Synchronization lost

Qualified Qualified Expired Expired Expired

PPS in

Messages

PPS out

Figure 5.9 - Illustration of synchronization lost due to the PPS window expiring and PPS never arriving.

It can be seen that qualified messages are generated when synchronized and then
when the window expires we lose synchronization and revert to internal mode. As
the PPS does not arrive again within the illustrated time frame, there are continuous
expired-messages generated.

Finally, Figure 5.10 illustrates a case where the incoming PPS interval suddenly
changes and in this case causes the PPS to be determined late.

Synchronization lost

Qualified Qualified Expired
Unqualified

Qualified Qualified

PPS in

PPS out

Figure 5.10 - Illustration of synchronization lost due to the PPS determined to late.

It can be seen that qualified messages are generated when synchronized and then
when the window expires we lose synchronization and revert to internal mode. This
expiration generates an expired message and causes the orange window to be created
in reference to the middle point of the expired red window. The incoming PPS is thus
seen early, because it is referenced to the new, orange, window and causes an
unqualified message to be generated. This in turn moves the orange window to be in
relation to the previously incoming PPS. The next PPS falls within this window and it
thus qualified again. Within the illustrated time frame it continues to enter qualified.
We have found synchronization again, but SW needs to actively change to external

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 56 of 153

https://www.aac-clyde.space

mode in order to actually synchronize the timing and the PPS output.

5.4.1.6. Input filter

The incoming PPS has a requirement of 1 µs, which can be illustrated as Figure 5.11.
Note that the 1 µs delay of PPS in the figure is irrelevant. It is simply a qualification
strobe indicating an incoming PPS exceeding the length requirements. When
synchronized, this filter delay will be adjusted for.

1 us

PPS in

< 1 us

PPS

Figure 5.11 - Illustration of PPS input requirements.

5.4.1.7. PPS output

The generated PPS signals have a pulse length of 1 ms, which is illustrated in Figure
5.12.

1 ms

PPS out

Figure 5.12 - Illustration of PPS output pulse.

5.4.1.8. General-purpose triggers

To be able to provide more accurate time stamping on external events, the SCET has a
number of general-purpose triggers. When a trigger fires, the SCET will sample a
subset (24 bits) of the current time allowing SW to match the external event to the
SCET time regardless of current software state. The exact functionality connected to
each general-purpose trigger and the number available is dependent on the system
mapping of the SCET, e.g. in a System-On-Chip (SoC), see detailed description in [RD8].

5.4.2. API

This API represents the driver interface of the module from an RTEMS user
application’s perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In
case of a failure on a function call, the errno value is set for determining the cause.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 57 of 153

https://www.aac-clyde.space

SCET counter accesses can be done by reading or writing to the device file, modifying
the second and subsecond counter values. The SCET RTEMS driver also supports a
number of different IOCTLs for other operations which isn’t specifically affecting the
SCET counter registers.

For event signaling, the SCET driver has a number of message queues, allowing the
application to act upon different events.

5.4.2.1. Function: int open(…)

Opens access to the driver. The device driver allows multiple readers but only one
writer at a time.

Argument Type Direction Description

filename char* in The absolute path to the file that is to be
opened. SCET device is defined as
RTEMS_SCET_DEVICE_NAME.

oflags int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

>0 A file descriptor for the device on success

-1 see errno values

errno values

EALREADY Device already opened for writing

EIO Internal RTEMS error

5.4.2.2. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 58 of 153

https://www.aac-clyde.space

Return value Description

0 Device closed successfully

5.4.2.3. Function: ssize_t read(…)

Reads the current SCET value, consisting of second and subsecond counters. Both
counter values are guaranteed to be sampled at the same moment.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to a 6-byte buffer where the
timestamp will be stored. The first four bytes
are the seconds and the last two bytes are the
subseconds.

count size_t in Number of bytes to read, must be set to 6.

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

EBADF File descriptor not opened for reading

EINVAL Number of bytes to read, count, is not 6

5.4.2.4. Function: ssize_t write(…)

Offsets the SCET by an offset specified by buf.

Argument Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to a 6-byte buffer where the offsets
are stored. The first four bytes are the offset
for the seconds and the last two bytes are the
offset for the subseconds.

Values should be in two’s complement.

count size_t in Number of bytes to write, must be set to 6.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 59 of 153

https://www.aac-clyde.space

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EBADF File descriptor not opened for writing

EINVAL Number of bytes to write, count, is not 6

5.4.2.5. Function: int ioctl(…)

Ioctl allows for any other SCET-related operation which isn’t specifically aimed at
reading and/or writing the SCET time value.

NOTE
The number of available PPS inputs and outputs depend on the
hardware configuration.

Argument Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

val uint32_t/
uint32_t*

in/out Data according to the specific command.

Command table Description

SCET_SET_PPS_SOURCE_IOCTL Input value sets the PPS source.

0 = External PPS source
1 = Internal PPS source (default)

SCET_GET_PPS_SOURCE_IOCTL Returns the current PPS source

0 = External PPS source
1 = Internal PPS source (default)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 60 of 153

https://www.aac-clyde.space

Command table Description

SCET_SET_PPS_OUTPUT_PORT_IOCTL Input bit field configures which PPS output
drivers to enable.

Bit 0 is the output driver of PPS0.
Bit N is the output driver of PPSN.
Bit 7 is the output driver of PPS7.

Bit value 0 = The output driver is disabled
Bit value 1 = The output driver is enabled
(0 is default value of the bit field, all drivers
disabled)

SCET_GET_PPS_OUTPUT_PORT_IOCTL Returns the currently enabled PPS output
drivers as a bit field.

Bit 0 is the output driver of PPS0.
Bit N is the output driver of PPSN.
Bit 7 is the output driver of PPS7.

Bit value 0 = The output driver is disabled
Bit value 1 = The output driver is enabled

SCET_SET_PPS_INPUT_PORT_IOCTL Argument value sets the PPS input port.

Value 0 is PPS0
Value 1 is PPS1
Value N is PPSN
Value 7 is PPS7

(1 is default value, PPS1 is default input)

SCET_GET_PPS_INPUT_PORT_IOCTL Returns the currently used PPS input port.

Value 0 is PPS0
Value 1 is PPS1
Value N is PPSN
Value 7 is PPS7

SCET_SET_PPS_THRESHOLD_IOCTL Input value configures the PPS threshold
window. See Table 5.6 for details.

SCET_GET_PPS_THRESHOLD_IOCTL Returns the currently configured PPS
threshold window.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 61 of 153

https://www.aac-clyde.space

Command table Description

SCET_GET_PPS_ARRIVE_COUNTER_IOCTL Returns 24 bits of the SCET time sampled
when PPS arrived.

Bit 23:16 contains lower 8 bits of second
Bit 15:0 contains subseconds

SCET_SET_GP_TRIGGER_LEVEL_IOCTL Input bit field configures the trigger level of
each trigger:

Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.

Bit value 0 = trigger activates on 0 to 1
transition (rising edge)
Bit value 1 = trigger activates on 1 to 0
transition (falling edge).

(0 is default).

SCET_GET_GP_TRIGGER_LEVEL_IOCTL Returns the currently configured level of the
all GP triggers as a bit field:

Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.

Bit value 0 = trigger activates on 0 to 1
transition (rising edge)
Bit value 1 = trigger activates on 1 to 0
transition (falling edge).

(0 is default).

SCET_SET_GP_TRIGGER_ENABLE_IOCTL Input bit field selects which GP trigger(s) to
enable:

Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.

All triggers are disabled by default (0)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 62 of 153

https://www.aac-clyde.space

Command table Description

SCET_GET_GP_TRIGGER_ENABLE_IOCTL Returns which GP triggers that are enabled.

Bit 0 is trigger 0,
Bit N is trigger N,
Bit 7 is trigger 7.

SCET_GET_GP_TRIGGER_COUNTER_IOCTL Input value selects which GP trigger SCET
counter sample to read [0,7].

Returns 24 bits of the SCET counter sampled
when the GP trigger became active.

Bit 23:16 contains lower 8 bits of second
Bit 15:0 contains subseconds

Return value Description

>=0 Data returned from get commands, or 0 for
success in other cases

-1 See errno values

errno values

EBADF File descriptor not opened for writing

EINVAL Invalid value for command, or invalid
command.

ENOTTY Inappropriate I/O control operation, the
command SCET_GET_PPS_O_EN_IOCTL was issued
though a PPS input/output configuration,
different than what can be reported by this
command, is used.

5.4.2.5.1. Alternative PPS input/output control

The ioctl-commands SCET_SET_PPS_O_EN_IOCTL and SCET_GET_PPS_O_EN_IOCTL are
deprecated but still functional and kept for backwards compatibility. Issuing the
command SCET_SET_PPS_O_EN_IOCTL with the argument 1 is equivalent to issuing the
commands SCET_SET_PPS_OUTPUT_PORT_IOCTL and SCET_SET_PPS_INPUT_PORT_IOCTL with
the arguments 2 and 0 respectively.

If any PPS input/output configuration other than those described in the table below
are in use, trying to read out the current PPS configuration with
SCET_GET_PPS_O_EN_IOCTL will fail and return ENOTTY.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 63 of 153

https://www.aac-clyde.space

Command table Description

SCET_SET_PPS_O_EN_IOCTL Input value configures if pps0 or pps1 is input and if pps1
is input or output.

0 = pps1 is input, no output ports are activated, (default)
1 = pps0 is input, pps1 is output

SCET_GET_PPS_O_EN_IOCTL Returns whether the pps0 or pps1 signal is input and if
pps1 is input or output.

0 = pps1 is input, no output ports are activated, (default)
1 = pps0 is input, pps1 is output

5.4.2.6. Event callback via message queue

The SCET driver exposes message queues for event messaging from the driver to the
application. The queues do not use broadcast and thus only delivers each message to
a single task.

The queues are limited to 10 pending messages. If the message queues are not
continuously emptied they will fill up and new messages will be dropped while they
are full. It is recommended to flush the queues to remove potentially outdated
messages before starting to use them.

The SCET PPS message queue uses the rtems name 'S', 'P', 'P', 'S' and provides
PPS related messages as described in Table 5.7.

Table 5.7 - Driver message queue message types

Event name Description

SCET_PPS_EXPIRED Threshold qualification window expired
without any PPS signal detected

SCET_PPS_UNQUALIFIED PPS signal detected before the threshold
qualification window

SCET_PPS_QUALIFIED PPS signal detected inside the threshold
qualification window

The SCET General purpose Task N, ‘S’, ‘G’, ‘T’, ‘n’, handles messages sent from the
general purpose trigger n, with the number n ranging from 0 to up to the maximum
defined for the particular SoC configuration, Table 5.8

Table 5.8 - General purpose trigger n message queue

Event name Description

SCET_INTERRUPT_STATUS_TRIGGERn Trigger n was triggered

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 64 of 153

https://www.aac-clyde.space

5.4.3. Usage description

The following #define needs to be set by the user application to be able to use the scet
driver:

• CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER

By defining this as part of RTEMS configuration, the driver will automatically be
initialized at boot up.

5.4.3.1. PPS synchronization procedure

In order to synchronise the SCET timer and the PPS output (if applicable) to an
incoming PPS, the following procedure is suggested:

1. Set the PPS input port via the SCET_SET_PPS_INPUT_PORT_IOCTL command.

2. Set the PPS threshold via the SCET_SET_PPS_THRESHOLD_IOCTL command.

3. Flush the PPS event message queue via rtems_message_queue_flush().

4. Receive from the PPS event message queue via rtems_message_queue_receive()
until a sufficient number of consecutive qualified PPS event messages are
observed, without any expired or unqualified PPS event messages between.

5. Switch to external PPS sync via the SCET_SET_PPS_SOURCE_IOCTL command.

6. Receive indefinitely from the PPS event message queue and ensure that only
qualified PPS event messages are observed.

a. If an expired or unqualified PPS event message is observed, restart from step
4.

Whenever an expired or unqualified event occurs, the system will automatically
transition to internal synchronization; switching to external synchronization is
always done explicitly by the application.

5.4.3.2. RTEMS application example

In order to use the SCET driver in the RTEMS environment, the following code
structure is suggested for use:

 1 #include <bsp.h>
 2 #include <fcntl.h>
 3 #include <unistd.h>
 4 #include <errno.h>
 5 #include <assert.h>
 6 #include <bsp/scet_rtems.h>
 7

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 65 of 153

https://www.aac-clyde.space

 8 #define CONFIGURE_APPLICATION_NEEDS_SCET_DRIVER
 9 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
10
11 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30
12 #define CONFIGURE_MAXIMUM_DRIVERS 10
13 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
14 #define CONFIGURE_MAXIMUM_TASKS 20
15 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 20
16
17 #define CONFIGURE_INIT
18
19 #include <bsp/bsp_confdefs.h>
20 #include <rtems/confdefs.h>
21
22 static const int32_t secs_to_adjust = -10;
23 static const int16_t subsecs_to_adjust = 1000;
24
25 /* Adjust SCET time 10 seconds backwards and 1000
26 * subseconds forwards */
27 rtems_task Init(rtems_task_argument ignored)
28 {
29 int result;
30 int scet_fd;
31 uint32_t old_seconds;
32 uint16_t old_subseconds;
33 uint32_t new_seconds;
34 uint16_t new_subseconds;
35 uint8_t read_buffer[6];
36 uint8_t write_buffer[6];
37
38 scet_fd = open(RTEMS_SCET_DEVICE_NAME, O_RDWR);
39 assert(scet_fd >= 0);
40
41 result = read(scet_fd, read_buffer, 6);
42 assert(result == 6);
43
44 memcpy(&old_seconds, read_buffer, sizeof(uint32_t));
45 memcpy(&old_subseconds, read_buffer + sizeof(uint32_t),
 sizeof(uint16_t));
46
47 printf("\nOld SCET time is %lu.%u\n", old_seconds, old_subseconds);
48 printf("Adjusting seconds with %ld, subseconds
49 with %
50 d\n ",
51 secs_to_adjust,
52 subsecs_to_adjust);
53
54 memcpy(write_buffer, &secs_to_adjust, sizeof(uint32_t));
55 memcpy(write_buffer + sizeof(uint32_t), &subsecs_to_adjust,
 sizeof(uint16_t));
56

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 66 of 153

https://www.aac-clyde.space

57 result = write(scet_fd, write_buffer, 6);
58 assert(result == 6);
59
60 result = read(scet_fd, read_buffer, 6);
61 assert(result == 6);
62
63 memcpy(&new_seconds, read_buffer, sizeof(uint32_t));
64 memcpy(&new_subseconds, read_buffer + sizeof(uint32_t),
 sizeof(uint16_t));
65
66 printf("New SCET time is %lu.%u\n", new_seconds, new_subseconds);
67
68 result = close(scet_fd);
69 assert(result == 0);
70
71 rtems_task_delete(RTEMS_SELF);
72 }

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/scet_rtems.h> is required for accessing SCET device name
RTEMS_SCET_DEVICE_NAME as well as other defines.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 67 of 153

https://www.aac-clyde.space

5.5. UART

5.5.1. Description

This section describes the driver as one utility for accessing the uart device.

5.5.1.1. Driver

This driver is using the de facto standard interface for a 16550D UART given in [RD9]
and as such has an 8-bit interface, but has been expanded to provide a faster and
more delay-tolerant implementation.

5.5.1.2. RX/TX buffer depth

The RX and TX FIFOs have been expanded to 128 characters compared to the original
specification of 16 characters. To be backwards compatible as well as being able to
utilize the larger depth of the FIFOs, a new parameter has been brought in called
buffer depth. The set buffer depth decides how much of the FIFOs real depth it should
base its calculations on. Buffer depth affects only the RX FIFO handling in the bare-
metal case, but both RX and TX FIFOs handling in the RTEMS driver.

5.5.1.3. Trigger levels

To be able to utilize the larger FIFOs, the meaning of the trigger levels have been
changed. In the specification in [RD9], it defines the trigger levels as 1 character, 4
characters, 8 characters and 14 characters. This has now been changed to instead
mean 1 character, 1/4 of the FIFO is full, 1/2 of the FIFO is full and the FIFO is 2
characters from the given buffer depth top. This results in the IP being fully
backwards compatible, since a buffer depth of 16 characters would yield the same
trigger levels as those given in [RD9]. Since the trigger is depending on the buffer
depth, the trigger level have to be set after the buffer depth is changed.

5.5.1.4. Modes

The UARTs can be set to operate in different modes using the ioctl call
UART_IOCTL_MODE_SELECT, as given in Section 5.5.2.5.

When in RS-485 mode the UART IP will automatically disable the line driver (put it in
a high impedance state) and only enable it while transmitting. When the UART does
not have anything to transmit it will wait for 800 ns to allow the last bits to propagate
through the circuit, then it will disable the driver. According to the data sheet the
driver disable time is 100 ns, so within 1000 ns of the last bit being transmitted the
driver should be in a high impedance state and the UART should be ready to receive.

RS-422 mode is the default mode. In this mode the transmitter and receiver are both

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 68 of 153

https://www.aac-clyde.space

enabled.

In LOOPBACK-mode TX and RX are connected internally in the UART IP.

5.5.2. API

This API represents the driver interface of the module from an RTEMS user
application’s perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage.
In case of a failure on a function call, the errno value is set for determining the cause.

The driver allows one reader per UART and one writer per UART.

5.5.2.1. Function: int open(…)

Opens access to the requested UART. Only blocking mode is supported. Upon each
successful open call the device interface is reset to 115200 bps and its default mode
according to the table below. See [RD8] for the current SoC configuration, including
device name and characteristics for each UART device.

Argument Type Direction Description

pathname const char* in The absolute path to the file that is to
be opened. See [RD8] for uart
naming.

flags int in Specifies one of the access modes in
the following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

fd A file descriptor for the device on success

-1 See errno values

errno values

ENOENT Invalid filename

EALREADY Device is already open

EIO Failed to obtain internal resource

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 69 of 153

https://www.aac-clyde.space

5.5.2.2. Function: int close(…)

Closes access to the device and disables the line drivers.

Argument Type Direction Description

fd int in File descriptor received at open

Return value Description

0 Device closed successfully

5.5.2.3. Function: ssize_t read(…)

Read data from the UART. The call blocks until data is received from the UART RX
FIFO unless UART read timeout is enabled. UART read timeout can be enabled with
the ioctl UART_IOCTL_READ_TIMEOUT_ENABLE. The duration of the timeout can be set with
the ioctl UART_IOCTL_READ_TIMEOUT_DURATION_SET. When UART timeout is enabled and
read() has not received any data before the timer fires, read() will return minus one
and set the status code ETIME.

NOTE The read call may return less data than requested.

Argument Type Direction Description

fd int in File descriptor received at open

buf void* in Pointer to character buffer to write data to

count size_t in Number of characters to read

Return value Description

>0 Number of characters that were read.

0 A parity/framing/overrun error occurred. The
RX data path has been flushed. Data was lost.

-1 see errno values

errno values

EIO Failed to get internal resource

ETIME The read operation timed out and no packet
was received.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 70 of 153

https://www.aac-clyde.space

5.5.2.4. Function: ssize_t write(…)

Write data to the UART. The write call is blocking until all data has been transmitted
unless UART write timeout is enabled.

UART write timeout can be enabled with the ioctl command
UART_IOCTL_WRITE_TIMEOUT_ENABLE. The duration of the timeout can be set with the ioctl
UART_IOCTL_WRITE_TIMEOUT_DURATION_SET. When write timeout is enabled, if UART
write() does not get an interrupt saying that the transmission was successful before
the timer fires, write() will return minus one and set the status code ETIME.

Argument Type Direction Description

fd int in File descriptor received at open

buf const void* in Pointer to character buffer to read data
from

count size_t in Number of characters to write

Return value Description

>=0 Number of characters that were written.

-1 see errno values

errno values

EIO Failed to get internal resource

ETIME The write operation timed out.

5.5.2.5. Function: int ioctl(…)

NOTE
Since the granularity of the system is 10ms, values not divisible by
10 ms will be truncated to the nearest multiple if 10ms. Setting a
timeout less than 10 ms will result in a timeout of 0 ms.

The timeout configuration applies to all open file descriptors. If more than one UART
device is opened, it is not possible to control the timeout configuration for a specific
file descriptor.

Ioctl allows for toggling the RS422/RS485/Loopback mode and setting the baud rate.
RS422/RS485 mode selection is not applicable for UART6 and UART7.

Argument Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 71 of 153

https://www.aac-clyde.space

Argument Type Direction Description

val int in Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

UART_IOCTL_SET_BITRATE uint32_t in Set the bitrate of the line
interface. Possible values:
UART_B375000
UART_B347200
UART_B223200
UART_B153600
UART_B115200 (default)
UART_B76800
UART_B57600
UART_B38400
UART_B19200
UART_B9600
UART_B4800
UART_B2400
UART_B1200

UART_IOCTL_MODE_SELECT uint32_t in Set the mode of the interface.
Possible values:
UART_RTEMS_MODE_RS422 (default)
UART_RTEMS_MODE_RS485
UART_RTEMS_MODE_LOOPBACK (TX
connected to RX internally)

UART_IOCTL_RX_FLUSH uint32_t in Flushes the RX software FIFO.
Cannot be done on a write-
only file descriptor. Indata is
not used by driver.

UART_IOCTL_SET_PARITY uint32_t in Set parity. Possible values:
UART_PARITY_NONE (default)
UART_PARITY_ODD
UART_PARITY_EVEN

UART_IOCTL_SET_BUFFER_DEPT
H

uint32_t in Set the FPGA FIFO buffer
depth. Possible values:
UART_BUFFER_DEPTH_16 (default)
UART_BUFFER_DEPTH_32
UART_BUFFER_DEPTH_64
UART_BUFFER_DEPTH_128

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 72 of 153

https://www.aac-clyde.space

Command table Type Direction Description

UART_IOCTL_GET_BUFFER_DEPT
H

uint32_t* out Get the current buffer depth.

UART_IOCTL_SET_TRIGGER_LEV
EL

uint32_t in Set the FPGA RX FIFO trigger
level. Have to be set after the
buffer depth. Cannot be done
on a write-only file descriptor.
Possible values:
UART_TRIGGER_LEVEL_1
= 1 character
UART_TRIGGER_LEVEL_4
= 1/4 full
UART_TRIGGER_LEVEL_8
= 1/2 full
UART_TRIGGER_LEVEL_14
= buffer_depth - 2 (default)

UART_IOCTL_GET_TRIGGER_LEV
EL

uint32_t* out Get the current trigger level.

UART_IOCTL_READ_TIMEOUT_EN
ABLE

uint32_t in 1 = Enables UART read timeout
0 = Disables UART read timeout
(default)

UART_IOCTL_READ_TIMEOUT_DU
RATION_SET

uint32_t in Sets the duration of the
timeout in milliseconds.
Default is 1000 ms.

UART_IOCTL_WRITE_TIMEOUT_E
NABLE

uint32_t in 1 = Enables UART write
timeout
0 = Disables UART write
timeout (default)

UART_IOCTL_WRITE_TIMEOUT_D
URATION_SET

uint32_t in Sets the duration of the
timeout in milliseconds.
Default is 1000 ms.

Return value Description

0 Command executed successfully

-1 see errno values

errno values

EBADF Bad file descriptor for intended operation

EINVAL Invalid value supplied to IOCTL

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 73 of 153

https://www.aac-clyde.space

5.5.3. Usage description

The following #define needs to be set by the user application to be able to use the
UARTs:

• CONFIGURE_APPLICATION_NEEDS_UART_DRIVER

By defining this as part of RTEMS configuration, the driver will automatically be
initialized at boot up.

5.5.3.1. RTEMS application example

In order to use the uart driver in the RTEMS environment, the following code
structure is suggested to be used:

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <bsp/uart_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_UART_DRIVER
#define CONFIGURE_SEMAPHORES 40

#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

#define CONFIGURE_INIT
rtems_task Init(rtems_task_argument argument);

rtems_task Init(rtems_task_argument ignored)
{
 /* ... */
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/uart_rtems.h> is required for accessing the uarts.

5.5.3.2. Parity, framing and overrun error notification

Upon receiving a parity, framing or an overrun error the read call returns 0 and the
internal RX queue is flushed.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 74 of 153

https://www.aac-clyde.space

5.5.4. Limitations

8 data bits only.
1 stop bit only.
No hardware flow control support.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 75 of 153

https://www.aac-clyde.space

5.6. SpaceWire

5.6.1. Description

This section describes the driver as one utility for accessing the SpaceWire device.

5.6.2. API

This API represents the driver interface from a user application’s perspective for the
RTEMS driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case
of failure on a function call, errno value is set for determining the cause. Additional
functionalities are supported via POSIX Input/Output Control API as described in
Section 5.6.2.5.

5.6.2.1. Function: int open(…)

Opens a file descriptor associated with the named device, and, for normal operation,
open() registers with the corresponding logic address. It is also possible to open a
SpaceWire device in promiscuous mode, where only one reader task is needed for
reading on all logical addresses. Each unique device may only be opened once for
read-only and once for write-only at the same time, or alternatively opened only once
for read-write at the same time. If a SpaceWire device is opened in promiscuous
mode, it is not possible to open a device with a specific logical address. If a device is
opened for a specific logical address, it is not possible to open another device in
promiscuous mode.

The device name must be set as described in the usage description in Section 5.6.3

Argument Type Direction Description

filename char * in Device name to register to for data
transaction.

oflags int in Device must be opened by exactly one of the
symbols defined in Table 5.9

Return value Description

>0 A file descriptor for the device.

-1 see errno values

errno values

EIO Internal RTEMS resource error.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 76 of 153

https://www.aac-clyde.space

Return value Description

EALREADY Device already opened for the requested
access mode (read or write).

ENOENT Invalid filename.

Table 5.9 - Open flag symbols

Symbol Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.6.2.2. Function: int close(…)

Deregisters the device name from data transactions.

NOTE
Closing a file descriptor that has ongoing read, write or ioctl
processes is not supported. The application must guarantee that all
accesses has completed (returned) before closing the descriptor.

Argument Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device name deregistered successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

5.6.2.3. Function: ssize_t read(…)

Reads a packet when available.

NOTE

This call is blocked until a packet is received, unless Spacewire read
timeout is enabled. In addition, only one task must access one file
descriptor at a time. Multiple task accessing the same file descriptor
is not allowed.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 77 of 153

https://www.aac-clyde.space

Spacewire read timeout can be enabled with the ioctl SPWN_IOCTL_READ_TIMEOUT_ENABLE.
The duration of the timeout can be set by the ioctl
SPWN_IOCTL_READ_TIMEOUT_DURATION_SET. If Spacewire read timeout is enabled, and
read() has not received any data before the timer fires, read() will return minus one
and set the status code ETIME. If the reception of a packet has been started, the
configurable timeout has no effect anymore. Though there is no risk of blocking
indefinitely if the whole packet is not received as there is a fixed timeout of 1 second
implemented in the SpaceWire router. If the rest of the packet does not arrive within
1 second, read() will return minus one and set the status code ETIMEDOUT.

If a packet with an EEP (Error End of Packet) is received, read() will return minus one
and set the status code ETIMEDOUT. If a SpW packet is terminated by an EEP character,
this means that the packet has been truncated somewhere along its path due to SpW
link failure.

NOTE Argument buf must be aligned to a 32 bit aligned address.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the packet

nbytes size_t in Maximum number of bytes available for
storage in buf. Must be between 0 and
SPWN_MAX_PACKET_SIZE.

Return value Description

>=0 Received size of the actual packet. Can be less
than nbytes.

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

EINVAL nbytes is larger than SPWN_MAX_PACKET_SIZE, or
buffer is NULL.

EIO Internal RTEMS resource error.

EBUSY Receive descriptor not currently available.

EOVERFLOW Packet size overflow occurred on reception.

ETIMEDOUT EEP received. Received packet is incomplete.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 78 of 153

https://www.aac-clyde.space

Return value Description

ETIME The read operation timed out and no packet
was received.

5.6.2.4. Function: ssize_t write(…)

Transmits a packet.

NOTE
This call is blocked until the packet is transmitted, unless write
timeout is enabled.

Spacewire write timeout can be enabled with the ioctl command
SPWN_IOCTL_WRITE_TIMEOUT_ENABLE. The duration of the timeout can be set by the ioctl
SPWN_IOCTL_WRITE_TIMEOUT_DURATION_SET. If write timeout is enabled, and the user
application tries to write on Spacewire, if the Spacewire driver does not get an
interrupt saying that the transmission was successful before the timer fires, write()
will return minus one and set the status code ETIME. If a timeout occurs during an
ongoing transmission of a packet, the packet will be truncated, terminated by an EEP
and sent.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer containing the packet.

nbytes size_t in Packet size in bytes. Must be between 0 and
SPWN_MAX_PACKET_SIZE bytes.

Return value Description

>=0 Number of bytes that were transmitted.

<0 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

EINVAL Packet size is larger than SPWN_MAX_PACKET_SIZE.

EBUSY Transmission already in progress.

EIO Internal RTEMS resource error, or internal
transmission error.

ETIME The write operation timed out.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 79 of 153

https://www.aac-clyde.space

5.6.2.5. Function: int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument Type Direction Description

fd int in A file descriptor received at open.

cmd int in Command identifier.

value void * in Command-specific parameter.

The individual command identifiers and command-specific parameters are described
in the subsections below.

5.6.2.5.1. Mode setting

Sets the device into the given mode.

NOTE
The mode setting affects the SpaceWire device and therefore all file
descriptors registered to it.

Command Value type Direction Description

SPWN_IOCTL_MODE_SET uint32_t in Modes available:

SPWN_IOCTL_MODE_OFF: Turns off the
node.
SPWN_IOCTL_MODE_LOOPBACK: Internal
loopback mode
SPWN_IOCTL_MODE_NORMAL: Normal
mode.

Return value Description

0 Given mode was set

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

EINVAL Invalid command, or invalid mode value.

5.6.2.5.2. Spacewire timeout

NOTE Since the granularity of the system is 10ms, values not divisible by

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 80 of 153

https://www.aac-clyde.space

10 ms will be truncated to the nearest multiple if 10ms. Setting a
timeout less than 10 ms will result in a timeout of 0 ms.

The timeout configuration applies to all open file descriptors. If more than one
Spacewire device is opened, it is not possible to control the timeout configuration for
a specific file descriptor.

Command Value type Direction Description

SPWN_IOCTL_READ_TIMEO
UT_ENABLE

uint32_t in 1 = Enables SpW read timeout
0 = Disables SpW read timeout
(default)

SPWN_IOCTL_READ_TIMEO
UT_DURATION_SET

uint32_t in Sets the duration of the read
timeout in milliseconds. Default
is 1000 ms.

SPWN_IOCTL_WRITE_TIME
OUT_ENABLE

uint32_t in 1 = Enables SpW write timeout
0 = Disables SpW write timeout
(default)

SPWN_IOCTL_WRITE_TIME
OUT_DURATION_SET

uint32_t in Sets the duration of the write
timeout in milliseconds. Default
is 1000 ms.

Return value Description

0 Given mode was set

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

EINVAL Invalid command, or invalid mode value.

5.6.2.5.3. Timing mode and Timecodes

Command Value type Direction Description

SPWN_IOCTL_TIMING_MOD
E_SET

spwn_timing_
mode_t

In Sets the timing mode. Encoded
as:

0 – Timing mode disabled
1 – Timing mode Master
2 – Timing mode Slave

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 81 of 153

https://www.aac-clyde.space

Command Value type Direction Description

SPWN_IOCTL_TIMING_MOD
E_GET

spwn_timing_
mode_t

Out Gets the current timing mode.
Encoded as:

0 - Timing mode disabled
1 - Timing mode Master
2 - Timing mode Slave

SPWN_IOCTL_TIMECODE_G
ET

uint8_t Out Gets the current time code.

Return value Description

0 Success

-1 Failure, see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

EINVAL Invalid command, or invalid timing mode.

5.6.2.5.4. Write with Hardware RMAP CRC Support

Depending on the SoC configuration, the spacewire driver can support hardware-
accelerated CRC calculation for transmission of RMAP packets.

The SoC support status for this feature is specified in [RD8]. It is also possible to
dynamically detect the support status of this feature using the
SPWN_IOCTL_SUPPORT_INFO_GET command described in Section 5.6.2.5.6.

If this feature is used on a supported SoC, the CRC fields will be replaced with
calculated values during the transmission of the RMAP packet.

In order to make use of this feature, writing must be performed via the
SPWN_IOCTL_WRITE_WITH_RMAP_CONTROL ioctl command.

ioctl calls using this command are blocked until the packet is transmitted or a
configured timeout has elapsed; the timeout behaviour is identical to the write
function. See Section 5.6.2.4 for details regarding the write timeout behaviour.

The details of the SPWN_IOCTL_WRITE_WITH_RMAP_CONTROL ioctl command are shown
below.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 82 of 153

https://www.aac-clyde.space

Command Value type Direction Description

SPWN_IOCTL_WRITE_WITH
_RMAP_CONTROL

spwn_write_w
ith_rmap_con

trol_t

In Write with hardware RMAP
CRC support.

The fields in the spwn_write_with_rmap_control_t struct are described below.

Field Type Direction Description

rmap spwn_rmap_tx_control_t out RMAP transmit control.

buf const void * out Write buffer.

size size_t out Number of bytes to transmit from
buf. Must not be larger than
SPWN_MAX_PACKET_SIZE.

The fields in the spwn_rmap_tx_control_t struct are described below.

Field Type Direction Description

do_replace_crc 1-bit unsigned
int bit-field

member

in Flag indicating if hardware should
calculate and replace the RMAP CRC
field(s) in the transmitted packet.

For hardware RMAP CRC calculation
to function correctly, the write buffer
must contain an RMAP packet which
is valid except for the CRC field(s);
the CRC fields(s) can be set to any
value.

For RMAP packet types which do not
contain a data field, only the header
CRC will be calculated and replaced.
For RMAP packet types which do
contain a data field, both the header
CRC and data CRC will be calculated
and replaced.

If this flag is not set, no RMAP CRC
replacement will occur and the value
of header_offset will be ignored.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 83 of 153

https://www.aac-clyde.space

Field Type Direction Description

header_offset 8-bit unsigned
int bit-field

member

in Offset in bytes to start of RMAP
header from start of write buffer.

For hardware RMAP CRC calculation
to function correctly, this value must
be set to indicate the start of the
RMAP header in the write buffer,
excluding the spacewire path
address.

For RMAP commands, this must
indicate the location of the target
logical address field and must
exclude the target spacewire address
field.

For RMAP replies, this must indicate
the location of the initiator logical
address field and must exclude the
reply spacewire address field.

The possible return and errno values for the SPWN_IOCTL_WRITE_WITH_RMAP_CONTROL
command are shown below.

Return value Description

0 Success

-1 Failure, see errno values

errno values

EBADF The file descriptor fd is not a valid file
descriptor for writing.

EINVAL Invalid command, or packet size is larger than
SPWN_MAX_PACKET_SIZE.

ENOSYS Hardware-accelerated CRC calculation for
RMAP transmission is not supported.

EBUSY Transmission already in progress.

EIO Internal RTEMS resource error, or internal
transmission error.

ETIME The write operation timed out.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 84 of 153

https://www.aac-clyde.space

5.6.2.5.5. Read with Hardware RMAP CRC Support

Depending on the SoC configuration, the spacewire driver can support hardware-
accelerated CRC calculation for reception of RMAP packets.

The SoC support status for this feature is specified in [RD8]. It is also possible to
dynamically detect the support status of this feature using the
SPWN_IOCTL_SUPPORT_INFO_GET command described in Section 5.6.2.5.6.

If this feature is used on a supported SoC, the CRCs will be calculated during the
reception of the RMAP packet and the result will be made available when the
reception has finished.

In order to make use of this feature, reading must be performed via the
SPWN_IOCTL_READ_WITH_RMAP_INFO ioctl command.

ioctl calls using this command are blocked until a packet is received or a configured
timeout has elapsed; the timeout behaviour is identical to the read function. See
Section 5.6.2.3 for details regarding the read timeout behaviour.

Similar to the read function, only one task may read from a file descriptor at a time.

The details of the SPWN_IOCTL_READ_WITH_RMAP_INFO ioctl command are shown below.

Command Value type Direction Description

SPWN_IOCTL_READ_WITH_
RMAP_INFO

spwn_read_wi
th_rmap_info

_t

Out Read with hardware RMAP CRC
support.

The fields in the spwn_read_with_rmap_info_t struct are described below.

Field Type Direction Description

rmap spwn_rmap_rx_info_t out RMAP receive information.

buf const void * out Read buffer.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 85 of 153

https://www.aac-clyde.space

Field Type Direction Description

size size_t in/out Maximum and actual number of
bytes in read buffer.

As input, this indicates the maximum
number of bytes to read into buf, it
must be set to a value between 0 and
SPWN_MAX_PACKET_SIZE.

As output, this indicates the actual
number of bytes received into buf on
success.

The fields in the spwn_rmap_rx_info_t struct are described below.

Field Type Direction Description

has_protocol_rm
ap

1-bit unsigned
int bit-field

member

out Flag indicating if the received packet
is an RMAP packet according to its
protocol field.

If this flag is not set, the values of all
other fields in this struct are
unspecified.

has_packet_with
_data

1-bit unsigned
int bit-field

member

out Flag indicating if the received packet
is an RMAP packet that contains data
according to its instruction field.

If this flag is not set, the values of the
has_data_crc_error,
has_data_crc_match and data_crc
fields are unspecified.

has_header_crc_
error

1-bit unsigned
int bit-field

member

out Flag indicating if an error occurred
during hardware calculation of the
RMAP header CRC in the received
packet.

If this flag is set, it likely indicates an
RMAP format error in the received
packet.

If this flag is set, the value of the
has_header_crc_match and header_crc
fields are unspecified.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 86 of 153

https://www.aac-clyde.space

Field Type Direction Description

has_data_crc_er
ror

1-bit unsigned
int bit-field

member

out Flag indicating if an error occurred
during hardware calculation of the
RMAP data CRC in the received
packet.

If this flag is set, it likely indicates an
RMAP format error in the received
packet.

If this flag is set, the value of the
has_data_crc_match and data_crc
fields are unspecified.

has_header_crc_
match

1-bit unsigned
int bit-field

member

out Flag indicating if the hardware-
calculated header CRC matched the
header CRC in the packet.

has_data_crc_ma
tch

1-bit unsigned
int bit-field

member

out Flag indicating if the hardware-
calculated data CRC matched the data
CRC in the packet.

header_crc 8-bit unsigned
int bit-field

member

out Hardware-calculated header CRC.

data_crc 8-bit unsigned
int bit-field

member

out Hardware-calculated data CRC.

The possible return and errno values for the SPWN_IOCTL_READ_WITH_RMAP_INFO
command are shown below.

Return value Description

0 Success

-1 Failure, see errno values

errno values

EBADF The file descriptor fd is not a valid file
descriptor for reading.

EINVAL Invalid command, or the size parameter is
larger than SPWN_MAX_PACKET_SIZE.

ENOSYS Hardware-accelerated CRC calculation for
RMAP reception is not supported.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 87 of 153

https://www.aac-clyde.space

Return value Description

EIO Internal RTEMS resource error.

EBUSY Receive descriptor not currently available.

EOVERFLOW Packet size overflow occurred on reception, no
packet data is available.

ETIMEDOUT EEP received. Received packet is incomplete,
no packet data is available.

ETIME The read operation timed out and no packet
was received.

5.6.2.5.6. Supported Features Information

Depending on the SoC configuration, the spacewire driver may or may not support
certain features. The support status of these features can be dynamically obtained
using the SPWN_IOCTL_SUPPORT_INFO_GET ioctl command. The details of this command
are shown below.

Command Value type Direction Description

SPWN_IOCTL_SUPPORT_IN
FO_GET

spwn_support
_info_t

Out Get SoC feature support
information.

The fields in the spwn_support_info_t struct are described below.

Field Type Direction Description

has_rx_rmap_har
dware_crc

1-bit unsigned
int bit-field

member

out Flag indicating if hardware RMAP
CRC is supported for reception.

has_tx_rmap_har
dware_crc

1-bit unsigned
int bit-field

member

out Flag indicating if hardware RMAP
CRC is supported for transmission.

The possible return and errno values for the SPWN_IOCTL_SUPPORT_INFO_GET command
are shown below.

Return value Description

0 Success

-1 Failure, see errno values

errno values

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 88 of 153

https://www.aac-clyde.space

Return value Description

EBADF The file descriptor fd is not a valid file
descriptor for reading.

EINVAL Invalid command.

5.6.3. Usage description

The following #define needs to be set by the user application to be able to use the
spacewire:

• CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER

This will automatically initialise the driver at boot up.

The driver provides SpaceWire link setup and data transaction via the SpaceWire
device. Each application that wants to communicate via the SpaceWire device must
register for operation in normal or promiscuous mode.

5.6.3.1. Normal Operation

Registration to a logical address is performed by calling open with a device name
consisting of the predefined string SPWN_DEVICE_0_NAME_PREFIX concatenated with a
string corresponding to the chosen logical address number.

Deregistration is performed via close().

Multiple logic addresses may be registered at the same time. But each individual logic
address may only be registered for read and write once at the same time.

Logical addresses between 0 - 31 and 255 are reserved by the ESA’s ECSS SpaceWire
standard [RD10] and cannot be registered to.

5.6.3.2. Promiscuous Mode

In promiscuous mode only one reader task is needed for reading on all logical
addresses. All the received SpaceWire packets are passed to the calling application,
allowing the application to handle the received packets and perform additional
routing if required. The write operation is unchanged; it has the same functionality as
in normal operation.

For opening a spacewire device in promiscuous mode, open shall be called with the
device name SPWN_PROMISCUOUS_DEVICE_NAME.

Deregistration is performed via close().

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 89 of 153

https://www.aac-clyde.space

5.6.3.3. Buffer Alignment

A reception packet buffer must be aligned to 4 bytes in order to handle the packet’s
reception correctly. It is therefore recommended to assign the reception buffer in the
following way:

uint8_t __attribute__ ((aligned (4)) buf_rx[PACKET_SIZE];

5.6.3.4. Usage

The RTEMS driver must be opened before it can be used to access the SpaceWire
device. Once opened, all provided RTEMS API operations can be used as described in
Section 5.6.2 and, if desired, the access can be closed when not needed.

NOTE
The data rate depends on the packet size and the transmission rate
of the SpaceWire IP core. The larger the packet size, the higher the
data rate.

Figure 5.13 - RTEMS driver usage description

NOTE All calls to RTEMS driver are blocking calls.

5.6.3.5. Application Usage Example

The following code shows an example of using the driver to transmit and receive a
SpaceWire packet.

#include <stdlib.h> /* For exit(). */
#include <stdint.h> /* For uint8_t. */

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 90 of 153

https://www.aac-clyde.space

#include <stdio.h> /* For printf() and perror(). */
#include <unistd.h> /* For write() and read(). */
#include <fcntl.h> /* For open(). */
#include <rtems.h> /* For Init() task. */
#include <bsp/spacewire_node_rtems.h> /* For SpaceWire driver specifics. */

/* Aligned for reception via DMA. */
uint8_t __attribute__((aligned(4))) read_buf[SPWN_MAX_PACKET_SIZE];

rtems_task Init(rtems_task_argument ignored)
{
 (void)ignored;
 /* Receive packets directed to logical address 254. */
 int fd = open(SPWN_DEVICE_0_NAME_PREFIX "254", O_RDWR);
 if (fd < 0) {
 perror("Failed to open");
 exit(EXIT_FAILURE);
 }
 uint8_t write_buf[] = {
 0x03, /* SpaceWire address. */
 0xFE, 0xAA, 0xBB, 0xCC, 0xDD,
 };
 ssize_t size = write(fd, write_buf, sizeof(write_buf));
 if (size < 0) {
 perror("Failed to write");
 exit(EXIT_FAILURE);
 }
 size = read(fd, &read_buf, sizeof(read_buf));
 if (size < 0) {
 perror("Failed to read");
 exit(EXIT_FAILURE);
 }
 printf("Received packet with size %zd\n", size);
 exit(EXIT_SUCCESS);
}

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER
/* Strict object limits omitted. */
#define CONFIGURE_UNLIMITED_OBJECTS
#define CONFIGURE_UNIFIED_WORK_AREAS
#define CONFIGURE_MAXIMUM_DRIVERS 2
/* stdin, stdout, stderr, and descriptor opened by application. */
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS (3 + 1)
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 91 of 153

https://www.aac-clyde.space

5.6.3.6. Hardware RMAP CRC Examples

The following code shows an example of using hardware-accelerated CRC calculation
for transmission of an RMAP packet.

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <rtems.h>
#include <spacewire_node_rtems.h>

rtems_task Init(rtems_task_argument ignored)
{
 (void)ignored;
 int fd = open(SPWN_DEVICE_0_NAME_PREFIX "254", O_RDWR);
 if (fd < 0) {
 perror("Failed to open");
 exit(EXIT_FAILURE);
 }
 uint8_t buf[] = {
 0x01, 0x03, /* Target SpaceWire address. */
 /* RMAP read command. */
 0xFE, 0x01, 0x4C, 0x00, 0x67, 0x00, 0x01, 0x00, 0xA0, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x10,
 0x00, /* Header CRC, will be replaced by hardware. */
 };
 size_t target_address_size = 2;
 spwn_write_with_rmap_control_t param;
 param.rmap.header_offset = target_address_size;
 param.rmap.do_replace_crc = 1;
 param.buf = buf;
 param.size = sizeof(buf);
 int status = ioctl(fd, SPWN_IOCTL_WRITE_WITH_RMAP_CONTROL, ¶m);
 if (status < 0) {
 perror("Failed to write");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER
#define CONFIGURE_UNLIMITED_OBJECTS
#define CONFIGURE_UNIFIED_WORK_AREAS
#define CONFIGURE_MAXIMUM_DRIVERS 2
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS (3 + 1)
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 92 of 153

https://www.aac-clyde.space

#define CONFIGURE_INIT
#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

The following code shows an example of using hardware-accelerated CRC calculation
for reception of an RMAP packet.

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <rtems.h>
#include <spacewire_node_rtems.h>

uint8_t __attribute__((aligned(4))) buf[SPWN_MAX_PACKET_SIZE];

rtems_task Init(rtems_task_argument ignored)
{
 (void)ignored;
 int fd = open(SPWN_DEVICE_0_NAME_PREFIX "254", O_RDWR);
 if (fd < 0) {
 perror("Failed to open");
 exit(EXIT_FAILURE);
 }
 spwn_read_with_rmap_info_t param;
 param.buf = buf;
 param.size = sizeof(buf);
 int status = ioctl(fd, SPWN_IOCTL_READ_WITH_RMAP_INFO, ¶m);
 if (status < 0) {
 perror("Failed to read");
 exit(EXIT_FAILURE);
 }
 spwn_rmap_rx_info_t info = param.rmap;
 if (info.has_protocol_rmap &&
 !info.has_header_crc_error &&
 info.has_header_crc_match) {
 printf("Received RMAP packet with valid header CRC.\n");
 }
 exit(EXIT_SUCCESS);
}

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_SPACEWIRE_DRIVER
#define CONFIGURE_UNLIMITED_OBJECTS
#define CONFIGURE_UNIFIED_WORK_AREAS
#define CONFIGURE_MAXIMUM_DRIVERS 2
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS (3 + 1)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 93 of 153

https://www.aac-clyde.space

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 94 of 153

https://www.aac-clyde.space

5.7. GPIO

5.7.1. Description

This section describes the driver as one utility for accessing the GPIO device.

5.7.1.1. Driver

This driver software for the GPIO IP, handles the setting and reading of general
purpose input/output pins. It implements the standard set of device file operations
according to [RD11].

The GPIO IP has, apart from logical pin and input/output operations, also a number of
other features.

5.7.1.2. Falling and rising edge detection

Once configured, the GPIO IP can detect rising or falling edges on a pin and alert the
driver software by the means of an interrupt. In order to not get false edge-detections
the procedure to turn on edge detection is.

1. Enable edge detection.

2. Set direction to input.

3. Call read() function.

5.7.1.3. Time stamping in SCET

Instead, or in addition to the interrupt, the GPIO IP can also signal the SCET to sample
the current timer when a rising or falling edge is detected on a pin. Reading the time
of the timestamp requires interaction with the SCET and exact register address
depends on the current board configuration. One SCET sample register is shared by
all GPIOs.

5.7.1.4. RTEMS differential mode

In RTEMS finally, a GPIO pin can also be set to operate in differential mode on output
only. This requires two pins working in tandem and if this functionality is enabled,
the driver will automatically adjust the setting of the paired pin to output mode as
well. When in differntial mode the pins are paired in logical sequence, which means
that pin 0 and 1 are paired, pin 2 and 3 are paired etc. If setting the first pin in the
pair to a value, the second pin in the pair will have the inverted value. If setting the
second pin in the pair to a value, the first pin in the pair will have the inverted value.
Thus, in differential mode it is recommended to operate on the lower numbered pin
only to avoid confusion. Pins can be set in differential mode on a specific pair only,
i.e. both normal single ended and differential mode pins can be combined in a

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 95 of 153

https://www.aac-clyde.space

configuration and operate simultaneously (though not within a pin pair).

Pin that is set Value Pin 0 Value Pin 1 Value

0 1 1 0

0 0 0 1

1 1 0 1

1 0 1 0

5.7.1.5. Operating on pins with pull-up or pull-down

For scenarios when one or multiple pins are connected to a pull-up or pull-down (for
e.g. open-drain operation), it’s recommended that the output value of such a pin
should always be set to 1 for pull-down or 0 for pull-up mode. The actual pin value
should then be selected by switching between input or output mode on the pin to
comply with the external pull feature.

5.7.2. API

This API represents the driver interface of the module from an RTEMS user
application’s perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of use. In
case of a failure on a function call, the errno value is set for determining the cause.

5.7.2.1. Function: int open(…)

Opens access to the specified GPIO pin, but do not reset the pin interface and instead
retains the settings from any previous access.

Argument Type Direction Description

pathname const char* in The absolute path to the GPIO pin to
be opened. All possible paths are
given by "/dev/gpioX" where X
matches 0-31. The actual number of
devices available depends on the
current hardware configuration.

flags int in Access mode flag:
O_RDONLY, O_WRONLY or O_RDWR

Return value Description

fd A file descriptor for the device on success

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 96 of 153

https://www.aac-clyde.space

Return value Description

-1 See errno values

errno values

EALREADY Device is already open

EINVAL Invalid options

5.7.2.2. Function: int close(…)

Closes access to the GPIO pin.

Argument Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.7.2.3. Function: ssize_t read(…)

Reads the current value of the specified GPIO pin. If no edge detection have been
enabled, this call will return immediately. With edge detection enabled, this call will
block with a timeout until the pin changes status such that it triggers the edge
detection. The timeout can be adjusted using an ioctl command, but defaults to zero -
blocking indefinitely, see Section 5.7.2.5.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to put the read
data in.

count size_t in Number of bytes to read, must be set to 1.

Return value Description

>=0 Number of bytes that were read.

-1 See errno values

errno values

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 97 of 153

https://www.aac-clyde.space

Return value Description

EINVAL Invalid options

ETIMEDOUT Driver timed out waiting for the edge
detection to trigger

5.7.2.4. Function: ssize_t write(…)

Sets the output value of the specified GPIO pin. If the pin is in input mode, the write is
allowed, but its value will not be reflected on the pin until it is set in output mode.

Argument Type Direction Description

fd int in File descriptor received at open.

buf const void* in Pointer to character buffer to get the
write data from.

count size_t in Number of bytes to write, must be
set to 1.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

5.7.2.5. Function: int ioctl(…)

The input/output control function can be used to configure the GPIO pin as a
complement to the simple data settings using the read/write file operations.

Argument Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

val void* in/out Data according to the specific command.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 98 of 153

https://www.aac-clyde.space

Command table Type Direction Description

GPIO_IOCTL_GET_DIRECT
ION

uint32_t* out Get input/output direction of
the pin.

0 output mode
1 input mode

GPIO_IOCTL_SET_DIRECT
ION

uint32_t* in Set input/output direction of the
pin.

0 output mode
1 input mode

GPIO_IOCTL_GET_FALL_E
DGE_DETECTION

uint32_t* out Get falling edge detection status
of the pin.

0 detection disabled
1 detection enabled

GPIO_IOCTL_SET_FALL_E
DGE_DETECTION

uint32_t* in Set falling edge detection
configuration of the pin.

0 detection disabled
1 detection enabled

GPIO_IOCTL_GET_RISE_E
DGE_DETECTION

uint32_t* out Get rising edge detection status
of the pin.

0 detection disabled
1 detection enabled

GPIO_IOCTL_SET_RISE_E
DGE_DETECTION

uint32_t* in Set rising edge detection
configuration of the pin.

0 detection disabled
1 detection enabled

GPIO_IOCTL_GET_TIMEST
AMP_ENABLE

uint32_t* out Get timestamp enable status of
the pin.

0 timestamp disabled
1 timestamp enabled

GPIO_IOCTL_SET_TIMEST
AMP_ENABLE

uint32_t* in Set timestamp enable
configuration of the pin.

0 timestamp disabled
1 timestamp enabled

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 99 of 153

https://www.aac-clyde.space

Command table Type Direction Description

GPIO_IOCTL_GET_DIFF_M
ODE

uint32_t* out Get differential mode status of
the pin.

0 normal, single ended, mode
1 differential mode

GPIO_IOCTL_SET_DIFF_M
ODE

uint32_t* in Set differential mode
configuration of the pin.

0 normal, single ended, mode
1 differential mode

GPIO_IOCTL_GET_EDGE_T
IMEOUT

uint32_t* out Get the edge trigger timeout
value in ticks. Defaults to zero
which means wait indefinitely.

`

GPIO_IOCTL_SET_EDGE_T
IMEOUT

uint32_t* in Set the edge trigger timeout
value in ticks. Zero means wait
indefinitely.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

5.7.3. Usage description

The following #define needs to be set by the user application to be able to use the
GPIO:

• CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

5.7.3.1. RTEMS application example

In order to use the GPIO driver in the RTEMS environment, the following code
structure is suggested to be used:

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 100 of 153

https://www.aac-clyde.space

#include <errno.h>
#include <bsp/gpio_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_GPIO_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM

#define CONFIGURE_MAXIMUM_DRIVERS 15
#define CONFIGURE_MAXIMUM_SEMAPHORES 20
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 30

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_MAXIMUM_TASKS 20

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

rtems_task Init(rtems_task_argument argument)
{
 rtems_status_code status;
 int gpio_fd;
 uint32_t buffer;
 uint32_t config;
 ssize_t size;

 gpio_fd = open("/dev/gpio0", O_RDWR);
 config = GPIO_DIRECTION_IN;
 status = ioctl(gpio_fd, GPIO_IOCTL_SET_DIRECTION, &config);
 size = read(gpio_fd, &buffer, 1);
 status = close(gpio_fd);
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, read, write and ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/gpio_rtems.h> is required for accessing the GPIO.

5.7.4. Limitations

Differential mode works on output only.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 101 of 153

https://www.aac-clyde.space

5.8. ADC

5.8.1. Description

This section describes the driver for accessing the ADC device.

5.8.1.1. Channels

The following ADC channels are available for the Sirius OBC:

Parameter Abbreviation ADC channel

Analog input ADC in 0 0

Analog input ADC in 1 1

Analog input ADC in 2 2

Analog input ADC in 3 3

Analog input ADC in 4 4

Analog input ADC in 5 5

Analog input ADC in 6 6

Analog input ADC in 7 7

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

The following ADC channels are available for the Sirius TCM:

Parameter Abbreviation ADC channel

Regulated 1.2V 1V2 8

Regulated 2.5V 2V5 9

Regulated 3.3V 3V3 10

Input voltage Vin 11

Input current Iin 12

Temperature Temp 13

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 102 of 153

https://www.aac-clyde.space

The TCM board does not contain any input ADC channels.

5.8.1.2. Data format

When data is read from a channel, the lower 8 bits contains the channel status
information, and the upper 24 bits contains the raw ADC data.

To convert the ADC value into mV, mA or m°C, the formulas specified in the table
below shall be used. Note that this assumes a 24-bit ADC value which is what the ADC
IP returns on read. Should the raw bit value be truncated or scaled down, the scale
factor (224-1) in the equations need to be adjusted as well. Note also that the
temperature equation requires the 3V3 [mV] value.

HK channel Formula

Temp [m°C] Temp_mV = (ADC_value*2500)/(2^24 - 1)

Temp_mC = (1000*(3V3_mV - Temp_mV) - Temp_mV*1210) /
0.00385*(Temp_mV - 3300)

Iin [mA] Iin_mA = (ADC_value*5000)/(2^24 - 1)

Vin [mV] Vin_mV = (ADC_value*20575)/(2^24 - 1)

3V3 [mV] 3V3_mV = (ADC_value*5000)/(2^24 - 1)

2V5 [mV] 2V5_mV = (ADC_value*5000)/(2^24 - 1)

1V2 [mV] 1V2_mV =(ADC_value*2525)/(2^24 - 1)

Analog input0 -
Analog input 7

[mV]

Value_mV = (ADC_value*2500)/(2^24 - 1)

5.8.2. API

This API represents the driver interface of the module from an RTEMS user
application’s perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage.
In case of a failure on a function call, the errno value is set for determining the cause.

5.8.2.1. Enum: adc_ioctl_sample_rate_e

Enumerator for the ADC sample rate.

Enumerator Description

ADC_IOCTL_SPS_31250 31250 SPS

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 103 of 153

https://www.aac-clyde.space

Enumerator Description

ADC_IOCTL_SPS_15625 15625 SPS

ADC_IOCTL_SPS_10417 10417 SPS

ADC_IOCTL_SPS_5208 5208 SPS

ADC_IOCTL_SPS_2597 2597 SPS

ADC_IOCTL_SPS_1007 1007 SPS

ADC_IOCTL_SPS_503_8 503.8 SPS

ADC_IOCTL_SPS_381 381 SPS

ADC_IOCTL_SPS_200_3 200.8 SPS

ADC_IOCTL_SPS_100_5 100.5 SPS

ADC_IOCTL_SPS_59_52 59.52 SPS

ADC_IOCTL_SPS_49_68 49.68 SPS

ADC_IOCTL_SPS_20_01 20.01 SPS

ADC_IOCTL_SPS_16_63 16.63 SPS

ADC_IOCTL_SPS_10 10 SPS

ADC_IOCTL_SPS_5 5 SPS

ADC_IOCTL_SPS_2_5 2.5 SPS

ADC_IOCTL_SPS_1_25 1.25 SPS

5.8.2.2. Function: int open(…)

Opens access to the ADC. Only read access is allowed and only blocking mode is
supported.

Argument Type Direction Description

pathname const char * in The absolute path to the ADC to be opened.
ADC device is defined as ADC_DEVICE_NAME.

flags int in Access mode flag, only O_RDONLY is
supported.

Return value Description

fd A file descriptor for the device on success

-1 See errno values

errno values

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 104 of 153

https://www.aac-clyde.space

Return value Description

EEXISTS Device already exists

EALREADY Device is already open

EINVAL Invalid options

5.8.2.3. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values

errno values

EFAULT Device not opened

5.8.2.4. Function: ssize_t read(…)

This is a blocking call to read data from the ADC, see Table 5.10 for definition of the
data.

NOTE The size of the given buffer must be a multiple of 32 bit.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to buffer to write data into.

count size_t in Number of bytes to read. Only 4 bytes is
supported in this implementation.

Return value Description

>=0 Number of bytes that were read.

-1 see errno values

errno values

EPERM Device not open

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 105 of 153

https://www.aac-clyde.space

Return value Description

EINVAL Invalid number of bytes to be read

Table 5.10 - ADC data buffer bit definition

Bits Description

31:8 ADC value

7:4 ADC status, see Table 5.11

3:0 Channel number

The ADC status field holds error flags from the ADC chip that can be used to
determine the validity of the conversion.

Table 5.11 - ADC Status bits definition

Bit Name Description

3 RDY The RDY flag goes low when a conversion is finished and is set
high when a conversion is started or the data register is read.

2 ADC_ERROR The ADC_ERROR bit in the status register flags any errors that
occur during the conversion process.

The flag is set when an overrange or underrange occurs at the
output of the ADC. When an underrange or overrange occurs,
the ADC also outputs all 0s or all 1s, respectively.

This flag is reset only when the underrange or overrange is
removed. It is not reset by a read of the data register.

1 CRC_ERROR If the CRC value that accompanies a write operation does not
correspond with the information sent, the CRC_ERROR flag is set.
The flag is reset as soon as the status register is explicitly read.

0 REG_ERROR The ADC chip calculates a checksum of the on-chip registers. If
one of the register values has changed, the REG_ERROR bit is set.

5.8.2.5. Function: int ioctl(…)

Ioctl allows for more in-depth control of the ADC IP like setting the sample mode,
clock divisor etc.

Argument Type Direction Description

fd int in File descriptor received at open

cmd int in Command to send

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 106 of 153

https://www.aac-clyde.space

Argument Type Direction Description

val uint32_t/
uint32_t*

in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

ADC_SET_SAMPLE_RATE_IOCTL uint32_t in Set the sample rate of the ADC
chip, see Section 5.8.2.1.

ADC_GET_SAMPLE_RATE_IOCTL uint32_t out Get the sample rate of the ADC
chip, see Section 5.8.2.1.

ADC_SET_CLOCK_DIVISOR uint32_t in Set the clock divisor of the clock
used for communication with
the ADC chip. Minimum 4 and
maximum 255.

Default is 255.

ADC_GET_CLOCK_DIVISOR uint32_t out Get the clock divisor of the
clock used for communication
with the ADC chip.

ADC_ENABLE_CHANNEL uint32_t in Enable specified channel
number to be included when
sampling. Minimum 0 and
maximum 15.

ADC_DISABLE_CHANNEL uint32_t in Disable specified channel
number to be included when
sampling. Minimum 0 and
maximum 15.

Return value Description

0 Command executed successfully

-1 see errno values

errno values

RTEMS_NOT_DEFINED Invalid IOCTL

EINVAL Invalid value supplied to IOCTL

5.8.3. Usage description

The following #define needs to be set by the user application to be able to use the
ADC:

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 107 of 153

https://www.aac-clyde.space

• CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

5.8.3.1. RTEMS application example

In order to use the ADC driver on RTEMS environment, the following code structure is
suggested to be used:

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <bsp/adc_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_ADC_DRIVER

#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

#define CONFIGURE_INIT
rtems_task Init(rtems_task_argument argument);

rtems_task Init(rtems_task_argument argument)
{
 rtems_status_code status;
 int read_fd;
 uint32_t buffer;
 ssize_t size;

 read_fd = open(ADC_DEVICE_NAME, O_RDONLY);
 status = ioctl(read_fd, ADC_ENABLE_CHANNEL_IOCTL, 4);
 size = read(read_fd, &buffer, 4);
 status = ioctl(read_fd, ADC_DISABLE_CHANNEL_IOCTL, 4);
 status = close(read_fd);
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/adc_rtems.h> is required for accessing the ADC.

5.8.4. Limitations

Only one ADC channel can be enabled at a time. To switch channels, disabling the old
and enabling the new channel is required.

Setting the clk divisor to something else than the default (255) might yield that some

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 108 of 153

https://www.aac-clyde.space

ADC reads returns 0.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 109 of 153

https://www.aac-clyde.space

5.9. NVRAM

5.9.1. Description

This section describes the driver as one utility for accessing the NVRAM device.

The NVRAM on the Sirius Leon3 OBC is a 262,144-bit magnetoresistive random access
memory (MRAM) device organized as 32,768 bytes of 8 bits. EDAC is implemented on
a byte basis meaning that half the address space is filled with checksums for
correction. It is a strong correction which corrects 1 or 2 bit errors on a byte and
detects multiple. The table below presents the address space defined as words (16,384
bytes can be used). The address space is divided into two subgroups as product- and
user address space.

5.9.1.1. Driver

This driver software for the SPI RAM IP, handles the initialization, configuration and
access of the NVRAM.

The SPI RAM is divided into an in-flight protected “safe” area and an in-flight
programmable “update” area. The in-flight protected area must be unlocked by
physically connecting the debugger unit before writing.

5.9.1.1.1. EDAC mode

When in EDAC mode, which is the normal mode of operation, all write and read
transactions are protected by EDAC algorithms. All NVRAM addresses containing
EDAC are hidden by the IP. The address space is given by the table below:

Area Range start Range end

Safe 0x0000 0x0FFF

Update 0x1000 0x3FFF

5.9.1.1.2. Non-EDAC mode

Non-EDAC mode is a debug mode that allows the user to examine the EDAC bytes. The
purpose of this mode is to be able to insert errors into the memory for testing of the
EDAC algorithm. When in Non-EDAC mode net data and EDAC data is interleaved on
an 8 bit basis, i.e. when reading a 32 bit word byte, 0, 2 contains the net data and byte
1, 3 contains EDAC data. The address space is doubled when compared to EDAC mode,
as is shown with the table below:

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 110 of 153

https://www.aac-clyde.space

Area Range start Range end

Safe 0x0000 0x1FFF

Update 0x2000 0x7FFF

5.9.2. API

This API represents the driver interface of the module from an RTEMS user
application’s perspective.

The driver functionality is accessed through the RTEMS POSIX API for ease of usage.
In case of a failure on a function call, the errno value is set for determining the cause.

5.9.2.1. Enum: rtems_spi_ram_edac_e

Enumerator for the error correction and detection of the SPI RAM.

Enumerator Description

SPI_RAM_IOCTL_EDAC_ENABLE Error Correction and Detection enabled.

SPI_RAM_IOCTL_EDAC_DISABLE Error Correction and Detection disabled.

5.9.2.2. Function: int open(…)

Opens access to the requested SPI RAM.

Argument Type Direction Description

pathname const char * in The absolute path to the SPI RAM to be
opened. SPI RAM device is defined as
SPI_RAM_DEVICE_NAME.

flags int in Specifies one of the access modes in the
following table.

Flags Description

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Return value Description

fd A file descriptor for the device on success

-1 See errno values in [RD12]

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 111 of 153

https://www.aac-clyde.space

5.9.2.3. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open.

Return value Description

0 Device closed successfully

-1 See errno values in [RD12]

5.9.2.4. Function: ssize_t read(…)

Read data from the SPI RAM. The call block until all data has been received from the
SPI RAM.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to write data into.

count size_t in Number of bytes to read. Must be a multiple of
4.

Return value Description

>=0 Number of bytes that were read. May also set
errno EIO.

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource error.

EIO and
>=0 return value

Read was successful and a single or double-bit
error was corrected using EDAC. The corrected
value has NOT been re-written.

EIO and
-1 return value

Multi-bit uncorrectable read error.

5.9.2.5. Function: ssize_t write(…)

Write data into the SPI RAM. The call block until all data has been written into the SPI

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 112 of 153

https://www.aac-clyde.space

RAM.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void* in Pointer to character buffer to read data from.

count size_t in Number of bytes to write. Must be a multiple
of 4.

Return value Description

>=0 Number of bytes that were written.

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource error.

5.9.2.6. Function: int lseek(…)

Set the address for the read/write operations.

Argument Type Direction Description

fd int in File descriptor received at open.

offset void* in SPI RAM read/write byte offset. Must be a
multiple of 4.

whence int in SEEK_SET and SEEK_CUR are supported.

Return value Description

>=0 Byte offset

-1 See errno values in [RD12]

5.9.2.7. Function: int ioctl(…)

Input/output control for SPI RAM.

Argument Type Direction Description

fd int in File descriptor received at open.

cmd int in Command to send.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 113 of 153

https://www.aac-clyde.space

Argument Type Direction Description

val uint32_t/
uint32_t*

in/out Value to write or a pointer to a buffer where
data will be written.

Command table Type Direction Description

SPI_RAM_SET_EDAC_IOC
TL

uint32_t in Configures the error correction and
detection for the SPI RAM, see
Section 5.9.2.1.

SPI_RAM_SET_DIVISOR_
IOCTL

uint32_t in Configures the serial clock divisor.

SPI_RAM_GET_EDAC_STA
TUS_IOCTL

uint32_t* out Deprecated. Get EDAC status for
previous read operations.

SPI_RAM_GET_DEBUG_DE
TECT_IOCTL

uint32_t* out Get Debug detect status.

EDAC Status Description

SPI_RAM_EDAC_STATUS_MULT_ERROR Multiple errors detected.

SPI_RAM_EDAC_STATUS_DOUBLE_ERROR Double error corrected.

SPI_RAM_EDAC_STATUS_SINGLE_ERROR Single error corrected.

Debug Detect Status Description

SPI_RAM_DEBUG_DETECT_TRUE Debugger detected.

SPI_RAM_DEBUG_DETECT_FALSE Debugger not detected.

Return value Description

0 Command executed successfully

-1 See errno values

errno values

EINVAL Invalid options

ENODEV Internal RTEMS resource error.

5.9.3. Usage description

The following #define needs to be set by the user application to be able to use the SPI
RAM:

• CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 114 of 153

https://www.aac-clyde.space

The SPI RAM RTEMS driver supports multiple file descriptors opened simultaneously.

EDAC error information is reported via errors in the read operation, which is the
recommended way to obtain this information.

The SPI_RAM_GET_EDAC_STATUS_IOCTL command is deprecated and may be removed in
future versions.

5.9.3.1. RTEMS Example

In order to use the SPI RAM driver on RTEMS environment, the following code
structure is suggested to be used (see Board Support Package for a full example):

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <bsp/spi_ram_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SPI_RAM_DRIVER

#define CONFIGURE_INIT

#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

rtems_task Init(rtems_task_argument argument);

rtems_task Init(rtems_task_argument argument)
{
 rtems_status_code status;
 int dsc;
 uint8_t buf[8];
 ssize_t cnt;
 off_t offset;

 dsc = open(SPI_RAM_DEVICE_NAME, O_RDWR);
 offset = lseek(dsc, 0x200, SEEK_SET);
 cnt = write(dsc, &buf[0], sizeof(buf));
 offset = lseek(dsc, 0x200, SEEK_SET);
 cnt = read(dsc, &buf[0], sizeof(buf));
 status = close(dsc);
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions:
open, close, ioctl.

• Inclusion of <errno.h> is required for retrieving error values on failures.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 115 of 153

https://www.aac-clyde.space

• Inclusion of <bsp/spi_ram_rtems.h> is required for accessing the SPI_RAM.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 116 of 153

https://www.aac-clyde.space

5.10. System flash

5.10.1. Description

The System flash holds the software images for the system as described in Chapter 8.
This section details the RTEMS interface to the System flash driver.

5.10.1.1. Overview

In NAND flash the memory area is divided into pages that have a data area and a
spare area. The pages are grouped into blocks. Before data can be programmed to a
page it must be erased (all bytes are 0xFF). The smallest area to erase is a block
consisting of a number of pages, so if the block contains any data that needs to be
preserved this must first be read out. The driver defines some constants for the
application software to use when handling blocks and pages. There are
SYSFLASH_BLOCKS blocks starting from block number 0 and SYSFLASH_PAGES_PER_BLOCK
pages within each block starting from page 0. Each page data area is
SYSFLASH_PAGE_SIZE bytes. Each page also has a spare area that is
SYSFLASH_PAGE_SPARE_AREA_SIZE bytes. Partial pages can be read/programmed, but
reading/programming always starts at the beginning of the page (or spare area).
Pages (including spare area) must be programmed in sequence within a block.

With NAND flash memory technology some blocks will be bad from the factory, and
more bad blocks will appear due to wear. The driver itself does not manage bad
blocks, but it will supply the information needed for the application software to
implement a system to keep track of them. A common use for the page spare area is to
hold ECC information. However, this system has a more comprehensive EDAC
solution, so the main use for the spare area is to hold the factory bad block markers
(first byte of the first page spare area is 0x00). Bad blocks should never be erased or
programmed.

5.10.1.2. Debug detect

Erasing blocks/programming pages to the first half of the flash memory (lower
addresses) only works when the debug detect signal is high (indicating debugger is
connected). If erase/program operations to that area are attempted when the debug
detect signal is low they will appear to succeed from a software perspective but the
controller will not pass them on to the flash chip.

5.10.2. Data Structures

5.10.2.1. Type: sysflash_cid_t

This struct type holds the result of reading the system flash chip ID.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 117 of 153

https://www.aac-clyde.space

Type Name Description

uint32_t[2] chip0 Byte array for chip0 ID

5.10.2.2. Type: sysflash_ioctl_spare_area_args_t

This struct is used by the RTEMS API as the target when reading or writing the spare
area.

Type Name Description

uint32_t page_num What page to read/write. Values: [0 -
(SYSFLASH_MAX_NO_PAGES-1)]

uint32_t raw Ignored when writing (programming is always
done with EDAC and interleaving active). On read,
set to 0 to do deinterleaving and EDAC checking,
set to 1 to read raw interleaved data without
EDAC checking.

uint8_t * data_buf Pointer to buffer in which the data is to be stored,
or to the data that is to be written.

uint32_t size Size to read/write in bytes. Values: [1 -
SYSFLASH_PAGE_SPARE_AREA_SIZE]

5.10.3. API

This API represents the driver interface from a user application’s perspective for the
RTEMS driver.

The driver functionality is accessed through RTEMS POSIX API for ease of use. In case
of failure on a function call, the errno value is set for determining the cause.

NOTE
This documentation only lists the most likely errno values and those
that have special meaning for this driver. For an exhaustive list
please see the Open Group POSIX specification documentation.

5.10.3.1. Function: int open(…)

Opens access to the driver. The device can only be opened by one user at a time.

Argument Type Direction Description

filename char * in The absolute path to the file that is to be
opened. System flash device is defined as
SYSFLASH_DEVICE_NAME.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 118 of 153

https://www.aac-clyde.space

Argument Type Direction Description

oflags int in Access mode flags, see Table 5.12.

Return Value Description

>0 A file descriptor for the device.

-1 see errno values

errno values

EBUSY Device already opened.

ENODEV Internal driver error

Table 5.12 - open flag symbols

Access mode Description

O_RDONLY Open for reading only

O_WRONLY Open writing only

O_RDWR Open for reading and writing

5.10.3.2. Function: int close(…)

Closes access to the device.

Argument Type Direction Description

fd int in File descriptor received at open.

Return Value Description

0 Device closed successfully

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor.

5.10.3.3. Function: size_t lseek(…)

Sets page offset for read/write operations.

NOTE
The interface is not strictly POSIX, as the offset argument is expected
to be given in pages and not bytes.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 119 of 153

https://www.aac-clyde.space

Argument Type Direction Description

fd int in File descriptor received at open.

offset off_t in Page number. (NOTE: Not bytes!)

whence int in Must be set to SEEK_SET.

Return Value Description

offset Page number

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor

EINVAL whence is not a proper value.

EOVERFLOW The resulting file offset would overflow off_t.

5.10.3.4. Function: size_t read(…)

Reads requested size of bytes from the device starting from the offset set using lseek.

NOTE
For iterative read operations, lseek must be called to set page offset
before each read operation.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer where to store the data
(should be 32-bit aligned for most
efficient read).

nbytes size_t in Number of bytes to read into buf (should
be a multiple of 4 for most efficient read).

Return Value Description

>0 Number of bytes that were read.

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 120 of 153

https://www.aac-clyde.space

Return Value Description

EINVAL Page offset set by lseek is out of range or
nbytes is too large and reaches a page that is
out of range.

ENODEV Internal driver error.

EBUSY Flash controller busy.

5.10.3.5. Function: size_t write(…)

Writes requested size of bytes to the device starting from the offset set using lseek.

NOTE
For iterative write operations, lseek must be called to set page offset
before each write operation.

Argument Type Direction Description

fd int in File descriptor received at open.

buf void * in Character buffer to write data from
(should be 32-bit aligned for most
efficient write).

nbytes size_t in Number of bytes to write from buf
(should be a multiple of 4 for most
efficient write).

Return Value Description

>0 Number of bytes that were written.

-1 see errno values

errno values

EBADF The file descriptor fd is not an open file
descriptor

EINVAL Page offset set by lseek is out of range or
nbytes is too large and reaches a page that is
out of range.

ENODEV Internal driver error.

EBUSY Flash controller busy.

EIO Program failed at chip level, block should be
considered bad (double check chip status FAIL
flag using SYSFLASH_IO_READ_CHIP_STATUS).

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 121 of 153

https://www.aac-clyde.space

5.10.3.6. Function: int ioctl(…)

Additional supported operations via POSIX Input/Output Control API.

Argument Type Direction Description

fd int in File descriptor received at open.

cmd int in Command defined in sections below.

value void * in The value relating to command operation
as defined in sections below.

5.10.3.6.1. Reset System flash

Resets the system flash chip.

Command Value type Direction Description

SYSFLASH_IO_RESET n/a n/a n/a

5.10.3.6.2. Read chip status

Reads the chip status register.

Command Value type Direction Description

SYSFLASH_IO_READ_
CHIP_STATUS

uint8_t * out Pointer to variable in which
status data is to be stored.

5.10.3.6.3. Read controller status

Reads the controller status register.

Command Value type Direction Description

SYSFLASH_IO_READ_
CTRL_STATUS

uint16_t * out Pointer to variable in which
controller status data is to be
stored.

5.10.3.6.4. Read ID

Reads the flash chip ID.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 122 of 153

https://www.aac-clyde.space

Command Value type Direction Description

SYSFLASH_IO_READ_
ID

sysflash_cid_t * out Pointer to struct in which ID is
to be stored, see Section
5.10.2.1.

5.10.3.6.5. Erase block

Erases a block.

Command Value type Direction Description

SYSFLASH_IO_ERASE
_BLOCK

uint32_t in Block number to erase.

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EIO Erase failed on chip level; block should be
considered bad.

5.10.3.6.6. Read spare area

Reads the spare area for a given page.

Command Value type Direction Description

SYSFLASH_IO_READ_
SPARE_AREA

sysflash_ioctl_sp
are_area_args_t *

in Pointer to struct with page
number specifier, and
destination buffers where spare
area data is to be stored, see
Section 5.10.2.2.

5.10.3.6.7. Write spare area

Writes the data to the given page spare area.

Command Value type Direction Description

SYSFLASH_IO_WRITE
_SPARE_AREA

sysflash_ioctl_sp
are_area_args_t *

in Pointer to struct with page
number specifier, and source
buffer with data to be written,
see Section 5.10.2.2.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 123 of 153

https://www.aac-clyde.space

Return value Description

0 Operation successful.

-1 See errno values.

errno values

EIO Program failed on chip level; block should be
considered bad.

5.10.3.6.8. Factory bad block check

Reads the factory bad block marker from a block and reports status.

NOTE
This only gives information about factory marked bad blocks. Bad
blocks that arise during use need to be handled by the application
software.

Command Value type Direction Description

SYSFLASH_IO_BAD_B
LOCK_CHECK

uint32_t in Block number.

Return value Description

SYSFLASH_FACTORY_BAD_BLOCK_CLEARED Block is OK.

SYSFLASH_FACTORY_BAD_BLOCK_MARKED Block is marked bad.

errno values

ETIMEDOUT Polled read of spare area timed out.

5.10.4. Usage Description

The RTEMS driver provides the application software with a POSIX file interface for
accessing the functionality of the bare-metal driver. However, unlike the POSIX calls
where the offset is given in bytes, the Sysflash driver expects the offset to be in pages.
The read and write calls provide an abstraction to the page-by-page access in the
bare-metal driver, so multiple pages can be read/written with one call, but the
application will still need to make sure that pages are erased before they are written.

In RTEMS the device file must be opened to grant access to the system flash device.
Once opened, all provided operations can be used as described in Section 5.10.3. If
desired, the access can be closed when not needed.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 124 of 153

https://www.aac-clyde.space

Figure 5.14 - RTEMS driver usage description.

The following #define needs to be set by the user application to be able to use the
system flash driver:

• CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER

By defining this as part of RTEMS configuration, the driver will automatically be
initialized at boot up.

NOTE
All calls to the RTEMS driver are blocking calls, though the driver
uses interrupts internally to ease processor load.

5.10.4.1. RTEMS application example

In order to use the system flash driver in the RTEMS environment, the following code
structure is suggested to be used:

#include <bsp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <bsp/system_flash_rtems.h>

#define CONFIGURE_APPLICATION_NEEDS_SYSTEM_FLASH_DRIVER
/*...*/
#define CONFIGURE_INIT
rtems_task Init(rtems_task_argument argument);

#include <bsp/bsp_confdefs.h>
#include <rtems/confdefs.h>

rtems_task Init(rtems_task_argument ignored)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 125 of 153

https://www.aac-clyde.space

{
 /*...*/
 fd = open(SYSFLASH_DEVICE_NAME, O_RDWR);
 /*...*/
}

• Inclusion of <fcntl.h> and <unistd.h> are required for using the POSIX functions
open, close, lseek, read, write, and ioctl for accessing the driver.

• Inclusion of <errno.h> is required for retrieving error values on failures.

• Inclusion of <bsp/system_flash_rtems.h> is required for driver related definitions.

• Inclusion of <bsp/bsp_confdefs.h> is required to initialise the driver at boot up.

5.10.5. Limitations

The system flash driver may only have one open file descriptor at a time.

The POSIX interface is modified to use an offset in pages instead of bytes.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 126 of 153

https://www.aac-clyde.space

6. SpaceWire router

In both Sirius OBC and Sirius TCM products, a small router is integrated in the SoCs.
The routers use path addressing (see [RD10]) and given the topology illustrated in
Figure 6.1, the routing addressing can be easily calculated.

Figure 6.1 - Integrated router location

In the topology above, sending a package from the OBC to the TCM or vice versa, the
routing address will be 1-3. Each end node, Sirius OBC or Sirius TCM, also has one or
more logical address(es) to help distinguish between different applications or services
running on the same node. The logical address complements the path address and
must be included in a SpaceWire packet.

Example: If a packet is to be sent from Sirius OBC to the Sirius TCM it needs to be
prepended with 0x01 0x03 XX:

• 0x01 routes the packet to port 1 of the Sirius OBC router.

• 0x03 routes the packet to port 3 of the Sirius TCM router.

• XX is the logical address (0x20 – 0xFE) of the recipient application/service on the
Sirius TCM.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 127 of 153

https://www.aac-clyde.space

7. NVRAM areas

This chapter is an extension of the RTEMS NVRAM API in Section 5.9 to show how the
different areas on NVRAM are used by the Sirius products. The system flash bad block
table located at 0x0E00 – 0x11FF is used by the bootrom, the Software upload library
and nandflash program.

Table 7.1 - NVRAM Areas

Area Area type Board type Range Description

TCM SW
Configuration

Safe TCM 0x0000 -
0x0DFF

nv_config: Configuration
parameters for TCM SW.

SF_BAD_BLOCKS Safe OBC and
TCM

0x0E00 -
0x0FFF

Bad-block information for
System Flash

SF_BAD_BLOCKS Update OBC and
TCM

0x1000 -
0x11FF

Bad-block information for
System Flash.

TCM SW
Configuration

Update TCM 0x1200 -
0x1FFF

nv_config: Configuration
parameters for TCM-S SW.

MM_BAD_BLOCKS Update TCM 0x2000 -
0x23FF

Bad-block information for
Mass Memory.

TCM SW
Parameters

Update TCM 0x2400 -
0x25FF

Reserved area for operation
markers of the TCM SW.

Free space Update 0x2600 -
0x3FFF

Currently unused area.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 128 of 153

https://www.aac-clyde.space

8. Boot procedure

8.1. Description

The bootrom is a small piece of software built into a read-only memory inside the
SoC. Its main function is to load a software image from the system flash to RAM and
start it by jumping to the reset vector. To make the system fault tolerant, there are two
logical images of the main software, designated Updated and Safe. Each logical image
is stored in three physical copies distributed over the system flash. By default, the
bootrom will first try to load the Updated image and if that fails fall back to the Safe
image. The image to load can also be selected by setting the Next FW register in the
Error Manager and doing a soft reset (see Section 5.3 for more details). Boot order of
the logical images and their physical copies is shown in Figure 8.1.

Figure 8.1 - Software images in flash

8.2. Usage description

The locations in the system flash where the bootrom looks for software images are
given in Table 8.1. The first two 32-bit words of the image are expected to be a header

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 129 of 153

https://www.aac-clyde.space

with image size and an XOR checksum, see Table 8.2. If the size falls within the
accepted range, the bootrom loads the image to RAM while verifying the checksum.
Both the image size check and the checksum verification are performed in addition to
the EDAC built into the System Flash. The System Flash EDAC is handled by hardware
and calculates one extra byte of redundancy data for each true data byte written to
flash.

The bootrom loads the system flash bad-block table from an NVRAM offset described
in Table 7.1. If a flash block within the range to load from is marked as bad in the
table, that block is assumed to have been skipped when the image was programmed,
so the bootrom continues reading from the next block. If the image could be loaded
from flash without error and its checksum is correct, the bootrom jumps to the reset
vector in RAM. If there is a flash error when loading, if the checksum is incorrect, or if
the image has an invalid size, the bootrom steps to the next image by changing the
Next FW field in the Error Manager and doing a soft reset. If the image being loaded is
the last available the bootrom will ignore errors and attempt to start it anyway, in
order to always have a chance of a working system. To indicate to the software which
image and copy is loaded, the Running FW field in the Error Manager is updated
before handing over execution. The boot loader will also update the Error Manager
Latest Boot Status register to indicate where it is in the boot process, so that more
information can be retrieved in case of a failed boot, see Section 5.3.2.4.5.

Reading out that register in orbit requires a subsequent successful boot. Therefore, if
multiple image copies fail to boot, the register information that is saved will be from
the first failed attempt.

8.3. Limitations

If the image size is out of range for Safe image copy #1 (the final fallback image), the
bootrom will not be able to load it and the fallback option of handing execution to a
damaged software image if no other is available cannot be used.

Table 8.1 - Software image locations

Image number Description Flash page number

0x0 Updated copy #3 0xC0000

0x1 Updated copy #2 0xA0000

0x2 Updated copy #1 0x80000

0x3 Safe copy #3 0x40000

0x4 Safe copy #2 0x20000

0x5 Safe copy #1 0x00000

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 130 of 153

https://www.aac-clyde.space

Table 8.2 - Software image header

Field Size Description

Image size 32 bits The size in bytes of the software image, not
including the header, stored as a 32-bit unsigned
integer. A software image can be 264 Bytes - 63
MB.

Checksum 32 bits A cumulative XOR of all 32-bit words in the image
including the size, so that a cumulative XOR of the
whole image and header (including checksum)
shall evaluate to 0.

8.4. Cause of last reset

The Error Manager RTEMS driver supports reading out the last reset cause, see
Section 5.3.2.4 for details.

8.5. Pulse commands

The pulse command inputs to the Sirius products can be used to force a board to
reboot from a specific image. Paired with the ability of the Sirius TCM to decode PUS
CPDU telecommands without software interaction and issue pulse commands, this
provides a means to reset malfunctioning boards by direct telecommand from ground
as a last resort.

Each board has two pulse command inputs. Input 0 resets the board and loads the
updated image while input 1 resets the board and loads the safe image. Both require
an active-high pulse length between 20 - 40 ms to be valid. If, for some reason, both
pulse command inputs would be active at the same time, the pulse on input 0 takes
precedence.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 131 of 153

https://www.aac-clyde.space

9. Software Upload

There is a software upload library available in the BSP that can be used when writing
custom applications. This library is located under src/software_upload/.

9.1. Description

During the lifetime of a satellite, the on-board software might need adjustments as
bugs are detected or the mission parameters adjusted. This module tries to solve that
by providing a means for updating the on-board software in orbit. The OBC and the
TCM are both prepared for this functionality by having two software images, where
writing to the first one requires the debugger to be connected, thus making only the
second one available for updates in orbit.

The process for updating a flight software image is described below:

• The actual data transfer and commanding from earth performing the software
upload needs to be compliant with the CCSDS standard for TC. In this description,
it is assumed that the TCM is the initial recipient of TC, regardless of the end
target.

• The TCM acts as a router in this case, routing the Telecommand to the intended
target based on the APID and the TCM routing table (i.e. potentially to the TCM
itself). Alternatively, the telecommands can be saved temporarily in TC Storage or
in the TC queue for retrieval by an OBC.

• If the TCM is the intended target, then the software upload packets must comply
to the PUS extension of the CCSDS standard (see [RD13]), and follow Section 9.2.

• All the individual telecommand frames, containing one data fragment each, need
to be assembled into a full or partial image for update with verification.

• Finally, the actual update of the physical flash image can take place, where the
uploaded image is written to the system flash.

The API described in the following chapter takes care of the last two steps.

The picture in Figure 9.1 shows the intended control flow when commanding the
software update from ground.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 132 of 153

https://www.aac-clyde.space

Image transfer start

Image data

Image query

Image update

Ok?

Yes

No

Figure 9.1 - The intended software upload command flow

9.2. CCSDS API – custom PUS service 130

WARNING
The CCSDS API of the Software upload library is marked as
deprecated and will be removed in future BSP releases. Please
use the Software API instead (Section 9.3).

9.2.1. Description

This service is provided to allow updates to the flight software on a node in a data
handling system using Sirius components, but can be used for any type of on-board
computer. The subtypes consist of a set of commands.

All service subtypes will report telecommand acceptance as PUS service [1,1] / [1,2]
and telecommand execution complete as PUS services [1,7] / [1,8] (see [RD13]) if
requested in the telecommand PUS header. See [RD8] for information on the allocated
virtual channel for sending PUS reports. Recommended usage is to always request
acceptance and execution complete reports so that the Ground Segment can keep
track of the upload process.

All checksum parameters in the service are CRC32 with polynomial 0x04C11DB7 and

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 133 of 153

https://www.aac-clyde.space

seed value 0.

The Telecommand Acceptance Report - Failure will use the standard error codes
according to Table 9.1 without any parameters (see [RD13]).

Telecommand Execution Completed Report - Failure values are listed under each
subtype heading. Errors noted as ’critical’ will cause the whole software upload
process to be aborted.

Table 9.1 - Telecommand acceptance failure error types

Error code Data type Error description

0 UINT8 Illegal APID (PAC error)

1 UINT8 Incomplete or invalid length packet

2 UINT8 Incorrect checksum

3 UINT8 Illegal packet type

4 UINT8 Illegal packet subtype

5 UINT8 Illegal or inconsistent application data

6 UINT8 Illegal PUS version

The numerical values of error codes returned in execution failure report are shown
in Table 9.2 below.

Table 9.2 - Error code numerical values

Error code Numeric value

ENOENT 2

EIO 5

EBUSY 16

EINVAL 22

ENOSPC 28

ENODATA 61

EALREADY 120

9.2.2. Subtype 1 – Image transfer start

A telecommand using this subtype must be sent first before sending any image data
and will set up for a new image upload. It can also be used to abort an existing upload
transaction during the data transfer phase, by simply initializing a new one. The data
format is specified in Table 9.3 below.

Minimum image size is currently 272 bytes including header, and maximum image

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 134 of 153

https://www.aac-clyde.space

size is 16 Mbyte.

Table 9.3 - Image transfer start command data structure

Total number of bytes in
image

Reserved (zero) Reserved (zero)

UINT32 UINT32 UINT32

A telecommand execution complete report (if requested in the PUS header) will
return the values listed in Table 9.4 in case of a failure.

Table 9.4 - Image transfer start telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Invalid image size

EBUSY UINT8 Unable to open System Flash for writing or
processing queue for requests is full.

9.2.3. Subtype 2 – Image data

This subtype transports data segments of the actual flight software image. Each
segment can carry data with a maximum length of 900 bytes (to avoid splitting
packets over several frames) and all segments except the last must have data of
maximum length. The data in each segment is preceded by a 2-byte segment number
and a 2-byte segment length, see Table 9.5 below.

Table 9.5 - Image data command structure

Segment number Segment length Segment data

UINT16 UINT16 UINT8 UINT8 UINT8 …

A telecommand execution complete report (if requested in the PUS header) will
return the values listed in Table 9.6 in case of a failure.

Table 9.6 - Image data telecommand execution failure codes

Error code Data type Error description

EALREADY UINT8 This segment number has already been added.

EINVAL UINT8 Segment number or segment length is out of
bounds.

EIO UINT8 Read/write error in intermediate storage area of
flash (critical.)

ENOSPC UINT8 Out of non-bad blocks in intermediate storage
area of flash (critical.)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 135 of 153

https://www.aac-clyde.space

Error code Data type Error description

ENOENT UINT8 No upload in progress

EBUSY UINT8 Processing queue for requests is full.

9.2.4. Subtype 3 – Verify uploaded image

This subtype calculates and compares the checksum of the uploaded software image
with the checksum set in the command’s payload data, see Table 9.7.

Table 9.7 - Verify uploaded image argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will
return the values listed in Table 9.8 in case of a failure.

Table 9.8 - Verify uploaded image telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Checksum argument doesn’t match image
checksum.

ENOENT UINT8 No upload in progress.

ENODATA UINT8 Segments missing.

EBUSY UINT8 Processing queue for requests is full.

9.2.5. Subtype 4 – Write uploaded image

To do the updating of the flight image, this command is sent to the service provider
which will then write the image to flash. To safeguard against accidental update
commanding, a correct CRC is required as input argument for this command, see
Table 9.9.

Table 9.9 - Write image command argument

Checksum

UINT32

A telecommand execution complete report (if requested in the PUS header) will
return the values listed in Table 9.10 in case of a failure.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 136 of 153

https://www.aac-clyde.space

Table 9.10 - Write image telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Checksum argument doesn’t match image
checksum.

ENOSPC UINT8 Out of non-bad blocks in flash(critical.)

ENOENT UINT8 No upload in progress

EIO UINT8 Read/write error in intermediate storage area of
flash (critical.)

EBUSY UINT8 Processing queue for requests is full.

9.2.6. Subtype 5 – Calculate CRC in flash

This command allows the CRC calculation of an image copy stored in flash. This can
be used for extra verification after update of an image, or whenever the flight image
copies need verification. The telecommand takes the image copy number as argument
(max value 6), see Table 9.11. Image copy numbers 1 - 3 are for the (non-updateable)
safe image and 4 - 6 cover the updated image copies.

Table 9.11 - Calculate CRC in flash command argument

Image copy number

UINT8

A telecommand execution complete report (if requested in the PUS header) will
return the values listed in Table 9.12 in case of a failure.

Table 9.12 - Calculate flash CRC telecommand execution failure codes

Error code Data type Error description

EINVAL UINT8 Image number too high (maximum 6).

EBUSY UINT8 Unable to open System Flash device or processing
queue for requests is full.

EIO UINT8 Read/write error in intermediate storage area of
flash (critical.)

Furthermore, upon execution completed, a report will be generated using the same
type and subtype as for the telecommand. This report will contain the calculated
checksum, see Table 9.13.

Table 9.13 - Calculated flash CRC report

Image copy number Checksum

UINT8 UINT32

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 137 of 153

https://www.aac-clyde.space

9.3. Software API

This API depicts the functions available on the level below the PUS API and share
many similarities with these. In many cases, the PUS API simply handle the PUS
packaging and validation and maps almost directly into the software API functions.

9.3.1. Function: int32_t swu_init(…)

This function initializes all internal parameters for a new image upload. Calling init
again while an upload is in progress will cause the existing upload to be aborted. A
valid image must be at least 272 bytes and at most 16777216 bytes including header;
but setting the argument to 0 is also allowed in order to abort an upload without
starting a new one.

Argument Type Direction Decription

total uint32_t In Total size of the uploaded image

Return value Description

0 Success

-EINVAL Invalid image size

-EBUSY Unable to open System Flash for writing

9.3.2. Function: int32_t swu_segment_add(…)

This function is used for putting together data segments into a full image. Use the
function swu check to get current upload status.

Argument Type Direction Decription

seg_num uint16_t in Number of this data segment

length uint16_t in Length of this data segment

data uint8_t * in Data of the added segment

Return value Description

0 Success

-EALREADY This segment has already been added.

-EINVAL Segment number or segment length is
invalid, or data is a NULL pointer.

-EIO Read/write error in intermediate storage
area of flash (critical.)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 138 of 153

https://www.aac-clyde.space

Return value Description

-ENOSPC Out of non-flash blocks in intermediate
storage area of slash (critical.)

-ENOENT No upload in progress.

9.3.3. Function: int32_t swu_check(…)

This function can be used to check the status of a current image upload. If all
segments have been added, it will calculate the checksum of the entire image. If all
segments have not been added, it will instead return an error code and an array of
the ten first missing segments (maximum).

Argument Type Direction Decription

Checksum uint32_t * out Data checksum if the image is complete, 0
otherwise.

Mlist uint16_t * out An array of the first 10 missing segments. If the
image is complete, no data will be entered into
this variable. If only the checksum is of interest
this may be a NULL pointer.

Mlength uint16_t * out The number of elements in the missing segment
array. If only the checksum is of interest this
may be a NULL pointer.

Return value Description

0 Success

-ENODATA Not enough data - some data segments
missing

-ENOENT No upload in progress

-EINVAL NULL pointer in arguments

9.3.4. Function: int32_t swu_update(…)

This function will perform the actual write of the image to flash. If one or more of the
boot image areas in flash is out of space due to too many bad blocks an error will be
returned, but the copies with enough space will still be written.

Argument Type Direction Decription

Checksum uint32_t in Externally calculated checksum (checked
against an internal calculation before update.)

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 139 of 153

https://www.aac-clyde.space

Return value Description

0 Success

-EINVAL Checksum argument doesn’t match
image checksum.

-EIO Error when accessing flash.

-ENOSPC Out of non-bad blocks in one or more of
the boot image areas in flash.

-ENOENT No upload in progress

9.3.5. Function: int32_t swu_flash_check(…)

This function will calculate the checksum of an image in flash for specific verification
purposes. The maximum image number is 6 and number 1 - 3 maps to the safe image
copies and number 4 - 6 maps to the updated image copies. If the argument is out of
bounds of the number of images, an error return code will be returned instead.

Argument Type Direction Decription

image_number uint8_t in Image number in flash to calculate the
checksum on.

checksum uint32_t * out The calculated checksum.

Return value Description

0 Success

-EINVAL Image number is too small or large, or
checksum is a NULL pointer

-EIO Read error in image

-EBUSY Unable to open flash device file

9.4. Usage description

A user of the software upload module can either let the module handle all PUS
commanding through the PUS API (see Section 9.2) or handle all PUS packetizing and
reporting internally and only hook into the functional interface described in Section
9.3. A code example is provided in the directory software_upload/src/example.

9.5. Limitations

The maximum size of an image for upload is 16 Mbytes.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 140 of 153

https://www.aac-clyde.space

10. Death Reports

There is a death reports library available in the BSP that can be used when writing
custom applications. This library is located under src/death_reports/, with examples
for how to use it located in src/death_reports/examples.

10.1. Description

When an exception occurs, a death report consisting of a SCET timestamp, relevant
process registers and further information about the trap is written to the death report
area on persistent NVRAM. There are five available death report slots in the NVRAM.
If the table is full and a new trap occurs, no new report will be added to the table, it is
left unchanged.

10.2. Trap types

Table 7-1 in [RD14] describes the implemented traps for LEON3FT. Table 10.1 shows
the implementation for Sirius and which unexpected traps that will/will not result in
Death Reports. When an exception has occurred, the trap type can be determined by
reading the tt-field in the death report entry field. See Table 10.3 and Table 10.1 for
details.

Table 10.1 - Sirius Trap Types

Trap tt-value Pri Description Class Comment

reset 00 1 Power-on reset Interrupting Expected trap

data store
error

0x2b 2 Write buffer error
during data store

Interrupting

instruction
access
exception

0x01 3 Error or MMU page
fault during
instruction fetch

Precise

privileged
instruction

0x03 4 Execution of
privileged instruction
in user mode

Precise

illegal
instruction

0x02 5 UNIMP or other un-
implemented
instruction

Precise

fp disabled 0x04 6 FP instruction while
FPU disabled

Precise

cp disabled 0x24 6 CP instruction while
Co-processor
disabled

Precise No co-processor
in current
implementation

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 141 of 153

https://www.aac-clyde.space

Trap tt-value Pri Description Class Comment

watchpoint
detected

0x0B 7 Hardware
breakpoint match

Precise Expected trap

window
overflow

0x05 8 SAVE into invalid
window

Precise

window
underflow

0x06 8 RESTORE into invalid
window

Precise

r register
access error

0x20 9 Register file EDAC
error (LEON3FT
only)

Interrupting Not present in
current
implementation

mem address
not aligned

0x07 10 Memory access to un-
aligned address

Precise

fp exception 0x08 11 FPU Exception Deferred

cp
exception

0x28 11 Co-processor
exception

Deferred No co-processor
in current
implementation

data access
exception

0x09 13 Access error during
data load, MMU page
fault

Precise

tag overflow 0x0A 14 Tagged arithmetic
overflow

Precise

division by
zero

0x2A 15 Divide by zero Precise

10.2.1. Floating point traps

FPU traps are disabled by default. The helper function
aac_enable_floating_point_traps() via <bsp/trap.h> can be used to enable FP traps
when writing custom applications. See the examples fp_exception_div_by_zero.c and
fp_exception_subnormal_number.c in bsp/src/death_reports/examples/. If FPU traps are
enabled, death reports will also be generated for this type of traps when using the
death reports library.

There are six subcategories of floating-point exceptions according to Table 4-4 in
[RD14]. According to section 47.2.3 in [RD3] all five floating point exceptions defined
by the IEEE-754 standard can be detected (ftt=1). See section 4.4 in [RD14] for
information on how to enable and detect floating point exceptions of type IEEE-754.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 142 of 153

https://www.aac-clyde.space

Table 10.2 - Sirius Floating-point Trap Types

Floating-point Trap Type
(ftt) Field of FSR

ftt Trap Type Comment

0 None

1 IEEE_754_exception

2 unfinished_FPop Not used in GRFPU Lite

3 unimplemented_FPop Not used in GRFPU Lite

4 sequence_error

5 hardware_error Not used in current
implementation

6 invalid_fp_register Not used in GRFPU Lite

7 reserved

When a trap of type floating point has occurred, information about the actual
instruction that triggered the trap can be obtained from the Death Report Table. The
floating point trap type (ftt) can be obtained by reading the FSR from the Death
Report Table, detailed information on the contents of the FSR is in [RD14], section 4.4.
When the trap is of the type floating point, the fields for direct traps in the Death
Report Table are undefined and vice versa.

10.3. Format

When using this library, the format of death reports saved in the NVRAM is shown in
Table 10.3.

Table 10.3 - HKDeathReports data

Byte Type Description Trap category

0 UINT32 Number of death reports currently in table -

4 UINT32 A: SCET Seconds All

8 UINT32 A: SCET Subseconds All

12 UINT32 A: Processor Status Register (PSR) All

16 UINT32 A: Trap Type All

20 UINT32 A: Program Counter (PC) Direct

24 UINT32 A: next Program Counter (nPC) Direct

28 UINT32 A: Stack Pointer Direct

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 143 of 153

https://www.aac-clyde.space

Byte Type Description Trap category

32 UINT32 A: FPU Control/Status Register (FSR) Floating point

36 UINT32 A: Instruction address (Deferred traps) Floating point

40 UINT32 A: Instruction code (Deferred traps) Floating point

44 UINT32 B: SCET Seconds All

48 UINT32 B: SCET Subseconds All

52 UINT32 B: Processor Status Register (PSR) All

56 UINT32 B: Trap Type All

60 UINT32 B: Program Counter (PC) Direct

64 UINT32 B: next Program Counter (nPC) Direct

68 UINT32 B: Stack Pointer Direct

72 UINT32 B: FPU Control/Status Register (FSR) Floating point

76 UINT32 B: Instruction address Floating point

80 UINT32 B: Instruction code Floating point

84 UINT32 C: SCET Seconds All

88 UINT32 C: SCET Subseconds All

92 UINT32 C: Processor Status Register (PSR) All

96 UINT32 C: Trap Type All

100 UINT32 C: Program Counter (PC) Direct

104 UINT32 C: next Program Counter (nPC) Direct

108 UINT32 C: Stack Pointer Direct

112 UINT32 C: FPU Control/Status Register (FSR) Floating point

116 UINT32 C: Instruction address Floating point

120 UINT32 C: Instruction code Floating point

124 UINT32 D: SCET Seconds All

128 UINT32 D: SCET Subseconds All

132 UINT32 D: Processor Status Register (PSR) All

136 UINT32 D: Trap Type All

140 UINT32 D: Program Counter (PC) Direct

144 UINT32 D: next Program Counter (nPC) Direct

148 UINT32 D: Stack Pointer Direct

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 144 of 153

https://www.aac-clyde.space

Byte Type Description Trap category

152 UINT32 D: FPU Control/Status Register (FSR) Floating point

156 UINT32 D: Instruction address Floating point

160 UINT32 D: Instruction code Floating point

164 UINT32 E: SCET Seconds All

158 UINT32 E: SCET Subseconds All

162 UINT32 E: Processor Status Register (PSR) All

166 UINT32 E: Trap Type All

170 UINT32 E: Program Counter (PC) Direct

174 UINT32 E: next Program Counter (nPC) Direct

178 UINT32 E: Stack Pointer Direct

182 UINT32 E: FPU Control/Status Register (FSR) Floating point

186 UINT32 E: Instruction address Floating point

200 UINT32 E: Instruction code Floating point

When an exception has occurred, the trap type can be determined by reading the
Trap Type-field in the death reports table.

For direct traps the address of the trap inducing instruction can be determined from
the program counter PC. The trap inducing instruction is then PC-1.

The stack and frame pointers are always 16 registers (64 byte) apart in the frame
windows.

When a trap of type floating point has occurred, information about the actual
instruction that triggered the trap can be obtained from the death reports table, see
Instruction address and Instruction code in Table 10.3. The floating-point trap type
(ftt) can be obtained by reading the FSR from the death reports table, detailed
information on the contents of the FSR is in [RD14], section 4.4. When the trap is of
the type floating point, the fields for direct traps in the death reports table are
undefined and vice versa.

10.4. NVRAM

The table is located on NVRAM at offset 0x1F34 - 0x1FFF. The table can contain up to
five death reports, and it is updated A → E. If the table is full and a new trap occurs,
the death reports module will not add a new report to the table, it is left unchanged.

When clearing the table, the counter at offset 0 shall also be updated by the custom

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 145 of 153

https://www.aac-clyde.space

application. The death reports module cannot handle gaps in the table.

10.5. Usage Description

A custom application which wants to generate death reports needs to:

• #include "death_reports.h"

• Link with libdeath_reports.a

• Add the library-provided function in an RTEMS fatal handler registered as a user
extension.

To install the death reports handler into a custom RTEMS application, an RTEMS user
extension fatal handler has to be added to the application. Helper functions for
obtaining LEON3 architecture specific SW trap information are available in
<bsp/traps.h>. An example RTEMS application with an installed death reports handler
is available in the subfolder death_reports/examples/exception_handler.c.

An example application for reading out and parsing death reports from NVRAM is
available in the subfolder death_reports/examples/read_nvram_death_report_area.c. An
example application that clears the death reports area on NVRAM is available in the
subfolder death_reports/examples/clear_nvram_death_report_area.c.

IMPORTANT

Fatal handlers do not support normal use of RTEMS POSIX
API, therefore this library is provided to allow for (otherwise
unsupported) use of the AAC bare metal drivers. Modifying
this library (except for the examples) is not recommended
nor supported.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 146 of 153

https://www.aac-clyde.space

11. Updating the Sirius FPGA

To be able to update the SoC on the Sirius OBC and Sirius TCM you need the following
items:

Prerequisite hardware:

• Microsemi FlashPro5 unit

• 104470 FPGA programming cable assembly

Prerequisite software:

• Microsemi FlashPro Express v11.8 or later

• The updated FPGA firmware

11.1. Generation of encryption key

When AAC Clyde Space is supporting a customer, files with sensitive data to be
transferred between AAC and customers can be encrypted/decrypted by GPG.

1. Generate a key by:
gpg --gen-key

2. Select option “DSA and Elgamal” and a keysize of 2048 bits

3. After successful generation of the key, export the key by:
gpg --export -a -o your_pub.key

4. The generated key, your_pub.key, in example above is to be sent to AAC if needed.

11.2. Step-by-step guide

The following instructions show the necessary steps that need to be taken in order to
upgrade the FPGA firmware:

1. Connect the FlashPro5 programmer via the 104470 FPGA programming cable
assembly to the JTAG-RTL connector in Figure 11.1.

2. Connect the power cables according to Figure 11.1.

3. The updated FPGA firmware delivery from AAC should contain at least two files:

a. The actual FPGA file with an .stp file ending

b. The programmer file with a .pro file ending

4. Start the FlashPro Express application, click “Open…” in the “Job Projects” box
(see Figure 11.1) and select the supplied .pro file.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 147 of 153

https://www.aac-clyde.space

Figure 11.1 - Startup view of FlashPro Express

5. Once the file has loaded (warnings might appear), click RUN (see Figure 11.2).
Please note that the connected FlashPro5 programmed ID should be shown.

Figure 11.2 - View of FlashPro Express with project loaded.

6. The FPGA should now be loaded with the new firmware, which might take a few
minutes. Once it is finalized the second last message should be "Chain
programming PASSED", see Figure 11.3.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 148 of 153

https://www.aac-clyde.space

Figure 11.3 - View of FlashPro Express after program passed.

The Sirius FPGA image is now updated.

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 149 of 153

https://www.aac-clyde.space

12. Mechanical data

Please refer to the mechanical and Electrical ICD [RD1].

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 150 of 153

https://www.aac-clyde.space

13. Glossary

Acronym Description

ABI Application Binary Interface

ADC Analog Digital Converter

API Application Programming Interface

APID Application Process ID

BCH Bose-Chaudhuri-Hocquenghem code, a type of error correction
code

BSP Board Support Package

CCSDS The Consultative Committee for Space Data Systems

CLCW Command Link Control Word, see [RD15] and [RD16]

COP Communications Operation Procedure, see [RD15] and [RD16]

CPDU Command Pulse Distribution Unit

CRC Cyclic Redundancy Check

DMA Direct Memory Access

ECC Error Correction Code

EDAC Error Detection and Correction

EM Engineering model

ESD Electrostatic Discharge

FARM Frame Acceptance and Reporting Mechanism, see [RD16]

FECF Frame Error Control Field, see [RD15] and [RD16]

FIFO First In First Out

FLASH Flash memory is a non-volatile computer storage chip that can
be electrically erased and reprogrammed

FPGA Field Programmable Gate Array

FW Firmware

GCC GNU Compiler Collection program (type of standard in Unix)

GDB GNU Debugger

GPIO General Purpose Input/Output

Gtkterm A terminal emulator that drives serial ports

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 151 of 153

https://www.aac-clyde.space

Acronym Description

I2C Inter-Integrated Circuit, generally referred as “two-wire
interface” is a multi-master serial single-ended computer bus
invented by Philips.

IP (core) Intellectual property core, reusable functional logic block used
e.g. in a FPGA

JTAG Joint Test Action Group, interface for debugging the PCBs

LVTTL Low-Voltage TTL

LSB Least significant bit/byte

MCFC Master Channel Frame Counter

Minicom Is a text based modem control and terminal emulation
program

MSB Most significant bit/byte

NA Not Applicable

NVRAM Non Volatile Random Access Memory

OBC On Board Computer

OCF Operational Control Field, see [RD15] and [RD8

OS Operating System

PCB Printed Circuit Board

PCBA Printed Circuit Board Assembly

POSIX Portable Operating System Interface

PPS Pulse-Per-Second

PSU Power Supply Unit

PUS Packet Utilization Standard

RAM Random Access Memory, however modern DRAM has not
random access. It is often associated with volatile types of
memory

RMAP Remote Memory Access Protocol

ROM Read Only Memory

RTEMS Real-Time Executive for Multiprocessor Systems

SCET SpaceCraft Elapsed Timer

SCID SpaceCraft ID

SDRAM Synchronous Dynamic Random Access Memory

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 152 of 153

https://www.aac-clyde.space

Acronym Description

SoC System-on-Chip

SPI Serial Peripheral Interface Bus is a synchronous serial data
link which sometimes is called a 4-wire serial bus.

SpW SpaceWire

SW Software

TC Telecommand

TCL Tool Command Language, a script language

TCM Telemetry, Tracking and Command Control Module

TM Telemetry

TMR Triple Modular Redundancy

TTL Transistor Transistor Logic, digital signal levels used by IC
components

UART Universal Asynchonous Receiver Transmitter that translates
data between parallel and serial forms.

USB Universal Serial Bus, bus connection for both power and data

VC Virtual Channel

WDT WatchDog Timer

Document number:
Version:
Issue date:

206-306
v1.15.0
2024-08-29

Sirius OBC User Manual www.aac-clyde.space Page 153 of 153

https://www.aac-clyde.space

	Sirius OBC User Manual
	Table of Contents
	1. Introduction
	1.1. Applicable releases
	1.2. Intended users
	1.3. Getting support
	1.4. Reference documents

	2. System overview
	2.1. Description
	2.2. OBC/TCM peripherals
	2.3. Fault tolerant design
	2.4. Usage and concept
	2.4.1. Combined setup
	2.4.2. OBC concept
	2.4.3. TCM concept
	2.4.3.1. Use with pre-programmed flight software
	2.4.3.2. Use without pre-programmed flight software

	2.5. Manual chapters overview

	3. Setup and operation
	3.1. User prerequisites
	3.2. Connecting cables to the Sirius products
	3.3. Installation of toolchain
	3.3.1. Supported Operating Systems
	3.3.2. Installation Steps
	3.3.2.1. Store the key for the AAC package archive
	3.3.2.1.1. Old AAC package archive key in global trusted apt keyring

	3.3.2.2. Add the package archive as a source
	3.3.2.3. Install the packages
	3.3.2.4. Setup PATH

	3.3.3. AAC toolchain is RTEMS-only

	3.4. Installing the Board Support Package (BSP)
	3.5. Deploying a Sirius application
	3.5.1. Establish a debugger connection to the Sirius products
	3.5.2. JTAG connection
	3.5.3. Setup a serial terminal to the device debug UART
	3.5.4. Using multiple debuggers on the same PC
	3.5.5. Alternative USB library for GRMON
	3.5.6. Loading an application on LEON3
	3.5.7. Debugging software

	3.6. Programming an application (boot image) to system flash
	3.7. Re-initialising the NVRAM

	4. Software development
	4.1. RTEMS step-by-step compilation
	4.1.1. Compiling the BSP and compiling an example
	4.1.2. Compiling the BSP with debug output removed

	4.2. RTEMS floating-point considerations
	4.3. Software disclaimer of warranty

	5. RTEMS
	5.1. Introduction
	5.2. Watchdog
	5.2.1. Description
	5.2.2. API
	5.2.2.1. Function: int open(…)
	5.2.2.2. Function: int close(…)
	5.2.2.3. Function: ssize_t write(…)
	5.2.2.4. Function: int ioctl(…)

	5.2.3. Usage description
	5.2.3.1. RTEMS application example

	5.3. Error Manager
	5.3.1. Description
	5.3.2. API
	5.3.2.1. Struct: errman_latest_reset_info_t
	5.3.2.2. Function: int open(…)
	5.3.2.3. Function: int close(…)
	5.3.2.4. Function: int ioctl(…)
	5.3.2.4.1. Status register
	5.3.2.4.2. Carry flag register
	5.3.2.4.3. Register for correctable errors in CPU working memory
	5.3.2.4.4. Register for uncorrectable errors in CPU working memory
	5.3.2.4.5. Latest boot status register

	5.3.3. Usage description
	5.3.3.1. Interrupt message queue
	5.3.3.2. RTEMS application example

	5.3.4. Limitations

	5.4. SCET
	5.4.1. Description
	5.4.1.1. Overview
	5.4.1.2. Timing modes
	5.4.1.3. Threshold
	5.4.1.4. Synchronization
	5.4.1.5. Losing synchronization
	5.4.1.6. Input filter
	5.4.1.7. PPS output
	5.4.1.8. General-purpose triggers

	5.4.2. API
	5.4.2.1. Function: int open(…)
	5.4.2.2. Function: int close(…)
	5.4.2.3. Function: ssize_t read(…)
	5.4.2.4. Function: ssize_t write(…)
	5.4.2.5. Function: int ioctl(…)
	5.4.2.5.1. Alternative PPS input/output control

	5.4.2.6. Event callback via message queue

	5.4.3. Usage description
	5.4.3.1. PPS synchronization procedure
	5.4.3.2. RTEMS application example

	5.5. UART
	5.5.1. Description
	5.5.1.1. Driver
	5.5.1.2. RX/TX buffer depth
	5.5.1.3. Trigger levels
	5.5.1.4. Modes

	5.5.2. API
	5.5.2.1. Function: int open(…)
	5.5.2.2. Function: int close(…)
	5.5.2.3. Function: ssize_t read(…)
	5.5.2.4. Function: ssize_t write(…)
	5.5.2.5. Function: int ioctl(…)

	5.5.3. Usage description
	5.5.3.1. RTEMS application example
	5.5.3.2. Parity, framing and overrun error notification

	5.5.4. Limitations

	5.6. SpaceWire
	5.6.1. Description
	5.6.2. API
	5.6.2.1. Function: int open(…)
	5.6.2.2. Function: int close(…)
	5.6.2.3. Function: ssize_t read(…)
	5.6.2.4. Function: ssize_t write(…)
	5.6.2.5. Function: int ioctl(…)
	5.6.2.5.1. Mode setting
	5.6.2.5.2. Spacewire timeout
	5.6.2.5.3. Timing mode and Timecodes
	5.6.2.5.4. Write with Hardware RMAP CRC Support
	5.6.2.5.5. Read with Hardware RMAP CRC Support
	5.6.2.5.6. Supported Features Information

	5.6.3. Usage description
	5.6.3.1. Normal Operation
	5.6.3.2. Promiscuous Mode
	5.6.3.3. Buffer Alignment
	5.6.3.4. Usage
	5.6.3.5. Application Usage Example
	5.6.3.6. Hardware RMAP CRC Examples

	5.7. GPIO
	5.7.1. Description
	5.7.1.1. Driver
	5.7.1.2. Falling and rising edge detection
	5.7.1.3. Time stamping in SCET
	5.7.1.4. RTEMS differential mode
	5.7.1.5. Operating on pins with pull-up or pull-down

	5.7.2. API
	5.7.2.1. Function: int open(…)
	5.7.2.2. Function: int close(…)
	5.7.2.3. Function: ssize_t read(…)
	5.7.2.4. Function: ssize_t write(…)
	5.7.2.5. Function: int ioctl(…)

	5.7.3. Usage description
	5.7.3.1. RTEMS application example

	5.7.4. Limitations

	5.8. ADC
	5.8.1. Description
	5.8.1.1. Channels
	5.8.1.2. Data format

	5.8.2. API
	5.8.2.1. Enum: adc_ioctl_sample_rate_e
	5.8.2.2. Function: int open(…)
	5.8.2.3. Function: int close(…)
	5.8.2.4. Function: ssize_t read(…)
	5.8.2.5. Function: int ioctl(…)

	5.8.3. Usage description
	5.8.3.1. RTEMS application example

	5.8.4. Limitations

	5.9. NVRAM
	5.9.1. Description
	5.9.1.1. Driver
	5.9.1.1.1. EDAC mode
	5.9.1.1.2. Non-EDAC mode

	5.9.2. API
	5.9.2.1. Enum: rtems_spi_ram_edac_e
	5.9.2.2. Function: int open(…)
	5.9.2.3. Function: int close(…)
	5.9.2.4. Function: ssize_t read(…)
	5.9.2.5. Function: ssize_t write(…)
	5.9.2.6. Function: int lseek(…)
	5.9.2.7. Function: int ioctl(…)

	5.9.3. Usage description
	5.9.3.1. RTEMS Example

	5.10. System flash
	5.10.1. Description
	5.10.1.1. Overview
	5.10.1.2. Debug detect

	5.10.2. Data Structures
	5.10.2.1. Type: sysflash_cid_t
	5.10.2.2. Type: sysflash_ioctl_spare_area_args_t

	5.10.3. API
	5.10.3.1. Function: int open(…)
	5.10.3.2. Function: int close(…)
	5.10.3.3. Function: size_t lseek(…)
	5.10.3.4. Function: size_t read(…)
	5.10.3.5. Function: size_t write(…)
	5.10.3.6. Function: int ioctl(…)
	5.10.3.6.1. Reset System flash
	5.10.3.6.2. Read chip status
	5.10.3.6.3. Read controller status
	5.10.3.6.4. Read ID
	5.10.3.6.5. Erase block
	5.10.3.6.6. Read spare area
	5.10.3.6.7. Write spare area
	5.10.3.6.8. Factory bad block check

	5.10.4. Usage Description
	5.10.4.1. RTEMS application example

	5.10.5. Limitations

	6. SpaceWire router
	7. NVRAM areas
	8. Boot procedure
	8.1. Description
	8.2. Usage description
	8.3. Limitations
	8.4. Cause of last reset
	8.5. Pulse commands

	9. Software Upload
	9.1. Description
	9.2. CCSDS API – custom PUS service 130
	9.2.1. Description
	9.2.2. Subtype 1 – Image transfer start
	9.2.3. Subtype 2 – Image data
	9.2.4. Subtype 3 – Verify uploaded image
	9.2.5. Subtype 4 – Write uploaded image
	9.2.6. Subtype 5 – Calculate CRC in flash

	9.3. Software API
	9.3.1. Function: int32_t swu_init(…)
	9.3.2. Function: int32_t swu_segment_add(…)
	9.3.3. Function: int32_t swu_check(…)
	9.3.4. Function: int32_t swu_update(…)
	9.3.5. Function: int32_t swu_flash_check(…)

	9.4. Usage description
	9.5. Limitations

	10. Death Reports
	10.1. Description
	10.2. Trap types
	10.2.1. Floating point traps

	10.3. Format
	10.4. NVRAM
	10.5. Usage Description

	11. Updating the Sirius FPGA
	11.1. Generation of encryption key
	11.2. Step-by-step guide

	12. Mechanical data
	13. Glossary

